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Abstract: A coordinate rotation digital computer (CORDIC) based variable length reconfigurable DCT/IDCT algorithm 
and corresponding architecture are proposed. The proposed algorithm is easily to extend to the 2n-point DCT/IDCT. Fur-
thermore, we can easily construct the N-point DCT/IDCT with two N/2-pt DCTs/IDCTs based the proposed algorithm. 
The architecture based on the proposed algorithm can support several power-of-two transform sizes. To speed up the 
computation of DCT/IDCT without losing accuracy, we develop the modified unfolded CORDIC with the efficient carry 
save adder (CSA). The rotation angles of CORDIC used in proposed algorithm are arithmetic sequence. For convenience, 
we develop the architecture of N-point IDCT with the orthogonal property of DCT and IDCT transforms. The proposed 
architecture are modeled with MATLAB language and performed in DCT-based JPEG process, the experimental results 
show that the peak signal to noise ratio (PSNR) values of proposed architectures are higher than the existing CORDIC 
based architectures at both different quantization factors and different test images. Furthermore, the proposed architectures 
have higher regularity, modularity, computation accuracy and suitable for VLSI implementation. 

Keywords: DCT/IDCT, CORDIC, variable length reconfigurable, carry save adder. 

1. INTRODUCTION 

The discrete cosine transform (DCT) and its inverse 
(IDCT) [1] are the most widely used transforms in the image 
and signal processing due to the near optimal performance 
for compression of a highly correlated data. The commonly 
used DCT algorithms aim at speeding up the computation [2-
4], or reducing the complexity of the architecture and com-
putation [5, 6]. Loeffler based architectures [7-9] use the 
flow-graph algorithm to reduce computation complexity and 
make computation more efficiently. However, current exist-
ing algorithms often suffer from a lack of scalability and 
hardly to be extended to the variable length DCT/IDCT. 
With the development of signal processing systems, variable 
length reconfigurable architectures for DCT/IDCT are highly 
desirable for low power applications, multi-standard, and 
multi-mode environments. Some reconfigurable DCT/IDCT 
architectures [10-12] are proposed in the literature. However, 
all of them have their drawbacks, such as changing different 
reconfigurable modules [10] or different pre-processing and 
post-processing stages [12] to realize different processor, 
using a greedy algorithm [11]. Furthermore, they do not have 
the scalability to adapt to power-of-tow transform size. 

CORDIC-based architectures are suitable for VLSI im-
plementation with regularity and simple hardware architec-
ture. However, due to the recursive nature of itself, it is diffi-
cult to realize pipeline [12]. Using the unfolding technique  
 
 

*Address correspondence to this author at the Microelectronics Center, 
Harbin Institute of Technology, 150000, Harbin, P. R. China;  
Tel: 13258676498: Fax: 86397100; E-mail: husthh@yahoo.com.cn 

can overcome this problem [13-15], but will introduce new 
problems, such as numerical inaccuracy, the scalability prob-
lem of variable length DCT computations. 

In this paper, we propose a computationally efficient and 
variable length reconfigurable DCT/IDCT algorithm and 
corresponding architecture. Based on the proposed algo-
rithm, we can easily obtain the 2n-point DCT/IDCT and con-
struct the N-point DCT/IDCT with two N/2-point 
DCTs/IDCTs. The proposed architecture of one-dimension 
(1-D) 8-point DCT is developed, and the architecture of 1-D 
8-point IDCT is developed by taking the orthogonal property 
of DCT and IDCT transforms. To enhance the computation 
accuracy of the unfolded CORDIC and improve the per-
formance, a modified unfolded CORDIC is proposed. The 
modified unfolded CORDIC has better accuracy than con-
ventional ones as well as computation efficiency by taking 
advantage of its certain property of using carry save adders 
(CSAs). Furthermore, based on the row-column decomposi-
tion algorithm, the 2-D 8×8 DCT/IDCT architecture with the 
modified unfolded CORDIC is implemented and verified in 
DCT-based JPEG process model. The experimental results 
show that the proposed architectures have the good trans-
formation quality compared to the existing CORDIC based 
DCT in terms of PSNR results.  

The paper is organized as follows. In section 2, we derive 
the variable length reconfigurable DCT/IDCT algorithm 
based on the CORDIC. In section 3, the signal flows of the 
proposed algorithm are depicted in detail. In section 4, the 
architectures design of the 4/8-point DCT/IDCT based on 
modified unfolded CORDIC are presented. The experimental 
results and conclusion can be found in section 5 and 6. 
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2. PROPOSED VARIABLE LENGTH RECONFIGUR-
ABLE DCT/ IDCT ALGORITHM 

For a N-point signal, ][nx , the type-II DCT and IDCT are 
defined as [6]: 
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where N/1]0[ =! , and Nk /2][ =! for 0>k .  
The type-II discrete sine transform (DST) is defined as: 
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where NN /1][ =! , and Nk /2][ =!  for Nk < .  

According to (1) and (3), neglecting the post-scaling fac-
tor without loss generality, the main operation of an N-point 
DCT and DST denoted as TC

~
D and TS

~
D can be written as: 
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A length-N input sequence x[n], with N being power of 
two, can be decomposed into xL[n] and xH[n], which denote 
the low-frequency and high-frequency sub-band signals of 
x[n] respectively [16], are defined as: 
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where n = 0,1, 2, ...., (N / 2) !1  

Thus, the original signal ][nx  can be obtained 
from ][nx

L
 and ][nx

H
as follows: 
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Substituting (8) and (9) into (4), (4) can be rewritten as: 
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where k = 0,....,N !1 . 
Since 
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We get 
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According to (12) and (13), (10) can be rewritten as: 
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Let l = N ! k , we get 
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 In (15), except 2,0 Nk = all the points can be evaluated 

by (N/2)-point TC
~
D . Therefore, we separate the formula 

(15) into four parts shown as: 
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Where 
L
C
~

and 
H
C ˆ

~
denoting the (N/2)-point TC

~
D of the 

)(nx
L

 and )(ˆ nx
H

 respectively. 

As one can see, we can evaluate the N-point TC
~
D  with 

two (N/2)-point TsC
~
D  based on the CORDIC algorithm. 

Therefore, the proposed algorithm is a variable length recon-
figurable algorithm for DCT, and easily extended to 2n-point 
DCT. In addition, the rotation angles of the CORDICs are 

arithmetic sequence which has a common difference of
N
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, 
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.Similarly, the variable length 

reconfigurable algorithm of the N-point IDCT can be de-
duced. Alternatively, the orthogonal property of DCT and 
IDCT transforms can be used to obtain the reconfigurable 
algorithm for the N-point IDCT more easily, which will be 
depicted in detail in section III. 

3. SIGNAL FLOW OF THE PROPOSED DCT/IDCT 
ALGORITHM 

In this section, we depict the variable length reconfigur-
able DCT/IDCT signal flows based on the proposed algo-
rithm in detail. 

According to (4), 2-point TC
~
D  computation is as fol-

lows 
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Thus, the signal flow graph of computing the 2-point 
TC
~
D  can be depicted as Fig. (1). 

According to (16), the signal flow graph of computing 
the 4-point TC

~
D  can be constructed by two 2-point TsC

~
D , 

which depicted as Fig. (2). 
According to (6) and (7), the sub-band decomposition 

matrix is shown as: 
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According to (13) the odd sign change matrix is shown 
as: 
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Fig. (1). Signal flow graph of the 2-point DCT. 

 
Fig. (2). Signal flow graph of the 4-point DCT. 
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Similarly, the signal flow graph of computing the 8-point 
TC
~
D  can be constructed by two 4-point DCTs, which de-
picted as Fig. (3). 

In Fig. (3) the 4-point TsC
~
D are bordered by the dashed 

lines and the sub-band decomposition matrix is shown as: 
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The odd sign change matrix of 8-point DCT is shown as: 
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As described above, according to (1) and (16), the signal 
flow graph of computing the N-point DCT with two N/2-
point TsC

~
D can be generalized, which depicted as Fig. (4).  

In Fig. (4) the N-point TsC
~
D  are bordered by dash lines, 

and the post-scaling factor of N-point DCT 

is
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The sub-band decomposition matrix of the N-point DCT 
is shown as: 
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Fig. (3). Signal flow graph of the 8-point DCT. 

 
Fig. (4). Signal flow graph of the N-point DCT. 
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The odd sign change matrix of the N-point DCT is shown 
as: 
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The N-point DCT can be obtained by multiply N-
point TC

~
D  by the post-scaling factor, and permuted accord-

ing to (16). Furthermore, we can combine the constant 
value 22  in signal flow graph with the post-scaling factor, 

thus we have unified post-scaling factor N1 for all out-
puts. For 2-D DCT, we can deal the two 1-D DCT post-
scaling factors together by multiplying the constant 
value N1 . As Fig. (4) depicts, the first N/2-point TC

~
D  

transform is executed by the upper part of the flow graph and 
the second N/2-point TC

~
D transform is executed by the 

lower part. Thus, the architecture based on this signal flow 
can be used to compute N-point, as well as N/2-point, N/4-
point, …, 2-pointDCT/IDCT by only changing the positions 
of the inputs and outputs. Additionally the post-scaling fac-
tors should be taken under consideration. 

According to (1) and (2), DCT and IDCT are orthogonal 
transforms, the signal flow of the N-point IDCT can be eas-
ily obtained by inverting the transfer functions of each build-
ing block shown in Table 1 and reversing the signal flow 
direction [17, 18]. Fig. (5) depicts the signal flow of the N-
point IDCT. 

4. ARCHITECTURE DESIGN FOR THE RECON-
FIGURABLE 4/8-POINT DCT/IDCT BASED ON 
MODIFIED UNFOLDED CORDIC 

Without loss the generality, based on the proposed vari-
able length reconfigurable DCT/IDCT algorithm, we de-
velop an efficient 4/8-point DCT/IDCT architecture in this 
section. A modified unfolded CORDIC architecture is pro-
posed to improve the performance and reduce the hardware 
complexity. 

In the CORDIC algorithm, to rotate a vector (x, y) by an 
angle θ, the circular rotation angle is decomposed as: 

!
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Then, the vector rotation can be performed iteratively as 
follow [10, 13, 15]: 
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Table 1. Transfer Functions of DCT and IDCT 

Symbol DCT IDCT 

Butterfly 
xout = xin + yin

yout = xin ! yin
 

xout = (xin + yin ) 2

yout = (xin ! yin ) 2
 

Multiply constant !K

 
K

1
!

 

CORDIC Clockwise (-θ) Anticlockwise (θ) 

 
Fig. (5). Signal flow graph of the N-point IDCT. 
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Furthermore, the results of the rotation iterations need to 
be scaled by a compensation factor s.  

s = (cos(arctan(2
!i
)))

i

"  (26) 

Alternatively, replacing (26) with the following iterative 
method. 

)1(

)1(

1

1

iiii

iiii

Fyy

Fxx

!+=

!+=

+

+

"

"
 (27) 

Where i

ii

i

ii
FsF

!
=!="#+$ 2),1,1,0(,)1( %%  

In (25) and (27), only shift and add operations are re-
quired to perform the operation.  

Since rotation angles of CORDICs are fixed in the pro-
posed DCT/IDCT algorithm, we can skip some unnecessary 
CORDIC iterations. According to (16), for 8-point DCT, 
three different fixed angles are needed to rotate. The number 
and compensation of iterations are given in Table 2. 

According to Table 2, the unfolded CORDIC flow graph 
of the -π/16 angle is shown as Fig. (6). 

In Fig. (6), it needs six shifts and six additions operations to 
evaluate the -π/16 angle rotation. To evaluate the rotation more 
efficiently without losing accuracy, when the sequence itera-

tions numbers i and j are big enough, two iterations can be 
combined into one iteration according to the equations as fol-
low: 
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Similarly, (27) can be approximated as follow: 
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where ji
jiji F

,
,, 2),1,1,0( !
=!="  

According to (28) and (29), we obtain the modified un-
folded CORDIC. The modified unfolded CORDIC needs 
less shift and add operations without losing accuracy under 
certain condition. The modified unfolded CORDIC flow 
graph of the -π/16 is shown in Fig. (7). In order to gain 
higher accuracy, the shift numbers are optimized by numeri-
cal simulation in MATLAB, and a subtle change (7 to 6) is 
made in third shift stage.  

Table 2. Used Rotation Angle and Compensation 

Angle -π/16 -π/8 -3π/16 

Rotation iterations [ ! i , i ] according to (25) 

1 -1,3 -1,2 -1,1 

2 -1,4 -1,3 -1,3 

3 -1,7 -1,6 -1,10 

4 -1,9 -1,7 -1,14 

Compensation iterations [ (1+ ! i "Fi ) ] according to (27) 

1 1-1/128 1-1/32 1-1/8 

2 1-1/512 1-1/128 1+1/64 

3  1+1/1024 1+1/1024 

4  1+1/4096 1+1/4096 

 
Fig. (6). Unfolded CORDIC flow graph of the -π/16. 
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In Fig. (7), as one can see, it needs three shifts and three 
additions to evaluate the -π/16 angle rotation. Furthermore, 
we can implement the CORDIC architecture with more effi-
cient adder CSAs, which make the computation faster. 

To evaluate the accuracy of the modified unfolded 
CORDIC, we take two types unfolded CORDIC as refer-
ences. One is the conventional unfolded CORDIC which 
meets the precision requirements of IEEE Std. 1180-1990 

[15], the other one is an approximate unfolded CORDIC [9]. 
The word-length of inputs and outputs are both 12-bits, and 
the test data are 1000 uniform random data. The computation 
relative errors of the three CORDICs are evaluated, and the 
compared results of the two outputs (x, y) of the CORDIC 
are shown as Fig. (8). 

In Fig. (8), it can be seen that the computation results of 
the modified unfolded CORDIC have much smaller relative 

 
Fig. (7). Modified unfolded CORDIC flow graph of the -π/16. 

 
(a) 

 
(b) 

Fig. (8). Relative errors of the three CORDICs with -π/16 rotation angle. 
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error than the approximate unfolded CORDIC [9], and 
nearly the same values as the conventional unfolded COR-
DIC. In addition, most of relative error values of the modi-
fied unfolded CORDIC are under 0.4%. 

Since the iteration numbers of the -π/8 and -3π/16 are not 
meet the accuracy requirements, if directly using the formula 
(28) and (29), the double angle formula is used alternatively. 
According to the double angle formula, the operation of ro-
tating 2θ can be replaced by two sequential operations of 
rotating θ, and three sequential operations of rotating θ for 
3θ. Moreover, the computation accuracy of the -π/8 and -
3π/16 architectures can meet the requirements in most signal 
processing application, such as JPEG, which will be verified 
in section 5. 

We take a reconfigurable 4/8 DCT architecture as an ex-
ample to implement the proposed algorithm. According to 
the Fig. (3), we separate the signal flow into two parts: the 

upper 4-point DCT and the lower 4-point DCT. Since the 
two 4-point DCTs are independent, we can reuse the 4-point 
DCT processor and implement the reconfigurable 4/8-
pointDCT architecture in series manner, which depicts as 
Fig. (9). Furthermore, we can implement the three rotations 
with only three same CORDIC processors, thus the proposed 
architecture has high reusability and modularity. Comparing 
with the existing reconfigurable architecture, our architecture 
no need to change any architecture to switch from 4-point to 
8-point DCT processor, and is suitable for VLSI implemen-
tation. 

In Fig. (9), we use the demultiplexer to dynamically 
switch from 4-point to 8-point DCT without changing the 
architecture. The FIFO is used to store the immediate results 
generated by the 4-point DCT that implemented with two -
π/16 CORDIC processors. The architecture of the pre-
processing element is shown as Fig. (10).  

 
Fig. (9). The reconfigurable 4/8-point DCT architecture based on the modified unfolded CORDIC. 

 
Fig. (10). The architecture of the pre-processing element. 
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In Fig. (10), we use 2' complement to implement the sub-
tract operation and use multiplexer (MUX) to chose add op-
eration or subtract operation.  

We use the transposing property depicted in Table 1 to 
implement the 4/8-point reconfigurable IDCT architecture. 
When change CORDIC from clockwise rotation to anti-
clockwise rotation with same angle, the only thing need to 
do is change the sign of 

i
! , or equivalently change all ad-

ders to subtractors, and subtractors to adders respectively in 
rotation iterations stage. 

5. EXPERIMENTAL RESULTS 

To verify the performance of the proposed architecture, 
we design and estimate three different architectures: Loeffler 
[9], Jeong [15], and the proposed architecture with 12-bit 
accuracy using MATLAB language. After modeling the four 
architectures, we use the DCT-based JPGE process model to 
verify their performance. Fig. (11) depicts the block diagram 
of DCT-based JPGE process model. The architecture of 
88!  2-D DCT/IDCT is implemented using two cascading 

1-D DCT/IDCT architectures with one transpose memory 
[16]. In this paper, we use the peak signal-to-noise ratio 
(PSNR) to measure the reconstructed image quality. The 
values of PSNR are measured by sending image data through 
the JPGE process including the DCT architecture and IDCT 
architecture.  

The quantization factor q is used to trade off image qual-
ity and compression ratio (CR). Huffman coding is used as 
entropy code, and the quantization matrix in Fig. (11), as 
specified in the original JPEG standard, is as follows: 

Q = q !

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99
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$
$
$
$
$
$
$
$
$
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'
'
'
'
'
'
'
'
'
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Firstly, we use the scale gray image 'Board' of size 256 × 
256 as test image. The values of PSNR and CR of the three 
different DCT/IDCT architectures are calculated at different 
quantization factor q , and the compared results are presented 
in the Table 3. 

From the Table 3, one may observe that the PSNR values 
of the proposed DCT architecture are better than the other 
DCT architectures at most of the different values of q. In 
addition, the CR values of the proposed architecture are bet-
ter than the architectures of Loeffler [9] and Matrix multipli-
cation at all different values of q, and nearly the same values 

 
Fig. (11). Block diagram of DCT based JPEG process. 

Table 3. PSNR and CR at Different Quantization Factors q (Board) 

PSNR (dB) CR 
q 

[9] [15] Proposed [9] [15] Proposed 

0.1 41.76 41.82 42.27 1.22 1.22 1.22 

0.3 33.06 33.06 33.13 1.84 1.85 1.84 

0.5 29.26 29.26 29.30 2.31 2.33 2.32 

1 25.02 25.02 25.04 3.32 3.34 3.33 

3 20.24 20.24 20.25 6.31 6.34 6.33 

5 18.36 18.36 18.37 8.66 8.70 8.70 

10 16.06 16.06 16.06 14.05 14.16 14.15 
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as the architecture of Jeong [15]. This implies that the pro-
posed architecture not only makes the computation faster, 
since using the modified unfolded CORDIC architecture, but 
also improves the quality of the results in terms of PSNR 
values. 

Experimentations have been also carried out with four 
well-known grey scale test images, the image of 'Lena', 'Ba-
boon', 'Peppers', 'Board' of size 256 × 256, with quantization 

factor q = 1. The original images and reconstructed images 
with PSNR values are demonstrated in Fig. (12). 

6. CONCLUSION 

In this paper, we derive a variable length reconfigurable 
DCT/IDCT algorithm, and develop the reconfigurable 4/8-
point DCT architecture based on modified unfolded COR-
DIC. Specifically, the rotation angles used in our proposed 

 
Fig. (12). Reconstructed image from different algorithm of DCT at q = 1. 
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architecture are arithmetic sequence. Consequently, we can 
use double angle formula to implement the bigger angle rota-
tion with the smaller angle rotation, which make the architec-
ture has higher modularity. In addition, it has higher compu-
tation accuracy than the existing architectures [9, 15], and 
higher regularity and modularity than the existing architec-
tures [10-12]. The future work includes VLSI implementa-
tion for the proposed architecture using systolic arrays, the 
applications on data dependent compression using the pro-
posed architecture. 
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