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Abstract: The continued growth of data and high-continuity of application have raised a critical and mounting demand on 
storage-efficient and high-performance data protection. New technologies, especially the D2D (Disk-to-Disk) de-
duplication storage are therefore getting wide attention both in academic and industry in the recent years. Existing de-
duplication systems mainly rely on duplicate locality inside the backup workload to achieve high throughput but suffer 
from read performance degrading under conditions of poor duplicate locality. This paper presents the design and perform-
ance evaluation of a D2D-based de-duplication file backup system, which employs caching techniques to improve write 
throughput while encoding files as graphs called BP-DAGs (Bi-pointer-based Directed Acyclic Graphs). BP-DAGs not 
only satisfy the 'unique' chunk storing policy of de-duplication, but also help improve file read performance in case of 
poor duplicate locality workloads. Evaluation results show that the system can achieve comparable read performance than 
non de-duplication backup systems such as Bacula under representative workloads, and the metadata storage overhead for 
BP-DAGs are reasonably low.  
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1. INTRODUCTION 

Data explosion [1] has been forcing backups to expand 
storage capacity, which makes modern enterprises face sig-
nificant cost pressures and data management challenges. 
Studies showed that storage cost share of the enterprise in-
formation resource planning is rising, which has reached 
more than 50% [2]. With the expansion of system capacity, 
the storage management overhead can increase several times 
more than that by the storage hardware devices [3-5]. In ad-
dition, the high-continuity of application requires that data 
should be backed up and failure recovered as quickly as pos-
sible. So, the key challenge for modern enterprises data pro-
tection is to construct storage-efficient backup systems with 
high performance on both data write and read throughputs.  

Traditional backup systems used to rely on magnetic 
tapes to archive data due to their cheap, large capacity and 
removability for off-site backup. With the increase of disk 
capacity and reliability [6], more and more backup solutions 
are built on top of hundreds or thousands of hard drives, 
which are known as Disk-to-Disk (D2D) technique in stor-
age industry [7]. As the disk seek and rotation time is 2 to 3 
orders of magnitude shorter than the tape rewinding time, a 
D2D-based backup system has the advantage of fast 
backup/recovery compared with Disk-to-Tape (D2T) solu-
tions. More importantly, D2D backup can support global-
scale data de-duplication that in turn dramatically improves 
the effective capacity of D2D device [8]. Now, D2D-based 
de-duplication storage is gaining popularity and new  
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schemes are emerging to provide more storage-efficient and 
high performance data protection for enterprises [9-13].  

In de-duplication, files or streams are divided into chunks 
and then duplicate chunks are eliminated in the global sys-
tem [14]. Each chunk is stored and addressed by its finger-
print (the cryptographic hash such as SHA-1 [15] value of its 
content) to ensure that only 'unique' chunk is stored. A disk 
index is used to establish mapping between fingerprint and 
the location of its corresponding chunk on disk. The key 
challenge regarding performance is how to reduce the sig-
nificant random disk I/O overhead to search for chunks on 
disk index [9]. Most of the existing de-duplication systems 
use caching technique, which judiciously exploits duplicate 
locality within the backup stream to avoid the disk index 
bottleneck, and hence achieves high de-duplication through-
put [9, 10]. Duplicate locality refers to the tendency for 
chunks in backup streams to reoccur together. That is, when 
a backup stream contains a chunk A, it is surrounded by 
chunks B, C, and D, then in a different backup if chunk A 
appears it is very likely that chunks B, C, and D will also 
appear nearby.  

Apart from improving de-duplication write throughput, 
another important issue for de-duplication backup is how to 
read files from the system more efficiently. Although restore 
is not much more frequent event than backup, read through-
put is still very important especially in high-continuity appli-
cation environments that require very short RTO (Recovery 
Time Objective). In existing de-duplication systems file 
chunks are indexed by their fingerprints (i.e., hash pointers), 
which are called Content-Addressed Storage (CAS) [14]. 
However, reading a file from the system using hash pointers 
involves time-consuming disk index seeks, and one disk in-
dex seek per file chunk is far too slow. The use of caching 
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techniques mentioned above can reduce the disk index seeks 
for reading chunks, but their read performance is heavily 
degraded under conditions of poor duplicate locality. Differ-
ent from large data streams that have good duplicate locality, 
poor duplicate locality workloads consist of random files 
from disparate sources such as file backup requests made by 
Network-attached Storage (NAS) clients, Continuous Data 
Protection (CDP) where files are backed up as soon as they 
are changed, and electronic emails are backed up as soon as 
they are received [16]. In order to maintain high read 
throughput under various workloads, files were encoded as 
graphs called Bi-Pointer-based Directed Acyclic Graphs 
(BP-DAGs) whose nodes had variable-sized chunks of data 
and whose edges were hash plus address pointers. The pro-
posed BP-DAGs not only supported automatic structure 
sharing to satisfy the 'unique' chunk storing policy of de-
duplication system but also directed access to chunks to 
completely avoid disk index seeks when restoring a file. 

The rest of this paper is organized as follows. Section 2 
gives the system architecture related to de-duplication 
backup and storage. Section 3 describes the structure of BP-
DAGs. Section 4 presents the evaluation results in terms of 
de-duplication ratio, file write\read throughputs and the 
metadata storage overhead of BP-DAGs. Finally, section 5 
contains conclusion.  

2. THE STORAGE-EFFICIENT FILE BACKUP 

The storage-efficient backup system is designed to pro-
vide a flexible data protection solution for companies whose 
application servers may be dispersed across the Internet. In 
this section, we introduce the architecture, de-duplication 
process and disk storage policy of this system. 

2.1. System Architecture 

The architecture of this system is shown in Fig. (1); it 
consists of the backup server, backup agent, storage server, 
catalog database, and web interface. Backup server controls 
the entire system; it supervises the backup, restore, verifica-
tion and resource management jobs. Users can access the 
system to make their data protection plans through Web In-
terface with no time/location constraints. Backup agent runs 
as a background daemon on the application server where 
recently generated data needs to be backed up periodically. 
When doing a backup/restore job, backup agent sends/rec-
eives data to/from the storage server. In the backup process, 
data is de-duplicated, files are encoded into BP-DAGs and 
metadata associated with the backup job such as job ID, ses-
sion time, root chunks of the BP-DAGs, etc. is sent to a cata-
log database to ensure that data can be recovered if neces-
sary. This paper mainly focuses on data de-duplication and 
BP-DAGs, and not on the backup job management, so, the 
rest of the section is dedicated to workflow of backup agent 
and storage server. 

2.2. De-duplication Backup Process 

Fig. (2) shows the de-duplication backup process. The 
backup agent divides the input backup stream (it may consist 
of general files /directories or large tar files) into variable-
sized chunks using the content-defined chunking algorithm 
[17] with an expected chunk size of 8KB, computes the 
SHA-1 hash [15] (20 bytes in size) of each chunk as its fin-
gerprint, and sends the fingerprints in the order that they 
appear in the backup stream to the storage server. The stor-
age server performs data de-duplication on the received fin-
gerprints to identify new fingerprints and then informs the 

 
Fig. (1). The file backup architecture. 
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backup agent to send the corresponding new chunks (i.e., 
unique chunks in the scope of the entire system). Since only 
new chunks are transmitted over the network, the network 
bandwidth overhead of the backup can be reduced. 

The de-duplication process is performed by the finger-
print filter module of the storage server, which uses caching 
techniques to improve de-duplication throughput similar to 
most of the existing de-duplication systems such as DDFS 
[9] and Foundation [18]. Specifically, an in-memory Bloom 
filter [19] and a fingerprint cache have been used. The 
Bloom filter represents an in-memory conservative summary 
of the disk index, which can identify most of the new finger-
prints without needing query to the disk index, and the fin-
gerprint cache exploits duplicate locality to prefetch groups 
of chunk fingerprints to improve cache hit rate. If an incom-
ing fingerprint is identified as new (not duplicate) by the 
Bloom filter then it is indeed a new fingerprint in the entire 
system, since the Bloom filter does not give a false negative, 
otherwise it is duplicate with very high probability (depend-
ing on the false positive rate of the Bloom filter that can be 
maintained at very low levels such as lower than 2% by us-
ing an adequately large Bloom filter as per the system capac-
ity). If an incoming fingerprint is determined as duplicate by 
the Bloom filter, then it can be searched in the in-memory 
fingerprint cache; if it is there, it will definitely be a dupli-
cate; otherwise it can be searched on the disk index. If an 
incoming fingerprint is found on the disk index, all the fin-
gerprints are read on the same container with the incoming 
fingerprint from the container store to the in-memory fin-
gerprint cache since these fingerprints are more likely to be 
accessed together in the near future due to duplicate locality. 
It should be noted that in order to preserve duplicate locality, 
new chunks and their fingerprints were stored in the order 
that they appeared in the backup stream to fixed-sized (e.g. 
8MB) containers. The container store module is responsible 
for container management such as reading from or writing to 
the disk storage a container by its container ID. By using 
caching techniques, the disk index I/O bottleneck for de-
duplication backup can be avoided under well duplicate lo-

cality workloads. The BP-DAGs builder module of the stor-
age server encodes files into BP-DAGs based on the results 
of the fingerprint filter; details of the BP-DAGs are given in 
the next section.  

2.3. Write-Once Storage Policy 

For container storage, a write-once policy was imposed 
to retain backup data in perpetuity, that is, containers were 
stored on a write-once disk RAID (Redundant Arrays of In-
expensive Disks) [6]. This changes the concept of traditional 
backup which keeps data for a limited period of time and 
reclaims storage space from outdate backup data. Traditional 
archival storage may retain data in perpetuity, but it usually 
uses off-site tapes or optical jukeboxes as storage media and 
suffers from expensive administration cost. Write-once disk 
storage has been used due to the following reasons: first, the 
rapid advances in disk storage technology witnessed in re-
cent years have notably improved the disk storage capacity 
while reducing its cost. Second, the de-duplication technique 
dramatically reduces the disk storage requirement for data 
protection [9], making it feasible to impose a write-once pol-
icy to the back-end storage, actually, there has been success-
ful case to do so [14]. Third, one more attractive benefit of 
this approach is that it simplifies data management, since all 
the backup data are retained abidingly, users can access any 
history versions of information once backed up in the sys-
tem, not worrying about accidental deletion of data, nor 
needing to decide a policy for ILM (Information Lifecycle 
Management)[20]. Finally, the write-once policy makes it 
possible to encode files as BP-DAGs and to append chunks 
to disk densely without fragmentation, thus giving rise to 
high data recovery throughput. 

3. BI-POINTER-BASED DIRECTED ACYCLIC 
GRAPHS 

From the perspective of the storage server, all the data is 
stored as chunks. A chunk can be shared by multiple files. 
On the other hand, a file may consist of many chunks and a 
file index should be built to access file chunks. Traditional 
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Fig. (2). Block diagram of the de-duplication backup. 
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file systems build file index by address pointers to physical 
blocks. For example, UNIX file systems use an inode struc-
ture, and indirect blocks if necessary, to map logical block 
addresses to the corresponding physical addresses on disk. 
This address-based index can provide quick access to file 
data, but cannot support duplicate block elimination and 
'unique' block sharing since address pointers are completely 
block content agnostics. In contrast, the hash-based index 
such as the Venti hash tree [14] and HDAGs [21] refers to 
child nodes by their hash rather by their location on disk, 
hence can well support 'unique' chunk storing and sharing, 
but its data access performance can be very poor since hash 
pointers should be translated to disk addresses and this usu-
ally incurs time-consuming disk index lookups. 

3.1. The Structure of BP-DAGs 

In order to combine the advantages of address-based and 
hash-based indexes, BP-DAGs have been used to establish a 
number of relationships between files and chunks. A BP-
DAG is a special kind of DAG (Directed Acyclic Graph) 
whose nodes refer to other nodes by their hash and their ad-
dress on disk. Specifically, a BP-DAG pointer is a <type, 
fingerprint, address, size > group with a total of 32 bytes in 
size, which records the chunk type (1 byte), fingerprint (20 
bytes), storage address (9 bytes with 5 bytes for container ID 
and another 4 bytes for storage offset within the container) 
and chunk size (2 bytes, we impose a limitation of maximum 
chunk size of 64KB) of the corresponding child, respec-
tively. The fingerprint is a hash pointer and the < address, 
size > is an address pointer, so a BP-DAG pointer is actually 
a hash plus address pointer pair which has been pictorially 
denoted as a double arrow. Fig. (3) depicts a file represented 
as a BP-DAG. There are three different types of BP-DAG 
nodes that are all stored on disk as chunks, namely the root 
chunk, index chunk and data chunk. A BP-DAG has a 
unique root chunk that contains two fields: the metadata field 
that stores the file metadata, and the pointer field that stores 
BP-DAG pointers to file data. Data chunks contain the con-
tents of the file and locate the leaf of the BP-DAG. For a 
small file, its data chunks can be directly indexed by the root 
chunk pointer field. For a large file, more than one index 

chunk, which is an array of BP-DAG pointers, may be re-
quired to constitute a hierarchical index structure to access 
its data. It should be noted that although a BP-DAG is a hi-
erarchical structure, it is in general not a tree, but rather a 
DAG since one child can have multiple parents. 

BP-DAGs use variable-sized index chunks with a maxi-
mum size of 32KB. An index chunk can contain a maximum 
of 1024 BP-DAG pointers (32KB/ 32bytes =1024), so an 
index layer with a depth of 2 can index a maximum of 
1024*1024 data chunks. An expected chunk size of 8KB 
means 1024*1024*8KB=8GB, which is exceeding the size 
of most files, so, most file's index layers are no more than 2 
in depth. In practice, for most small files, there are no index 
chunks in their BP-DAGs. 

Hash pointers also give BP-DAGs a number of useful 
properties. First, all the BP-DAGs chunks are uniquely 
stored in the system, no duplicate chunks exist, this property 
satisfies the 'unique' chunk storing policy of de-duplication 
system. Second, a BP-DAG is automatically acyclic since 
creating a cycle in the parent-child relationship between two 
BP-DAG nodes is cryptographically hard [21]. Third, more 
importantly, BP-DAGs are intrinsically structure sharable. 
Except root chunks, all the BP-DAGs chunks can be shared. 
For example, two files with the same data contents but dif-
ferent metadata (e.g., different names or even the same name 
but in different jobs) will have different root chunks but 
share the same index chunks and data chunks. Fig. (4) illus-
trates the structure sharing between two BP-DAGs. 

3.2. BP-DAGs Building 

When a file is de-duplicated, the BP-DAGs builder mod-
ule sequentially reads its fingerprints and new chunks from 
the fingerprint filter to build BP-DAGs. It maintains an in-
memory container to which BP-DAGs chunks are written. 
When the in-memory container is full, it is flushed to the 
container store and then another empty in-memory container 
is created and its container ID is requested. To make a fin-
gerprint h read from the fingerprint filter, the BP-DAGs 
building algorithm does the following: 

M(F)

...

...

...

...

...

root pointer 

...

root chunk

index chunks

data chunks
 

Fig. (3). A BP-DAG representation of a file, M(F) represents the file metadata. 
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• If it is a duplicate, then its < address, size > from the 
fingerprint cache (see Section 2.2) is read and stored 
< dc, h, address, size > to the BP-DAG. Here, 'dc' 
represents the chunk type 'data chunk'. 

• If it is new, it stores the new data chunk D(h) to the 
in-memory container, and its <dc, h, address, size > is 
stored to the BP-DAG. The address pointer < address, 
size > can be obtained from the in-memory container 
ID and the chunk’s storage offset within the container. 

For a small file, BP-DAG pointers are directly stored in 
its root chunk. For a large file, index chunks are recursively 
created in the process until in the end a unique root chunk is 
created and stored for the file. When an index chunk is gen-
erated, its fingerprint is sent to the fingerprint filter to check 
if it is new. If it is new, the index chunk is stored to the con-
tainer and its new address is built to the BP-DAG, otherwise, 
it is discarded and its address pointer is copied from the fin-
gerprint cache to the BP-DAG. Although storing an index 
chunk incurs de-duplication overhead, its impact on backup 
performance is negligible, since the amount of index chunks 
is far smaller than that of the data chunks. 

3.3. Restoring Files from BP-DAGs 

BP-DAGs are effective structures for fast access to file 
data. BP-DAGs root chunks are much like UNIX file system 
inodes and can be used to improve file read performance. 
During backup, the root chunks are also sent to a catalog 
database. When doing a restoring job, they are directly read 
to an in-memory read cache for quick file restoration. The 
desired file chunk (data chunk or index chunk) is directly 
read from the cache if found there. Otherwise, according to 
its BP-DAG pointer, the container that stores the requested 
chunk is read to the cache. The BP-DAG pointers avoid 
time-consuming disk index lookups to search chunks. 
Moreover, the locality-preserved container guarantees that a 
BP-DAG's chunks are stored on the disk of a continuous 
region if they are not shared by previous files. This continu-
ous data layout improves cache hit rate that in turn reduces 
disk I/Os to read chunks. So the performance of file restore 
can be effectively improved. 

4. EXPERIMENTAL EVALUATION 

Here, a prototype of the system in Linux called Dedup-
BP (De-duplication backup system with BP-DAGs), has 
been implemented and by modifying Dedup-BP, another 
system called Dedup has been developed, which removes 
BP-DAGs and builds file index just as a flat sequence of 
fingerprints that map to the file chunks. In this section, De-
dup-BP has been evaluated in terms of de-duplication ratio, 
compared with Dedup and Bacula in terms of backup/restore 
throughputs under representative workloads The comparison 
of Dedup-BP and Dedup on metadata storage overhead has 
also been given. Bacula is non de-duplication free network 
backup software available under the GNU Version 2 soft-
ware license. There are many versions of Bacula available 
but bacula-2.0.2 was selected for comparison. 

4.1. System Setup 

Here, system setup for the evaluation was based on three 
computers PC1-PC3. The servers (the backup servers, stor-
age servers and catalog databases of Dedup-BP, Dedup and 
Bacula) run on PC1 and the clients (the backup agents of 
Dedup-BP, Dedup and Bacula) on PC2. PC1 and PC2 were 
equipped with Inter 604-pin EM64T (NoconaTM) Xeon 3.0 
GHz processor and 4GB DDR SDRAM memory. A 
Highpoint Rocket 2240 Raid controller attached to 5 SATA 
disks was connected to PC1 served as container store and 
disk index for de-duplication backup, the SQLite version 
2.8.4 was also installed on PC1 served as catalog database. 
These two machines were connected over a 1000 Mbit/s 
Ethernet through a windows 2003 server enterprise internal 
router run on PC3, which can be configured to measure traf-
fic and impose bandwidth limitations.  

In order to examine the benefit of BP-DAGs on improv-
ing file restore performance, two representative workloads 
were used. Workload-1 is based on backup versions in their 
chronological order from a massive storage system [22], 
where significant amounts of data remained unchanged be-
tween adjacent versions; it represented backup stream work-
loads with well duplicate locality. There were a total of 
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root pointer 2
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M(F2)

...

...

...

 

Fig. (4). Structure sharing between BP-DAGs. 
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572GBs of data, 3177 files in workload-1. Workload-2 was 
collected from different personal workstations; it contained 
development sources and documentations, object files gener-
ated from code compiling, meeting records and technology 
discussions, and research papers and reports in various for-
mats and languages. Although there were large percentages 
of duplicate files in workload-2, majority of them were ran-
dom small files (usually several ten of kilobytes in size) scat-
tered in various parts of the workload, giving rise to very 
poor duplicate locality. Workload-2 contained 241GBs of 
data, 947258 files. 

4.2. Results and Discussions 

The expected chunk size is an important parameter for 
de-duplication backup. It is a trade-off between the degree of 
data de-duplication and the storage overhead of the metadata. 
Larger chunks not only reduce the storage overhead of the 
metadata but also reduce the number of duplicate data elimi-
nated. 

Fig. (5) shows the amount of duplicate bytes eliminated 
by Dedup-BP on the two workloads as a percentage of the 

total number of bytes in the workloads. As expected, the 
number of eliminated duplicates decreases slightly as the 
chunk size increases because of the coarser granularity. For 
workload-2, the data de-duplication degree drops faster as 
the expected chunk size varies from 8KB to 16KB. This may 
be because many files in this workload are small files around 
10KB, expected chunk size larger than 8KB will make most 
of these files be divided into no more than one chunk. In this 
case, Dedup-BP will be degraded to ordinary file-based 
backup and will lose many duplicates. Overall, by perform-
ing de-duplication, the storage requirement for backup can 
be remarkably reduced, as shown in Fig. (5), with expected 
chunk size of 8KB, over 58% and 52% storage spaces were 
saved when backing up workload-1 and workload-2, respec-
tively. It should be noted that the percentage of storage saved 
will grow higher over time with the system holding more 
backup data.  

Fig. (6) shows the amount of extra storage needed as a 
percentage of the total number of bytes in the workload for 
storing the file index. The results do not take into account the 
file metadata (i.e., file name, ctime, mtime, etc.) overhead 

Fig. (5). Data de-duplication using various expected chunk size. 

Fig. (6). Metadata storage overheads using various expected chunk size. 
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for convenience of comparison. The metadata storage over-
head is negatively affected by the expected chunk size; 
smaller expected chunk size suffers from relatively high 
metadata storage overhead. Moreover, Dedup-BP’s metadata 
storage overhead is also affected by the de-duplication rate 
and duplicate locality while Dedup does not (Dedup’s meta-
data overhead is only related to the average chunk size). 
With higher de-duplication rate and good duplicate locality, 
more index chunks will be shared between BP-DAGs, result-
ing in lower metadata overhead. This can be seen from Fig. 
(6) where Dedup-BP suffers from relatively low metadata 
overhead on workload-1 than on wokload-2. Overall, the 
metadata overhead for BP-DAGs is reasonably low, as can 
be seen in Fig. (6), using an expected chunk size of 8 KB. 
The amount of metadata storage overhead is very small, less 
than 0.4%. 

Figs. (7 and 8) show the backup and restore throughputs 
of Dedup, Bacula and Dedup-BP on 1000Mbit/sec LAN with 
different bandwidth limitations. Fig. (7) shows that both De-
dup and Dedup-BP outperform Bacula in terms of backup 
throughput on workload-1 in low bandwidth environments. 

This improvement mainly comes from the de-duplication of 
data transmitted over the network in backup session. How-
ever, on workload-2, both Dedup and Dedup-BP yielded 
relatively low backup throughput than Bacula, this is be-
cause the poor duplicate locality within workload-2 reduced 
the cache hit rate, making the disk index lookup become a 
performance bottleneck.  

Fig. (8) shows that both Dedup and Dedup-BP achieve 
comparable read throughput than Bacula under workload-1 
because of the well duplicate locality contained in this work-
load. But under workload-2, Dedup experienced a sharp de-
cline in read performance compared with Bacula, this is be-
cause workload-2 presents poor duplicate locality, which 
results in many random small disk I/Os for file read. In con-
trast to Dedup, Dedup-BP effectively slowed the decline in 
read performance under workload-2. As expected, Dedup-BP 
outperforms Dedup in read performance under both work-
loads, achieving improvements over Dedup by a factor of 
1.07 and 1.81 under workload-1 and workload-2 respec-
tively. This is because Dedup-BP indexes files using BP-
DAGs that completely eliminate time-consuming disk index 

Fig. (7). Backup throughputs on 1000 Mbit/sec LAN with different bandwidth limitations. 

Fig. (8). Restore throughputs on 1000 Mbit/sec LAN with different bandwidth limitations. 
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lookups in the read process, while Dedup suffers from a 
great number of random on-disk fingerprint lookups espe-
cially in the case of poor duplicate locality. 

5. CONCLUSIONS 

Data de-duplication, an emerging backup technique, is 
sparking a revolution in the area of data protection as it can 
dramatically reduce the backup storage requirement. Despite 
its rapid advance witnessed in recent years this technique is 
still facing many challenges on how to meet the performance 
requirements in high-continuity application environments. In 
this paper, the design of a de-duplication backup system that 
encodes files as BP-DAGs was presented. The system using 
representative workloads was also evaluated. Experimental 
results showed that the proposed BP-DAGs can effectively 
improve file read throughput under poor duplicate locality 
workloads in which the cases of current mainstream solu-
tions would experience a very sharp performance decline. 
How to effectively improve the backup throughput under 
poor duplicate workloads still remains a problem and will be 
the research direction of our future work.  
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