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Abstract: By using the Lyapunov second method, the robust control and robust optimal control for the gas tungsten arc 
welding dynamic process whose underlying continuous-time systems are subjected to structured uncertainties are dis-
cussed in time-domain. As results, some sufficient conditions of robust stability and the corresponding robust control laws 
are derived. All these results are designed by solving a class of linear matrix inequalities (LMIs) and a class of dynamic 
optimization problem with LMIs constraints respectively. An example adapted under some experimental conditions in the 
dynamic process of gas tungsten arc welding system in which the controlled variable is the backside width and controlling 
variable welding speed, is worked out to illustrate the proposed results. It is shown in the paper that the sampling period is 
the crucial design parameter. 
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1. INTRODUCTION 

In recent years, much research concerning robust control 
of linear state-space models has been done. Over the past 
decades, two major approaches to this problem have been 
developed: the frequency-domain approach and the time-
domain approach. Recently, a number of publications which 
consider the time-domain approach have appeared in the 
literature [1-8], In this approach, the Lyapunov stability the-
ory [9-13] is used as a criterion for the analysis and synthesis 
of robust control systems. Moreover, the nominal system is 
assumed to be stable. 

In computer control application, most of the control sys-
tems are sampled-data systems, which are the continuous 
objects under the control of computer. So it is significant to 
study robust control of sampled-data systems [14-18]. 

In this paper, robust control and robust optimal control 
problems for a class of sampled-data systems with structured 
uncertainty are considered using the second method of 
Lyapunov. The corresponding robust control laws are given, 
which are derived by solving a class of LMIs and a class of 
dynamic program problem with LMIs constraints respec-
tively. 

2. PROBLEM FORMULATION AND PRELIMINARIES 

The systems considered in this paper are assumed to be a 
state-space model as follows 
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time-invariant matrix which represents the structured uncer-
tainty in the system model and is assumed to be of the form: 
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Discretizing the equation (1), yields 
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When the sampling time T  is sufficient small, yields 
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Definition 1 If there exists a state feedback control law 
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the following inequality hold 
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then the controller is the robust controller of the discrete-
time model (3). 

In the proof of main results in this paper, the following 
lemmas are needed. 

Fact 1 Consider any two square matrices Y and W such 
that Y = WTW, and there are two matrices X and Z of appro-
priate dimensions. Then for any vector x  with appropriate 
dimension and any constant +
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Fact 2 (Schur complement) Given constant matrices 
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3. MAIN RESULTS 

In this section, according to the discrete-time model in 
section 2 and a given quadratic index, robust control and 
robust optimal control problems for sampled-data systems 
are studied. As a result, the corresponding robust control 
laws for sampled-data systems are derived. 

3.1. Design of General Controller 

Theorem 1 System (3) is robust stable via state feedback 
if there exist matrices  
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satisfying the following LMI  

Furthermore, the control law is given by  
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that is 
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By fact 1，(12) hold if and only if 
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so the state feedback controller is the robust controller of the 
system (3), and the sampled-data system (shown in Fig. 1) 
under the control of (10) is also asymptotically stable. 

3.2. Design of Guaranteed Cost Controller 

Consider the performance index  
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and the controller 

)()( kKxku =  (17)  

According to Lyapunov stability theory, the following 
theorem is derived. 

Theorem 2 The controller (17) is guaranteed cost con-
troller if there exists matrix 0>= PP
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so (18) holds. 
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according to fact 1, it can be concluded that (24) holds if the 
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so, system (3) is quadratically stable under the control of the 
guaranteed cost controller (22). The sampled-data systems as 
shown in Fig. (1) is certainly guadratically stable, too. 

3.3. Design of the Optimal Guaranteed Cost Controller 
In this section, we shall exploit the parametrized repre-

sentation of guaranteed cost controllers for the system as 
shown in Fig. (1) to present a design procedure for the opti-
mal guaranteed cost controller which minimizes the guaran-
teed cost of the closed-loop uncertain system.  
 According to (18) and (19), it can be derived that if the 
following optimization problem has a solution, then the con-
troller u(k) = Kx(k) is the optimal guaranteed cost controller. 
As a result, we obtain the following theorem. 
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Theorem 4 If the following optimization problem 
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Fig. (1). Dynamic response curves of welding speed to backside width of weld pool with robust controller based on state observer response 
with disturbance response without disturbance. 
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Then, control law of the form (22) is the optimal state feed-
back guaranteed cost controller which ensures the minimiza-
tion of the guaranteed cost for the uncertain system (1). 

Proof The proof of this theorem can be given by combin-
ing theorem 2 with 3. 

4. APPLICATION IN GAS TUNGSTEN ARC ELDING 
SYSTEM 

The gas tungsten arc welding dynamic process is a typi-
cal control system with uncertainties as well as time-delay . 
In this system the input is welding speeding and the output is 
Width of weld pool backside.  

4.1. Mathematics Model and Controller 

By using the sensing system of weld pool’s image, the 
weld shape parameters can be got so that some varying data 
of the backside width of weld pool to the pulse duty ratio can 
be obtained. The correlative experimental condition is as 
follows: 

Welding current: Base value 35 A 
Peak value 135 A 
Welding speed: 0-30pulses 16cm/min 
31~50 pulses 13cm/min 
Pulse duty ratio: 45% 
The other experimental conditions are shown in Table 1. 

Table 1. Experimental Conditions of Pulsed GTAW 

Parameter Name 
Parameter 

Number 
Parameter Name 

Parameter 
Number 

Welding material Q235B Electro-arc length, 
l/mm 

 
3.0 

Pulse frequency f/Hz 1 
Diameter 

of tungsten d/mm 
 

3.0 

Base value of current 
Ib/A 

 
50 

Taper of tungsten 
Pole θ/(°) 

 
30 

Flow of argon qv 

/(L﹒min-1) 
 

8.0 
Size of welding 

workpiece V/mm3 
 

250×100×2 

With the square method the transfer function of the back-
side width of weld pool to the pulse duty ratio is identified as 
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while the welding process is in steady state, its mathe-
matics model in the state space is 
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By discretizing Eq. (28), the discrete-time nominal sys-
tem model can be obtained as follows 
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Because the state variables in welding process are not all 
measured physically, the necessary observer with 1-
dimension is designed as  

z(k +1) = !0.1z(k)! 2.176y(k)+ 0.3743u(k)  (30) 

While the robust controller is 
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4.2. Simulation and Experiment Results 

Fig. (1) shows the simulation curves of the states of the 
butt GTAW system under the controller (31) with disturbance 
(random signal) and without disturbance respectively, which 
describes the satisfied function of the robust controller. 

In the welding experiment, the conditions are the same as 
those in 4.1. Then Fig. (2) shows the welding effect of a weld 
workpiece when the backside width of weld pool is required to 
be 5mm. The practical welding error is less than 5%. 

 
Fig. (2). Weld workpiece of welding speed to backside width of weld pool with robust controller in case of varied heat sink. 
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Under the same experimental conditions, with the utility 
of self-finding optimality the parameters of PID controller 
are adjusted. When the backside width of weld pool is 5mm, 
the parameters can be got as follows 

P I D
18.5        =1.95        0.5K T T= =  

Then the simulation response curves of the butt GTAW 
system under the PID controller with disturbance unknown 
in the practical welding situation and the real welding effect 
of a weld workpiece are shown in Fig. (3) and Fig. (4) re-
spectively. 

From Fig. (3) and Fig. (4) it is not difficult to know that 
when the heat-sink condition goes so bad that the adjustment 
function of the PID controller to such a dynamic process 
with disturbance is not preferable, and the backside width of 
weld pool behaviors as curves similar to saw-tooth waves 
during about 24th ~ 52th pulse. The practical welding error 
is nearly 23%. 

5. CONCLUSION 
By using the second method of Lyapunov and an LMI 

approach, this paper studies robust control and robust opti-
mal control for sampled-data systems with structured uncer-
tainty. The guaranteed cost control law and the optimal guar-
anteed cost control law are derived. These control laws are 

designed by solving a class of linear matrix inequalities and 
a class of dynamic optimization problem with LMIs con-
straints respectively. In the practical welding process the 
robust controller has better effect than the classical PID con-
troller under the same experimental conditions.  
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