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Abstract: We propose a non-monotone line search combination rule for unconstrained optimization problems, the corre-
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1. INTRODUCTION 

Unconstrained optimization problems  

  
min
x Rn

f (x)  

Has wide application background. Many authors have 
devoted a lot of time and effort to the algorithm research of 
unconstrained optimization problems [1]. The algorithm is 
generally solved by iterative method. At the current iteration 
point

k
x , ( ) 0k kg f x= , then step length 

k
is determined 

along the search direction
k
d , the next iteration point ob-

tained by (1.1). 

1k k k k
x x d

+
= + ,    (1.1) 

In (1.1), there are many algorithms for 
k
d , Since the 

BFGS is currently the best quasi-newton method, and gives a 
convenient algorithm program. In this paper we use BFGS 
algorithm :  

 
d

k
= H

k
g

k
, and if

  
g

k

T d
k

0 , let 
 
d

k
= g

k
   (1.2) 

Where, ( ) 0k kg f x= ,
k

H  are generated by the BFGS 
correction formula.  

In (1.1), 
k
 can be produced by the Arimijo rule, Gold-

stein rule and Wolfe rule [1]
 
that are all classic monotone 

line search rules. Recent research [2-4] indicates that the 
monotone line search method may considerably reduce the 
rate of convergence when the iteration point x

k
 is trapped 

near a narrow curved valley, so the non-monotone line 
search method was proposed by Grippo et al. [4]. As a result, 
it is helpful to overcome this drawback. Some numerical 
experiments also show that the non-monotone line search 
method is effective. From non-monotone line search rule [2-
10], the inequality 1( )kf x

+
> ( )kf x  may hold for any k, 

which play the non-monotone search role. However, the 
above non-monotone line search rules required conditions 
are 0( ) ( )kf x f x . Under this condition, if 

0
x  is near  
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bottom of the valley, x
k

is difficult to get out of this valley 
and search for a better point. Therefore, we improve non-
monotone line search methods, and prove the global conver-
gence property by virtue of [2, 3, 11]. With the help of nu-
merical experiments it is shown that the proposed method is 
very effective. 

2. NONMONOTONE COMBINATION RULE FOR 
LINE SEARCHES  

In this section we establish a non-monotone combination 
rules. First of all, we give the assumption and definition as 
follows. 

Assumption 1. The function :
nf R R  is bounded and 

differentiable on the level set  

= x f (x) c f (x
0
) ,constant c 1{ }  

And
  
f (x) > 0 . 

If 1min ( )f x = , it is meaningless to solve the problem 

1min ( )f x . So we assume 1inf ( )f x w= . If 1( ) 0f x , take 

fixed constant 
 

> w , such that 
  
f
1
(x) + = ( ) 0f x > . Ob-

viously, ( )f x  and 1( )f x +  have the same extreme value 

point, derivative and continuous roundedness. Therefore, it is 

feasible to set ( ) 0f x > . 

Definition 1. The function 
 

: [0,+ ) [0,+ )  is a 
forcing function (F- function), if for any sequence 
{ } [0, )
i
t + , 

lim ( ) 0
i

i

t =  implies lim 0
i

i

t = .    (2.1) 

Now we give the non-monotone combination rule for line 
searches as follows. Let 0

k
 be bounded and satisfy 

 
( )

1( ) ( ) ( ) ( )
m k

k k k k kr k r k

r o

f x f x d f x t
+

=

= + ,    (2.2) 

where 
  
m(k) = min[k, M 1] , with 1M , a positive in-

teger, 

 

  
kr
=

r=o

m(k )

μ
k
1 , 

  

μ
k
=c

k=0

 ( c is a limited constant), 
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kr
, (0,1) ,

 
ct

k
is a forcing function [2], with 

0
T

k k k kt g d d= . 

In (2.2), when 1M = and 
0
1

k
= , we have  

( ) ( ) ( )k k k k kf x d f x t+ , 

Where ) T

k k k kt g d , combination rule become 
Arimijo rule. 

If 
0 ( )

( ) max { ( )}k l k r
r m k

f x f x= , take 1
kl
= , 0

kr
= ( r l ), 

then from (2.2) were: 

( )k k kf x d+
0 ( )
max { ( )} ( )k j k
j m k

f x t , 

Which was the search rule proposed by Grippo et al. [4]. 
It is visible that combination rule is more universal and 
meanwhile it has the global convergence. 

3. THE GLOBAL CONVERGENCE 

In this section, we investigate the global convergence of 
the non-monotone combination search BFGS algorithm. 

Lemma 1. If 1
k

μ and 
0

k

k

cμ
=

=  then ( )s n =
0

n

k

k

μ
=

 is a 

monotonically non-decreasing function about n, and 

( )s n c . 

Theorem 1. If k satisfies combination rule (2.2),  

( ) 0f x > , 1
k

μ and μ
k
= c

k=0

, then  

1

1 0

0

( ) ( ) ( ) ( )
k k

k n r k

r on

f x f x t tμ
+

==

.    (3.1) 

Proof. We will use mathematical induction to prove this 
theorem. In fact, for the case of 1k = , we have 

If =1M , then ( ) 0m k = . From (2.2), we have  

2 10 1 1( ) ( ) ( )f x f x t  

1 1 1= ( ) ( )f x tμ , 

Which combined with  

1 00 0 0( ) ( ) ( )f x f x t  

0 0 0= ( ) ( )f x tμ , 

Gives 
2( )f x

  
μ

1
{μ

0
f (x

0
) (t

0
)}

1( )t  

1
μ= 0 0 1 0( ) ( )f x tμ μ 1( )t  

1
μ 0 0 0( ) ( )f x tμ 1( )t . 

If 1M > , it is concluded from 2.2 that  

2 10 1 11 0 1( ) ( )+ ( ) ( )f x f x f x t  

10   
{μ

0
f (x

0
) (t

0
)}

11 0 1+ ( ) ( )f x t  

  
=(

10
μ

0
+

11
) f (x

0
)

10 0( )t 1( )t  

μ
0
(
10
+

11
) f (x

0
)

10 0( )t 1( )t  

0 1
μ μ 0( )f x 0( )t 1( )t ; 

That is (3.1) holds for 1k = . Let us now assume  

1 2

0 1

0

( ) ( ) ( ) ( )
k k

k n r k

r on

f x f x t tμ
==

 . 

It follows that  

( )

1( ) ( ) ( )
m k

k k r k r k

r o

f x f x t
+

=

 

( )m k

k r

r o=

1 2

0 1

0

{ ( ) ( ) ( )}
k r k r

n i k r

i on

f x t tμ
==

( )
k
t  

( )m k

k r

r o=

( ) 21

0 1

0

{ ( ) ( ) ( )}
k m kk

n i k r

i on

f x t tμ
==

( )
k
t  

0( )f x=

( )

( )
m k

k r

r o=

1

0

k

n

n

μ
=

( )

( )
m k

k r

r o=

( ) 2

( )
k m k

i

i o

t

=

 

( )m k

k r

r o=

1( )
k r
t ( )

k
t  

0( )f x=
k

μ
1

0

k

n

n

μ
=

k
μ

( ) 2

( )
k m k

i

i o

t

=

( )m k

k r

r o=

1( )
k r
t  

( )
k
t  

0( )f x
0

k

n

n

μ
=

( ) 2

( )
k m k

i

i o

t

=

1

( ) 1

k

i k m k=

( )
i
t ( )

k
t  

0( )f x
0

k

n

n

μ
=

1k

r o=

( )
r
t ( )

k
t . 

This means that (3.1) holds for any , 1.k Z k  

The proof is completed. 

Next, we will prove the global convergence of the non-
monotone combination search algorithm. 

Theorem 2. Assume Assumption 1 hold, the search di-
rection 

k
d  satisfies BFGS algorithm, line search length 

k
 satisfies rule (2.2),{ }

k
x  is generated sequence, then 

{ }
k
x , and lim 0k

k
g = . 

Proof. From Theorem 1 we have 

1

1 0

0

( ) ( ) ( ) ( )
k k

k n r k

r on

f x f x t tμ
+

==

0( )c f x , 

According to the definition of , we know that { }
k
x . 

From (3.1) we have 

1

1 0

0

( ) ( ) ( ) ( )
k k

k n r k

r on

f x f x t tμ
+

==  

0

0

( ) ( )
k k

n r

r on

f x tμ
==

. 

That is 

0 1

0

0 ( ) ( ) ( )
k

r k

r

t c f x f x
+

=

.     (3.2) 

From Assumption 1 we know that 1( )kf x
+

 are bounded 
in the , so according to (3.2), when k ,we have 

( )
r

r o

t

=

< , or equivalently lim ( ) 0
k

k

t = . 

From Definition 1, we have 

lim lim ( ) 0T

k k k k
k k

t g d d= = , 

That is 

lim cos( , ) 0k k k
k

g g d = , 
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From (1.2), we have cos( , ) 0k kg d > , so lim 0k
k

g = . 

This completes the proof of Theorem 2. 

Theorem 2 illustrates the global convergence of the non-
monotone combination search algorithm. To test the effec-
tiveness of the non-monotone combination rule, we give 
some numerical experiments. 

4. NUMERICAL EXPERIMENTS  

In this section we use the non-monotone combination 
line search rule and BFGS algorithm to test a few standard 
test problems, where line search steps meet non-monotone 
search combination rule, the following are the basic steps of 
algorithms: 

Step 1: A given initial value
0

n
x R ,

0
1= , 0 , inte-

ger 1M , (0, 0.5) ,
0

n n
H R (symmetric positive), let 

0k = ; 

Step 2: Testing the termination condition, we calculate 
( )k kg f x= , if 

*
,k kg x x= , then stop; 

Step 3: Calculating the search direction, 
k k kd H g= ; if 

0
T

k kg d > , then k kd g= ; 

Step 4: Determine the line search step length 
k

. Order 

( ) min{ , 1}m k k M= ,
kr

 meet 
( )m k

kr k

r o

μ
=

= 1 and 
0

=
k

k

cμ
=

. 

If  eligible 
( )

( ) ( )
m k

T

k k kr r k k

r o

f x d f x g d
=

+ +  , 

Then 
k
= , otherwise, using two points two times in-

terpolation shorten ; 

Step 5: Calculating new points. Order 
k k k
s d= , 

1k k k
x x s

+
= + , calculating 

1( )kf x
+

,
1 1( )k kg f x

+ +
= ; 

Step 6: Calculating 
1k k ky g g

+
= ,  

1

2( ) [ ]T k k k

k k k k T T

k k k k k

s H y
v y H y

s y y H y
= , 

1

T T

Tk k k k k k

k k k kT T

k k k k k

s s H y y H
H H v v

s y y H y
+
= + + , 

  k = k+1 , go to step 2.  

We choose the following tests.  

Question 1. GROSEN function  

2 2 2

1 1

2

( ) [100( ) (1 ) ] ,
n

i i i

i

f x x x x
=

= +  

0 ( 1.2 , 1 , 1.2 , 1 , , 1 ) .Tx =  

Question 2. Wood function 

2 2 2 2 2 2

1 2 1 3 3 4

2 2

2 4 2 4

( ) 100( ) ( 1) ( 1) 90( )

10.1[( 1) ( 1) ] 19.8( 1)( 1) ,

f x x x x x x x

x x x x

= + + +

+ + +

  

0
[ 3, 1, -3, -1] .

T
x =  

In the above two questions, the parameters involved are 

taken as 
kr
=

1

1+m(k)

1

(1+k )1.2  ( )0,1, , ( )r m k= , 6
10= , 

3
10= ,

0 n n
H I= , 1 and 1M are controlled con-

stants for R  and M Z . Note that the rule reduces to 

the monotone line search method when 1M =  and 1= , 

while the rule is similar to the non-monotone line search of 

F-rule when 1M >  and 1=  In the following three tables, 

g
n  denotes the outside loop iterations, fn  denotes the func-

tion evaluations, while 
*( )f x  stands for the function value 

of the approximate solution *
x . 

From the results of above three questions, we can see that 
it is effective for the non-monotone combination line search 
algorithm. 

For question 1, see Table 1, the iterations of non-
monotone line search algorithm are less than monotone line 
search algorithm, while the iterations of combination line 
search algorithm are much less and the accuracy is higher. 
From Table 2, we can see that non-monotone line search 

Table 1. The calculation results of question 1 ( 2n = ). 

 M   
 
n

g
 

 
n

f
 

  
f (x* )   M   

 
n

g
 

 
n

f
 

  
f (x* )  

1 

2 

3 

4 

5 

1 

1 

1 

1 

1 

39 

38 

38 

38 

38 

96 

92 

92 

90 

90 

1.5647e-017 

3.5514e-023 

3.5514e-023 

1.2758e-017 

1.2758e-017 

1 

2 

3 

4 

5 

5 

5 

5 

5 

5 

37 

31 

31 

31 

31 

91 

75 

75 

75 

75 

7.3465e-019 

7.8019e-020 

7.8019e-020 

7.8019e-020 

7.8019e-020 

 

Table 2. The calculation results of question 1 , ( n = 100 ). 

 M   
 
n

g
 

 
n

f
 

  
f (x* )   M   

 
n

g
 

 
n

f
 

  
f (x* )  

1 

2 

3 

4 

5 

1 

1 

1 

1 

1 

1001 

1001 

1001 

655 

659 

14781 

14314 

13083 

1807 

1814 

2.0205e-012 

5.2899e-014 

1.2005e-015 

4.5093e-016 

5.2653e-016 

1 

2 

3 

4 

5 

5 

5 

5 

5 

5 

1001 

1001 

1001 

1001 

681 

14040 

13689 

12950 

12286 

1833 

6.6312e-012 

5.8931e-013 

1.7840e-015 

1.6415e-015 

5.2825e-016 
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algorithm is better than monotone line search algorithm, and 
the results of non-monotone combination line search algo-
rithm are basically the same as ordinary non-monotone line 
search algorithm, which indicates the efficiency of non-
monotone combination line search algorithm.  

For question 2, see Table 3, the results of non-monotone 
combination line search algorithm are basically the same as 
ordinary non-monotone line search algorithm, that are all 
better than monotone line search algorithm. 

CONCLUSION 

From (3.2), we can obtain 0( ) ( ) 0kc f x f x , that 

is 0( ) ( )kf x c f x . From 
0

k

k

cμ
=

=

 
and 1

k
μ , we have 

1c , so 0( ) ( )kf x f x> can be achieved, which is our big-

gest breakthroughs to make 
k
x  out a nearby valley of 

0
x  to 

search a better solution.  

Rule (2.2) we proposed is easy to implement and emu-

lated a lot of 
k

μ , example 
1

( 1) pk

kμ
+= , constant 1 , 1p > , 

now 
 
p -series 

0

1

( 1) pk k= +
 converge on a limited number s, then 

1

(1 )

0 0

pk

k

k k

μ +

= =

 0

1

(1 ) pk k s c=
+

= = = . 

In order to prove easily, we assume ( ) 0f x >  in rule 
(2.2). If ( ) 0f x , 

k
μ should satisfy 0 1

k
μ< , now theo-

retical proof is more troublesome, therefore we need further 
research.  
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Table 3. The calculation results of question 2. 

 M   
 
n

g
 

 
n

f
 f (x* )   M   

 
n

g
 

 
n

f
 f (x* )  

1 

2 

3 

4 

5 

1 

1 

1 

1 

1 

101 

101 

35 

42 

64 

2579 

2577 

97 

111 

161 

6.0152e-013 

1.3019e-014 

1.1446e-017 

5.2348e-020 

6.3740e-018 

1 

2 

3 

4 

5 

5 

5 

5 

5 

5 

101 

38 

42 

42 

64 

2579 

103 

111 

111 

161 

6.0152e-013 

3.5936e-016 

5.2348e-020 

5.2348e-020 

6.3740e-018 

 


