
Send Orders of Reprints at reprints@benthamscience.net

46 The Open Electrical & Electronic Engineering Journal, 2013, 7, (Supple 1: M4) 46-50

 1874-1290/13 2013 Bentham Open

Open Access
Design of a Regular Expression Matching System Based on Network on
Chip

Linhai Cui*, Yusen Qin, Fanyang Kong and Kaihong Yu

Software School, Harbin University of Science and Technology, 150040, Harbin, China

Abstract: This paper presents an efficient method for Regular Expression Matching (REM) by reusing Intellectual Prop-
erty (IP) cores in a new architecture of Network on Chip (NoC). The method is to design a reusable IP core which consists
of many engine cells for REM and to implement each engine cell on a Field Programmable Gate Array (FPGA) as a pro-
totype. To make Finite State Machine (FSM) simpler, a new approach for partitioning a regular expression into several
smaller parts is proposed. Each part of a regular expression was matched by an engine cell during matching, and each en-
gine cell communicates with others by routers on a NoC topology. The proposed NoC architecture is a general-purpose
design which is suitable for different rule libraries in deep packet inspection (DPI). It can deal with the problem that char-
acter self-deplete made the correct regular expression matching missing. A way to use both logic cell and RAM available
on FPGA devices is described, and it can make it easier to change the rule library of regular expressions in the RAM. The
implementation of the NoC architecture by employing application-specific integrated circuits (ASIC) is finally discussed.

Keywords: Regular expression, FPGA, NOC, Apart-NFA.

1. INTRODUCTION

With the rapid development of network applications,
network security becomes more and more important against
system intrusion. Many network services now process pack-
ets based on payload content, in addition to the structured
information found in packet headers. Forwarding packets
based on content requires new levels of support in network-
ing equipment. A regular expression, often called a pattern,
is an expression that specifies a set of strings. To specify
such sets of strings, rules are often more concise than lists of
a set's members. Regular expression matching is one of main
mechanism that used by Intrusion Detection Systems (IDS)
like Snort [1] or simpler ones like L7-filter [2] even some
email spam filter. For most string matching, a regular ex-
pression is often represented by deterministic finite automata
(DFA) or non-deterministic finite automata (NFA). DFA is
commonly used to parse regular expressions.

More and more logic cells can be made on a single chip
due to the advancement in IC fabrication technologies. This
allows us to develop much more complex systems on a chip
of silicon, (system on a chip, SoC). A reusable design is a
design that shouldn’t change much and convenient to reuse.
It can be reused in newer design and can make the design
cycle shorter. It is possible to match a regular expression by
using hardware.

An FPGA is an integrated circuit to be configured by a
customer or a designer after manufacturing, and it can be
used to implement any logical function that an ASIC could
perform. The configuration of FPGA is specified by using a
hardware description language (HDL). FPGAs contain pro

*Address correspondence to this author at the Software School, Harbin
University of Science and Technology, 150040, Harbin, China;
Tel: 86-45186397000; E-mail: cuilinhai@hrbust.edu.cn

grammable logic components called "logic blocks", and a hi-
erarchy of reconfigurable interconnects that allow the blocks
to be wired together. Logic blocks can be configured to per-
form complex combinational functions. In most FPGAs, the
logic blocks also include memory elements which may be
simple flip-flops or more complete blocks of memory.

It is too difficult to store states of DFA on FPGA due to
the complexity of regular expression. The most common
method is string based NFA. We found treating regular ex-
pression as matching with head of data in most papers is a
serious fault, and it will affect REM a lot and probably make
mistakes called character self-deplete mistake that will be
further discussed in section 4.

A new NoC architecture is proposed for solving the char-
acter self-deplete problem. In this architecture, a general-
duty reusable design for string matching as an engine cell is
provided. This architecture has the advantages of high speed
and parallel processing. A new complex reusable form of
engine cells within this architecture for effective regular ex-
pression matching was introduced.

For saving area, the regular expression to be matched
was stored in cache/memory, so does the op-code that con-
trols the engines. Experiments show that each engine cell
only cost 48 logic cells in our verification design on FPGA.

A methodology is introduced to generate the regular ex-
pression that suit to our architecture, and the regular expres-
sion can be rewritten easily without change the circuit be-
cause we store it in memory.

2. BACKGROUND

Regular expression gains widespread adoption for deep
packet inspection together with the network application. To
implement REM in hardware has been widely studied be-

Design of a Regular Expression Matching System The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 47

fore. Floyd and Ullman [3] discussed the implementation of
NFAs using hardware. Since regular expression can be ac-
cepted by FSM. Sidhu and Prasanna [4] proposed an algo-
rithm to implement regular expression matching in regular
expression NFA (RE-NFA) architecture on FPGA. Yang and
Prasanna [5] improve this architecture process 2 characters
per clock cycle, and they got a result which has a concurrent
throughput of 14.4Gbps for 760 regular expression match-
ing. It is almost the fastest one in our survey result by RE-
NFA. For the L7 with 70 protocol filters, the system
throughput is less than 10Mbps, and more than 90% of the
CPU time is spent in regular expression matching. These are
all explained [6, 7], which transmit the regular expression
into a FSM by a state table have 256 columns for ASCII
character set. They analyzed and implemented their design
using a plausible ASIC, and achieved a 16Gbps throughput.

A System-on-chip (SoC) synchronized by a global clock
tree may be more prone to electromagnetic interference (EMI)
[8]. On a silicon chip, it’s difficult to send a global signal
across whole chip within a real-time bounds [9]. For process-
ing deep packet inspection, a design is complicated but each
regular expression is simple. GALS (globally asynchronous
and locally synchronous) divides a system into smaller, locally
decoupled synchronous regions and composes some of them
to a localized subsystem. NoC is one of the GALS solution
[9], it can supporting reuse of complex cores.

For the NoC architecture, there have been various to-
pologies include mesh, torus, ring, butterfly and irregular
interconnection networks [10, 11]. Compared to other to-
pologies, some researchers have suggested that 2-D mesh
architecture for NoC will be efficient, ease of implementa-
tion, terms of latency, power consumption [12]. However, as
NoC architectures are based on packet-switched networks, so
that a suitable and efficient principle for design of routers for
NoC is important [13].

3. REUSABLE ENGINE CELL DESIGN

As an engine cell, a basic circuit for character matching
is designed. As a FSM, it contains a controller and a list

memory, and it gets data from the list memory by using a
pointer and matching it with input in each clock cycle. Com-
bined with the NoC architecture, this engine cell could proc-
ess almost all the regular expression Meta-character. This
inspiration is from CPU and NoC router.

The controller have several modes for dealing with dif-
ferent Meta-character. It depends on the 32 bit instruction set
that described in Table 1.

The controller’s modes are coded by op-code, so does the
character status by postfix. Pointer will be added 1 after
every cycle. Table 1 shows the way to process meta-
characters that discussed in most papers. Other meta-
character like (* ?) will be described in section 4.

For the op-code 1010 to 1111, they have some other sim-
pler and easier operations and can be used to deal with other
part of regular expression.

We designed a prototype system on a FPGA chip which
is produced by Altera to verify the functions of the engine
cell. And the experiment results show that the cost and tim-
ing of the engine cell are stable and is convenient to reuse.

For snort, we updated the engine cell to a 64 bit code de-
sign with 48 bit data, i.e. 6 characters. The experiment re-
sults show that it can make the system much faster and more
efficient.

The logic circuit based on different length of regular ex-
pression will produce different length of combo logic and
register, different input delay and output delay, and difficult
constraints. For most designs, however, FPGA is only a pro-
totype for verification because FPGA always have a lower
clock than that of ASIC.

4. SOLUTION OF APART-NFA ON NOC ARCHITEC-
TURE

In this section, the character self-deplete mistake is dis-
cussed first, then a new method for expressing regular ex-
pression called Apart-NFA is introduced, and finally a NoC
architecture solution is proposed.

Table 1. Controller Modes and Instruction Set

Meta-Character Example and
Description

Op-Code
(i0~i3)

Mode
Postfix
(i20~i31)

ab: only ASCII-characters 0001
Controller match ‘a’ with data stream

character input at the this clock, and match
‘b’ at the next clock

If ’ab’ was 2 character or 1 of the pattern (may be
only one character here), here store the place in

which pattern, and if it was a apart-NFA status over.

[a-z]:a class range of character. 0010 Controller judge if the ASCII value of data
stream character input between ‘a’ and ‘z’

Here store the place in which pattern, and if it was a
apart-NFA status over.

[^ab]:any character but ‘ab’ 0100
Controller match ‘a’ with data stream

character input at the this clock, and match
‘b’ at the next clock

Data that let controller make the result negate and
the place in which pattern, and if it was an apart-

NFA status over.

(ab)+: match ‘ab’ once or more
and data (a)+ is acceptable.

1000
Controller match ‘a’ with data stream

character input at the this clock, and match
‘b’ at the next clock. pointer=pointer-n

Data that let controller make the next part of NOC
that store the rest of regular expression available.
This status must be the end in our structure. Here

store the ‘n’(pointer backtrack vector).

a*:match 0 times or more. 1001 Controller match ‘a’ with data stream
character

Data that let controller make the next part of NOC
that store the rest of regular expression available.

*It matches the preceding element zero or more times

48 The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 Cui et al.

4.1. Character Self-Deplete Missing Mistake

Intrusion detection systems do more work than basic
firewalls since they look inside the contents of the packets as
well as the header fields. This makes things more complex,
as we may not have any particular location within the packet
to inspect now and we may have to scan the packet’s entire
contents for the data items we are looking for. Snort is
probably the most well known intrusion detection system.
This operates by using a set of intrusion detection rules—the
first part will check for packets on the basis of the header
fields and then we may look inside selected packets for
strings need to be matched.

Snort system allows the use of regular expressions to per-
form matching. These are useful because we can use a single
regular expression to match multiple variants of the pattern
which we are looking for. Regular expression matching can
be more complex to implement, particularly for us to build a
hardware implementation rather than a software one. The
requirement for regular expressions has been increasing over
the last few years and a large number of Snort rules now use
them.

Traditional RE-NFA structure has some disadvantages.
For most regular expression in snort, the matching begins
with “^” which means the start position of a line or a packet.
But some of the regular expressions need to match the pay-
load of data stream. For an example of L7-filter “msnmas-
sager.pat” it needs to match the whole packet:
“\x03\x9a\x89\x22\x31\x31\x31\.\x30\x30\x20\x42\x65\x74\
x61\x20|\xe2\x3c\x69\x1e\x1c\xe9”. Traditional way for RE-
NFA circuit to deal with the data stream may encounter a
problem because the stream matching circuits do not have
any latch to hold the data. However, if there were latches,
they shouldn’t keep one clock one character matching.

If traditional RE-NFA circuit is used for matching in
IDS, the problem mentioned above will affects the matching
a lot and would make the IDS faulty.

In Snort, 23.5% patterns begin without “^”. This is a mis-
take that would make matching system work improperly. We
describe an architecture that could support regular expression
like this consummate.

4.2. Apart-NFA

NFA is unusual in that it may has more than one node ac-
tive at any time, and there may be multiple edges leaving a
node that are enabled on the same input data item. NFA is
not so efficient to implement in software, as the current state
of the NFA will be the set of nodes that are currently active.
Looking at each of these nodes to see which edges are en-
abled and hence which set of nodes will next be active. An
NFA can be implemented quite efficiently in hardware as
each node can be implemented as a flip-flop and the edges
can be implemented as comparators, logic and routing re-
sources to link the nodes together. Implementing NFA in
hardware can improve resource utilization and performance
significantly. Early designers used a comparator per NFA
edge, and this requires routing resources to take the input
data to lots of distributed comparators, which needs large
numbers of comparisons against the same input byte values.
This matching system was improved on by replacing the

distributed comparators with a global 8–256 decoder which
can generates 256 logic signals that identifies the presence or
absence of each data byte value on the input stream.

NFA based architectures support concurrently active
states without state explosion, and are much better suited to
handle constraint repetitions and overlapped matching for
future generation of critical applications. However, their
parallel processing nature often leads to poor runtime per-
formance on sequential execution machines. The inherently
parallel processing architecture of FPGA makes it well
suited for NFA implementations. In conventional designs,
libraries of building blocks (template Verilog/VHDL codes)
are first created for different regular expression primitives. A
regular expression based rule is then parsed into those primi-
tives, and their template codes are assembled into one system
design file for compilation and synthesis [14].

For most regular expression matching, our engine cell cir-
cuit can’t process the characteristics of traditional NFA for
one state has several next states. We proposed a new NFA that
is suitable for our new NoC architecture based on the basic IC
design rules. The processing procedure is to make the engine
cell uniform and then to transfer the regular expression into a
traditional NFA. We parsed the regular expressions at the
points that make backtrack. Then each part of regular expres-
sion is just treated as a DFA for our engine cell.

The regular expressions like [a-z][0-9] are treated as a
deterministic state in our engine cell, and so does (a|b). We
parsed a regular expression into two level, apart-level and
group level.

Every group must not be in the situation that one state
has several next states but the end state. So every part within
a group of one regular expression in the data stream could be
simple and convenient for our engine cell to match in a high-
speed and parallel way.

For most regular expressions in Snort, the way to parti-
tion a regular expression into several simple parts is proved
to be efficient to complete our design in time.

4.3. NOC Architecture Solution

For the Apart-NFA, after transferring a regular expres-
sion into a NFA, we parse it into several parts. And each part
is stored in an IP core’s RAM/CACHE. Whole regular ex-
pression is connected by a NoC router algorithm. Because
IPs are connected by a topology that improved from mesh,
so we called it mesh-pro.

Fig. (1a) shows a 3 level of 3X3 mesh-pro model. Cores
of first level match the regular expression’s head to the data
stream. The first level includes the first column and the first
row. Like a tree or a hash table, the matching performed by
the first level cores using a common prefix will improve the
speed of matching in parallel at the first time. When a prefix
is matched, router will send a data that include several ad-
dresses of routers and which group level of the regular ex-
pression will be matched next. The system proposed in this
paper is a globally asynchronous locally synchronous
(GALS) system, so the frequency of router is higher than
that of the cores in the system. When a router received in-
formation and wake up the cores, the cores should have been
ready before data comes to them.

Design of a Regular Expression Matching System The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 49

When a regular expression like “(abc)+…” was matched,
a core will send a router 2 data. One is the address of itself
and the group level number of the regular expression. The
other is the address of next router and the next group level
number of the same regular expression. The data were stored
in RAM of the core.

For a regular expression which has several stars in mid-
dle part of it like “a b*c*d”, the previous state of the FSM
will give the addresses of each cores and they will be
matched at the same time. For the example above, the router
will give the addresses of routers to the cores that is needed
to match “b”, “c”, and “d” after the “a” in the regular expres-
sion is matched.

For meta-character “?”, what we need to do is only let the
core which will perform matching in next state of apart-level
being alive.

Now let’s talk about self-deplete mistake in more detail.
Fig. (1b) shows the method. The first character of a regular
expression was matched by the first level in the topology.
The first level of the model always works if necessary for the
matching. For the above example, it refers to that if the “a”
character being matched incorrectly, the head core which
performs matching if “a” is still working. In this way, we not
only solve the problem of self-deplete mistake, but also im-
prove the speed of matching as we described before.

Furthermore, as shown in Fig. (1a), we improved the to-
pology of mesh by adding a diagonal in the model based on

the previous structure and the analysis of experimental re-
sults. Due to the cores in the model are divided into different
levels in the topology, a diagonal could shorten the transmis-
sion time of data.

5. EXPERIMENTAL RESULTS

We test the functionality of engine cell on Altera DE2
(EP2C35F672C6) with low performance RAM. The engine
cell worked with all kinds of meta-character in Table 1 for the
test case. When the data stream for test be input, the experi-
mental results show that the return of the device is correct.

Simulations are performed by using a NoC simulator
(NIRGAM). We tried the traditional 2D-mesh topology first
for our design. It has 12.88G bps throughput and 13.3311
average cycle latency with 64 cores (only 38 cores in use).
For, it has a 17.9447G bps throughput but some test cases
have 7 to 38.7004 cycle latency with 38 cores in use. It
shows that our mesh-pro topology with diagonal and only
one-way down to the next level has bigger throughput but
longer latency.

We changed the routing algorithm for mesh-pro topology
with 2-way diagonal and a new grouping method of group
level of regular expression. For a test case of 754 rules in
snort, it has over 19.98G bps throughput and 7.6-8 cycle
latency with 48 cores in use. It shows that our mesh-pro to-
pology with 2-way diagonal and a new grouping method of
group level of regular expression is better than the previous
topology both in throughput and latency.

Router

1(0.0)

a

Route

r3(2.0)

Router

2(1.0)

Router

5(1.1)

bc+

e(c|d)

Router

6(2.1)

abd

Router

7(0.2)

Router

8(1.2)

[a-

z]\xFF

\x3F

Router

9(2.2)

Finish

Router

4(0.1)

(a) A easy mesh-pro model for regular expression

“abc+ ((abd) | ([a-z]\xFF))” “/a*e(c|d)*[xyz]\x3F”

!"#$!"%

&!'()*+,,

(b) A complex example regular

expression that ‘(abc)+((abd)|([a-

z]\xFF))’

-!.#/0

#1223#.

-!.#/0

#1223#.

! " #
4

4 4

!

51223#.0

6789!:

-3!960./760#/!2!#.320

760;!.#/7980<7=0

#1223#.0./3906789!:0

760403:630236.!2.>

! " %

&!'

()

*+,

,
4 4

,7976/

6789!:

,7976/0

6789!:

4 4 4

Fig. (1). A simple NoC architecture model.

50 The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 Cui et al.

6. CONCLUSIONS
A new NoC architecture for regular expression matching

with a new improved topology called mesh-pro and a general
reusable design is proposed in this paper. The method takes
the advantages of REM implementing in hardware and a new
NoC architecture. It solves the communication problem of
multiple cores in NoC architecture for regular expression
matching and improves the throughout` of the system. The
experiment results show that this model can process 6 char-
acter or meta-character per clock, and the throughput is over
19.98G bps for 754 REMs.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENT

This work is supported by Natural Science Foundation of
Heilongjiang Province under Grant Nos. F201205, Science
and Technology Research Funds of Education Department in
Heilongjiang Province under Grant Nos. 12531132.

REFERENCES
[1] SNORT. Official Web Site, Available from: [http://www.snort.org]
[2] J. Levandoski, E. Sommer, and M. Strait, “Application Layer

Packet Classifier for Linux.” Available from: http://l7-
filter.source-forge.net/

[3] R. W. Floyd, and J. D. Ullman, “The Compilation of Regular Ex-
pressions into Integrated Circuits,” In: Foundation of computer
Science, 1980; 21st, Annual Symposium, Oct 13-15, 1980, NY:
USA 1980. vol. 29, no. 3, pp. 603-622, July 1982.

[4] R. Sidhu, and V. K. Prasanna, “Fast Regular Expression Matching
Using FPGAs,” In: IEEE Symposium on Field Programmable Cus-
tom Computing Machines, April 2001.

[5] Yi-Hua, E. Yang, W. Jiang, and V. K. Prasanna, “Compact archi-
tecture for high-throughput regular expression matching on
FPGA,” Proceedings of the 4th ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems, 2008, pp.
227-238.

[6] Y. Fang, C. Zhifeng, D. Yanlei, T.V. Lakshman, and H. K. Randy,
“Fast and Memory-Efficient Regular Expression Matching for
Deep Packet Inspection” UCB Tech. Report, EECS-2005-8, 2006.

[7] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A Scalable Archi-
tecture For High Throughput Regular Expression Pattern Match-
ing,” In: 33rd International Symposium on Computer Architecture
(ISCA’06), 2006.

[8] S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M. Millberg, J.
Oberg, K. Tiensyrja, and A. Hemani, “A network on chip architec-
ture and design methodology” IEEE Computer, 2002, pp. 117-124.

[9] A, Jantsch, and H. Tenhunen, Network on Chips. Kluwer Academic
Publishers: Boston, 2003.

[10] J. Dally, and B. Towles, Principles and Practices of Interconnec-
tion Networks. Morgan Kaufmann: Colifornia, 2004.

[11] P. Pratim Pande, C. Grecu, M. Jones, A. Ivanov and R. Saleh,
“Performance evaluation and design trade-offs for network-on-chip
interconnect architectures” IEEE Transactions on Computers, vol.
54, no. 8, pp. 1025-1040, 2005.

[12] A. Agarwal, C. Iskander, H. Multisystems and R. Shankar, “Survey
of network on chip (NoC) architectures & contributions,” Journal
Engineering Computing Architecture, vol. 3, no. 1, 2009.

[13] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van
Meerbergen, P. Wielage, and E. Waterlander, “Trade-offs in the
design of a router with both guaranteed and best-effort services for
networks on chip” IEEE Proc. on Computers and Digital Tech-
niques, vol. 150, no. 5, pp. 294-302, September, 2003.

[14] Hao Wang, Shi Pu, G. Knezek, and Jyh-Charn Liu, “A modular
NFA architecture for regular expression matching” FPGA’10,
Monterey, California, USA, February, 2010.

Received: February 18, 2012 Revised: March 29, 2012 Accepted: October 20, 2012

© Cui et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

