
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Electrical & Electronic Engineering Journal, 2014, 8, 631-635 631

 1874-1290/14 2014 Bentham Open

Open Access
Interactive Pickup of Three-dimensional Fine Point Cloud Based on GPU

Ming Huang1,*, Fang Yang1, Yong Zhang1 and Xinle Fu2

1Beijing University of Civil Engineering Architecture, Key Laboratory for Urban Geomatics of National Administration
of Surveying, Mapping and Geoinformation, Engineering Research Center of Representative Building and Architectural
Heritage Database, The Ministry of Education, Beijing 100044, P.R. China
2 GIS Application Development Department, Sichuan Remote Sensing Geomatics Institute, Chengdu 610100, P.R. China

Abstract: Three-dimensional fine point cloud has gradually become a key data source of three-dimensional model.
The large scale point cloud interactive quick pick up is a kind of important operation in the point cloud data processing
and applications. Since the point cloud model is composed of massive points, the speed of ordinary picking method is
limited. A GPU-based point cloud picking algorithm was thus presented to solve the problem. The basic idea of the al-
gorithm is that by spatial transformation converting the point cloud to screen space, and then, the point was calculated
which is the nearest to the mouse click point in screen space. The GPU's parallel computing capabilities were used to
achieve spatial transformation and distance comparison by compute shader in this algorithm. So the speed of the
pickup has been increased. The results show that compared with the CPU, the pickup method based on GPU has great-
er speed advantage. Especially for the point cloud over 4 million points, the speed of the pickup has been increased 2-3
times faster.

Keywords: Compute shader, GPU, pickup, screen space, three-dimensional point cloud.

1. INTRODUCTION

In an interactive computer graphics application, such as
3D games, virtual reality, CAD/CAM, etc, it requires the
user to interact with the system via an input device. These
interactions include rotation, translation, delete, view ob-
ject status information etc. Interactions need to locate the
object in the scene by picking up operation. Pickup tech-
nology has become one of the most basic and a very im-
portant component of these systems. Because there is such
a wide range of pickup applications, many scholars have
conducted in-depth research. Yao Jiquan and Wang Jian
put forward that by adding a third dimension to the two-
dimensional coordinates of pickup to inverter exchange for
world space help calculate pick-rays according to the depth
of the order of objects make-ray-object intersection judg-
ment in the world space [1]. Zhu Mingliang put forward
picking algorithm [2] based on viewport space. In recent
years, graphics hardware has gradually become a powerful
programmable function. There has been the extensive use
of hardware (GPU) acceleration pickup algorithms [3] such
as: Hanrahan and Haeberli raised WYSIWYG method [4];
Zhang Jiahua and other proposed GPU picking algorithms
which use Geometry Shader to implement ray - geometry
intersection operation [5]; and Zhao Hanli and Jin
Xiaogang and other proposed FRMP method [6].

In recent years, the method of a point which is represent-
ed as a primitive object's surface has gradually become the

*Address correspondence to this author at Beijing University of Civil Engi-
neering Architecture, Beijing 100044, P.R. China; Tel: +8613391652980;
E-mail: 595638440@qq.com

focus of the study. On the one hand, due to the rapid devel-
opment of three-dimensional laser scanning technology, su-
per-large scale models can be acquired through laser scan-
ning, such models are initially represented as a three-
dimensional point discrete (point cloud). On the other hand,
the computing power of the computer has reached a new
level, at which level, the point such as drawing primitives
become meaningful [7, 8]. However, the study agrees that
pickup algorithms are meant for triangular elements, but not
for point primitives. These algorithms are not suitable for
point clouds, and because of the large point cloud data, the
speed of these pickup methods is very slow.

In this paper, the pickup point cloud GPU-based algo-
rithm was presented. The algorithm has the following
characteristics: (a) it processes point cloud data, and is
suitable for large-scale point cloud model pickup; (b) it is
based on the screen space. The point is transformed from
local space to screen space, and then compared with the
distance and made consistent with the pipeline rendering
order. It is not involved in the transformation matrix in-
version. The algorithm is not restricted to the problem
that the inverse matrix of the transformation matrix does
not exist; (c) The algorithm is based on the GPU. DirectX
11 Shader (compute shader) was used to make point con-
version and distance comparison operations thanks to the
powerful GPU's parallel computing capabilities [9, 10].
Compared with the algorithm running on the CPU, Pick
up speed is 2-3 times faster. The larger the point cloud,
the more obvious the advantages of speed.

632 The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 Huang et al.

2. GPU-BASED ALGORITHM FOR POINT CLOUD
PICKUP

2.1. Point Cloud Picking Algorithm Based Pn Screen
Space

Currently in computer graphics, the most widely used al-
gorithm is the classic Ray picking algorithm. The basic prin-
ciple is that firstly users click on the screen to take a screen
coordinate, then the coordinate is transformed into a view-
port coordinate of display system. Next, add the depth value
to the point. Through a series of coordinate space conversion,
reversely calculate the coordinates of the pickup point in the
world coordinate system. Lead a ray by viewpoint (camera
position) to the pickup point. In the three-dimensional space,
rays and objects conduct intersection. If they intersect, the
object is picked up [11, 12]. Since the point cloud model is
composed of a large number of points and the point has no
radius or size, so it cannot be judged whether a point and the
ray intersect each other. Therefore, ray picking algorithm
does not apply to the pickup point cloud data. Point cloud is
picked up through the method which is based on the screen
space.

The basic idea of the algorithm is making a series of
space conversion to the point of points cloud. Calculate pro-
jection coordinates on the screen. In screen coordinates, ob-
tain point which is nearest to the points that user clicks on
the screen. Specific steps are as follows:

a: Users click on the screen to get the screen coordinates
of the point S (,)x ys s .

b: Strike the screen coordinates of the points which are
from point cloud. The coordinates of the point
iP (ix , iy , iz) from point cloud are known. The point is

multiplied by the world matrix. And the point is trans-
formed from model space to world space. Next, the point
is multiplied by the view matrix viewM to be transformed
from world space into the observation space. And then, it
is multiplied by the projection matrix, the transformation
is made from observation space to the projection space.
Finally, it is multiplied by viewport transformation; the
transformation is made from projection space to screen
space. In the screen coordinate, system coordinates
'
iP ('

ix , '
iy , '

iz),

'
int* * * *i i world view project viewpoP P M M M M= (1)

Viewport transformation matrix:

Mviewpo int =

w / 2 0 0 0
0 !h / 2 0 0
0 0 1 0

w / 2 h / 2 0 1

"

#

$
$
$
$

%

&

'
'
'
'

 (2)

Where w is the width of viewport, h is the height of the
viewport.

c: In screen coordinates, calculate the point '
iP ('

ix , '
iy , '

iz)
(which does not participate in the operation) which is the

nearest point 'P ('
xP , '

yP , '
zP) from S(xs , ys). The correspond-

ing point P (xp , yp , zp) in model space is the selected point.

2.2. The Processes of GPU-B Based Pickup Point Cloud
Algorithm

The algorithm of pickup point cloud is based on the
screen space. For large-scale point cloud (cloud point num-
ber greater than 15 million), the algorithm operations are
performed on the CPU, and the speed of picking up is lim-
ited. This limitation can be solved by a powerful GPU paral-
lel computing power. For the purpose, Microsoft's DirectX
11 compute shader newly added can be used to perform
graphics unrelated general-purpose computing [13]. The
above picking algorithms are ported to compute shader. By
calculating shader’s powerful parallel computing capabilities,
you can solve the shortage of the pickup algorithm and im-
prove pick up speed.

The basic idea of the GPU-based point cloud pick up al-
gorithm is that the transformation of point and the distance
calculation of clicking screen point are implemented in Di-
rect3D 11 [14, 15]. Using GPU parallel computing to im-
prove the speed of picking up, the whole process is shown
through a flow chart in Fig. (1):

Click to start picking up points

 Update constant buffer
Mouse coordinates, point cloud points, the transformation matrix

Point cloud data is bound to the
structure of the buffer as input

Bound to RWStructuredBuffer
as output resources

Achieve space conversion of points in the
compute shader

FDist<δ?

RWStructuredBuffer=1 RWStructuredBuffer=0

RWStructuredBuffer is copied from GPU to CPU
Point value of 1 is read out

Obtain the nearest point in screen
space to the mouse position

Parall Mode

Yes
No

Fig. (1). GPU-based algorithm of pickup point cloud flowchart.

2.3. The Implementation of GPU-based Pickup Point
Cloud Algorithm

The main process of the algorithm is implemented by a
compute shader. Specific implementation process includes
these steps: creating resources for compute shader, initializ-
ing resources and binding resources. setting compute shader,
and calling dispatch execution.

Interactive Pickup of Three-Dimensional Fine Point Cloud Based on GPU The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 633

2.3.1. Create, Initialize and Bind Resources for the Com-
pute Shader

Compute shader requires the use of three resources: con-
stant buffer, the buffer structure and RWS structured Buffer
[16], as shown in Fig. (2).

Since the algorithm needs information of the screen-
clicked point, the numbers of points and the transformation
matrix, these values are stored with constant buffer. Before
compute shader execution, the value of these variables needs
to be passed to the constant buffer (Constant Buffer). Then
start binding coordinate point cloud data into the structured
buffer (Structured Buffer). When the compute shader’s cal-
culations are completed, the result of the calculation needs to
be returned to the CPU by RW Structured Buffer. RW Struc-
tured Buffer in CPU is not only bound to buffer data for the
GPU use but also can copy the buffer to the CPU for reading.
2.3.2. Compute Shader Setup and Execution

A certain number of thread groups can be opened by
Dispatch (X, Y, Z) function in shader file. Specify the num-
ber of threads in a thread group containing Bynum threads

(X, Y, Z) function. As shown in Fig. (3), a thread group may
have a composition of n threads. But during the actual hard-
ware implementation, these threads are divided into warps
(Each warp is composed of 32 threads). Each wrap is pro-
cessed by multiprocessor on the SIMD32. You can specify
multiple threads within a thread group where the number is
not 32. However, for performance reasons, the number of
threads in the thread group should be the warp (32 threads)
multiples. Program specifies a thread group has 256 threads
composition. Because each thread handles one point, the
program open (NumOfPoint + BLOCK_SIZE -1) / 256
thread group. NumOfPoint represents the total number of
points. The number of BLOCK_SIZE is 256 to ensure that
each point is processed. As shown in Fig. (2), for simplicity
reasons, through numthreads (BLOCK_SIZE, 1, 1) and Dis-
patch ((UINT) (NumOfPoint + BLOCK_SIZE -1) / 256, 1, 1)
the threads and thread groups are set to a dimension.

The number of threads which the compute shader opens,
is the same as the number of point clouds, so a thread is re-
sponsible for operation of a point. As shown in Fig. (4), each
thread corresponding to the index point will make space
conversion. It is converted from local coordinate system to

Void CS()
{
 ⋯
}

cb0 cb1 ... cb#

sb0 sb1 ... sb#

RWsb0 ...RWsb1 RWsb#

0

1
2
3
4
5
6
7

Constant Buffer

StructuredBuffer

RWStructuredBuffer

SRV

UAV

Fig. (2). Schematic diagram of compute shader binding resources.

(0,0
,0)

(1,0
,0)

(2,0
,0)

(#,0
,0)

(0,0
,0)
(1,0
,0)
(2,0
,0)

(254
,

0,0)

(255
,

0,0)

Fig. (3). Compute shader thread group and thread scheme.

634 The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 Huang et al.

the screen coordinate system. Determine the distance from
point to each screen-clicked point which is less than the set
value.
2.3.3. Retrieve the Compute Shader Operation Result

After the calculation of compute shader is completed,
RWStructuredBuffer needs to be copied from the GPU to the
CPU, to be read by the CPU. For this, a buffer needs to eb
created, in which the usage of buffer tag is
D3D11_USAGE_STAGING, and CPU buffer access method
is D3D11_CPU_ACCESS_READ. Use Copy-Resource
method to copy the GPU resources to the system memory.
Finally, we can use the Map and Uncap functions mapping
buffer to read CPU resources. At last, a small amount is cal-
culated by the CPU to obtain the selected point.

3. ANALYSIS OF EXPERIMENTAL RESULTS AND
CONCLUSION

This paper is based on the following configuration of
CPU: Intel Core 26600 and GPU: the NIVIDIA GT610 2G

computer, and Based on Visual Studio 2010 environment,
combination of using C ++ language and DirectX 11 pro-
gramming. The picking algorithm which is running on the
CPU is based on screen space. It is the combination of the
method of picking-up point cloud based on CPU and the
GPU-based point cloud pickup algorithms. The point cloud
number in the experimental data is in the range of 130,000 to
18, 000, 000. By drawing crosshairs, the point selected to
judge the accuracy of selection, is as shown in Fig. (5).

Fig. (5). Example of pickup point.

By testing different sizes of data, respectively, the

amount of picking up time is obtained, which is either CPU-
based or GPU-based. After statistical methods the statistics
obtained are given in Table 1.

For picking algorithm based on screen space, the main
time-consuming task is to make space conversion and dis-
tance comparison. A major time-consuming task of GPU-
based algorithm for picking is to copy the results from the
GPU to the CPU. For the small amount of data of the point
cloud (the number of points less than 2 million), while pick-
ing method based on GPU is faster, the difference in the time
consumed for two methods is not large/significant. For large
amounts of data point cloud (the number of point is greater

Table 1. Experimental statistics table.

The number of points from
point cloud

(Ten thousand)

Time consuming of the method of picking-up point
cloud based on CPU

(A millisecond)

Time consuming of the method of picking-up point
cloud based on GPU

(A millisecond)

13.1516 11.806 9.345

28.2361 21.554 16.342

57.1459 42.917 25.429

79.0590 58.134 34.365

139.1901 105.674 72.547

228.2259 203.952 105.149

440.0833 384.890 180.702

608.3357 556.826 240.427

836.0005 706.340 313.959

965.2038 816.199 372.684

1791.3302 1296.009 560.421

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread #

Point 0

Point 1

Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point #

...

...

...

...

...

...

Fig. (4). Schematic diagram of each thread is responsible for a
point of operation.

Interactive Pickup of Three-Dimensional Fine Point Cloud Based on GPU The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 635

than five million), GPU-based picking method is more than
two times the speed of the methods which is based on screen
space. And with the increasing amount of data, the speed
advantage of GPU-based method of picking becomes more
and more obvious. Thus, for modern high-performance of
GPU, it is suitable for performing a large number of general
purpose computing. For large point cloud, using the GPU for
pickup has a great speed advantage.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This paper was supported by plan projects National Ad-
ministration of Surveying, Mapping and Geoinformation of
China (Grant NO.2013CH-15, special public welfare indus-
try research 201512009) and by the National Natural Science
Foundation of China (Grant No.41301429). Project also sup-
ported by the Special Scientific Research Fund of Surveying
Public Welfare Profession of China (Grant No. 201512009).

REFERENCES
[1] J. Q. Yao and X. X. Li, “Research on 3-dimension pick-up of hu-

man-computer interaction in computer graphics”. Journal of Engi-
neering Design, vol. 13, no. 2, pp. 116-120, 2006.

[2] M. L. Zhu, B. Dong, Y. Wang, and B. Y. Xie, “Algorithm for Pick-
ing in 3D Scenes Based on Viewport Space”, Journal of Engineer-
ing Graphics, vol. 2, pp. 84-97, 2008.

[3] A. F. Abate, M. Nappi, and S. Ricciardi, “GPU accelerated 3d face
registration/recognition”, Lecture Notes in Computer Science, Ad-
vances in Biometrics, vol. 4642, pp. 938-947, 2007.

[4] P. Hanrahan and P. Haeberli, “Direct WYSIWYG painting and
texturing on 3D shapes”, ACM SIGGRAPH Computer Graphics,
vol. 24, no. 4, pp. 215-223, 1990.

[5] J. H. Zhang, C. Liang, and G. Q. Li, “3D Primitive Picking on
GPU”, Journal of Engineering Graphics, vol. 1, pp. 46-52, 2009.

[6] H. Zhao, X. Jin, and J. Shen, “Fast and Reliable Mouse Picking
Using Graphics Hardware”, International Journal of Computer
Games Technology, vol. 9, pp. 11-18, 2009.

[7] T. Akenine-moller and E. Haines, “Real-Time Rendering”, Third
Edition, USA：A K Peters, 2008.

[8] J. Bosch, P. Goswami, and R. Pajarola, “Simple and efficient ter-
rain rendering on the GPU”, In: Proceedings of EUROGRAPHICS,
pp. 35-42, 2009.

[9] A. Moslah, V. Valles-Such, S. Guitteny, Couvet, and S. Philipp-
Foliguet, “Acceleratedmulti-view stereo using parallel processing
capababilities of the GPUs”, 3DTV Conference, pp. 1-4, May 2009.

[10] D. Bhattacharya and S. Roychowdhury, “A Constrained Cost Min-
imizing Redundancy Allocation Problem in Coherent Systems with
Non-overlapping Subsystems”, Advances in Industrial Engineering
and Management, vol. 3 no. 3, pp. 1-6, 2014. doi:10.7508/AIEM-
V3-N3-1-6

[11] Y. X. Guo, T. P. Hou, Y. Y. Du, “Picking Entities in 3D Scene
Based on DirectX”, Journal of Liaoning University of Petroleum &
Chemical Technology, vol. 29, no. 3, pp. 77-80, 2009.

[12] H. Nie, “Interactive mapping of pixel pickup”, Journal of North-
west Institute of Textile Science And Technology, vol. 11, no. 4, pp.
329-332, 1997.

[13] Microsoft Corporation. DirectX 11 SDK, USA: Microsoft Corpora-
tion, 2010.

[14] D. Frank D, “Introduction to 3D Game Programming with DirectX
11”, USA: Mercury Learning & Information, 2012.

[15] J. Zink, M. Pettineo, and J. Hoxley, “Practical Rendering and
Computation with Direct3D 11” USA：A K Peters, 2011.

[16] C. Boyd, “Direct3D 11 Compute shader: More generality for ad-
vanced techniques” Gamefest USA, 2008.

Received: September 18, 2014 Revised: December 22, 2014 Accepted: December 31, 2014

© Huang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

