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Abstract: This paper researched steady power flow control with variable inequality constraints. Since the inverse func-
tion of power flow equation is hard to obtain, differentiation coherence algorithm was proposed for variable inequality 
which is tightly constrained. By this method, tightly constrained variable inequality for variables adjustment relationships 
was analyzed. The variable constrained sensitivity which reflects variable coherence was obtained to archive accurate ex-
treme equation for function optimization. The hybrid power flow mode of node power with branch power was structured. 
It also structured the minimum variable model correction equation with convergence and robot being same as convention-
al power flow. In fundamental analysis, the effect of extreme point was verified by small deviation from constrained ex-
treme equation, and the constrained sensitivity was made for active and reactive power. It pointed out possible deviation 
by using simplified non-constrained sensitivity to deal with the optimization problem of active and reactive power. The 
control solutions for power flow for optimal control have been discussed as well. The examples of power flow control and 
voltage management have shown that the algorithm is simple and concentrated and shows the effect of differential coher-
ence method for extreme point analysis.  
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1. INTRODUCTION 

The steady-state power flow control is the analysis about 
the power flow control by use of adjustable capacity of AC 
power. The voltage quality and voltage security are a con-
centrated expression of the inequality condition of the node 
voltage, where the economical operation is presented as the 
operating optimization objective. The steady-state power 
flow control is a power flow problem with operating condi-
tions, also considered as the basis of analysis for discrete or 
discontinuous variables, which can be described [1-2]. Op-
timal Power Flow belongs to the steady-state power flow 
control problem, and the basic form is:  

  
min     z=f (x, y)  (1-1) 

  
s.t     g(x, y) = 0  (1-2) 
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In 1960s, Carpentier proposed the description of OPF 
with mathematical equations. He then summarized all the 
engineering problems into a form of theoretical research and 
promoted various researches concerning the solution meth-
ods for extreme point equations [3-6]. In 1968, simplified  
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gradient method which was proposed by Dommel and Tin-
ney for solving OPF cleared the direction of the continuous 
variable optimization solution, and established the basic 
form of the equation with extreme conditions in (1-1), the 
simultaneous equation forms of equality constraint in (1-2), 
and the approach of the control variable inequality for the 
domain in (1-4) [3, 6]. In 1948, Sun, Tinney et al. [7] estab-
lished that the large-scale OPF problems have practical val-
ue, through the application of Newton method in quadratic 
convergence and sparse technology to solve the equation of 
extreme points [5, 8]. 

Soon afterwards, research and trial of multi-aspects in-
cluding the penalty function towards inequality constraints 
have been made. 

With the development of optimal theory, in 1986, Kar-
markar proposed the interior point method. The method is 
suitable for solving large-scale, multi-variable constraint 
problems. In 1991, Clements [9] and Quitana [10] proposed 
the theory of using interior point method to deal with ine-
quality constraints in the power system, maintaining the var-
iables in feasible region and making variable corrections 
with rules, with the convergence being far superior to the 
simple form of algorithm [9, 11]. 

Interior point method can effectively handle the calcula-
tion problems of tight constraints like (1-3), involving other 
problems in (1), and promote the development and applica-
tion of the OPF problem [12, 13]. 

With the development of OPF, some challenging prob-
lems [14] which were proposed by Momoh in 1997 were still 
worth considering, e.g.: How to improve the transparency of 
the optimization, so that we can find the direction and 
measures of power system optimization. 
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The problems of (1) involve complex nonlinear systems 
analysis of inequality constraints containing both feasibility 
and optimization [14]. Compared with the conditional ex-
treme problem of equality constraints, the focus problems 
caused by inequality and tight constraints of the variable x  
in (1) are: How to determine the value of y, when maxix x= , or

  
x

i
= x

min
, or ix  are constant? How to seek the solution for 

the mixed variables. Meanwhile the value of x and y are both 
required to be found out? What kind of constraints sensitivi-
ty can be measured and used in the extreme condition equa-
tion when x  is under the condition of tight constraints. 

 For the above questions, the differential analysis method 
has been used in this paper. Under the demand to determine 
y from x , which is required by tight constraints, and with 

the differential relationship of  dx and
 
dy , 

 
dy can be deter-

mined by dx . With the method that the definite value of 
  
y

1
 

meets the inequality constraints demand of x , the constraint 
sensitivity reflects the differential co-ordination that can be 
acquired. Then the problem for power flow caused by tight 
constraints on the variable x are analyzed and solved. Only 
the differential analysis can be left incomplete for the cor-
rectness and reasonableness of the analysis. An example for 
illustration and verification has been provided.  

2. DIFFERENTIATE COHERENCE METHOD 

The Differential Correlation Method used to solve the 
tight constraint problems for x  is: 

1) According to 
  
g(x, y) = 0  , incidence matrix D for  dx  

and 
 
dy  shall be 
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The following can be obtained:  
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D is the unconstrained sensitivity matrix and the rate of 
change for the system status x  to the control variable y , 
and reflects the inherent characteristics of the system. 

 Thus, the relationship of  dx  and 
 
dy  is 
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Where 1x is a tight constraint variable, and 
  
x

2
is a loose 

constraint variable. 1y is a variable that needs to make corre-

sponding control in order to make the definite value for
  
x

1
. 

1y is conditional control variable, and 2y is optimal control 
variable which can be used to optimize the objective. 

When the tight constraints of 1x  meet the optimization 
objective and 1y  makes an optimal effect, then 2y  is opti-
mized better and vice versa. 

With the same meaning as the KKT equations, the solu-
tion of (1) is to make constraint condition equations, optimal 
extreme condition equations and power flow equation, 

  
g x, y( ) = 0 , is simultaneous equation through which the 
variables x  and y can be solved. The quantity of the simul-
taneous equations is the same as the quantity of variables  x  
and

 
y . The optimization for extreme conditions must be re-

duced when the conditions of the constraint conditions in-
crease.  
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Setting, 
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1) There is no solution for 
  
dy

1
 when the dimension of 

1x is more than the dimension of 1y , and there are infinitely 
many solutions in redundancy situation that the dimension of 

1x  is less than the dimension of 1y . 

Taking the N-dimensional of 
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1
 corresponding to one -

dimensional of
  
dx

1
, setting the components of 
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1
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typical linear form of weighted average, then 
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M M  

di is the weight value. e.g., setting weighted average as 
the form 
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From the definite weight value, and determining one cor-
rection, other corrections can be calculated, which are ex-
pressed as: 
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1  (7-1) 

Equation (5) in the redundancy situation is 

   

D
11.1
! D

11.N
!
"

#
$

dy
1.1

"

dy
1.N

!

"

%
%
%
%

#

$

&
&
&
&

= 'D
12

dy
2.1

"

dy
2.M

!

"

%
%
%
%

#

$

&
&
&
&

 

So 
  

D
11

!y
1

!y
2

= "D
12

, 
   

D
11.1

!y
1.1

!y
2.i

+!+ D
11.N

!y
1.N

!y
2.i

= "D
12.i

 . 

Variable constraint sensitivity exists, but infinitely has 
many solutions. 

2) 
  
y

1
becomes minimum and

  
y

2
 becomes maximum 

when the dimension of x1 is the same as the dimension of 

1y , then 
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In these conditions, control methods have the same di-
mensions out of which 1y  is the most sensitive whereas the 
diagonal elements of the D11 are the biggest under different 
choice of 1y . 

Thus, adherence problem can be solved according to the 
demand of △x1 and the correction △y1 of 1y  on the basis 
of (7) can be determined. 

3) Constraint sensitivity of the variable can be acquired 
in accordance with Matrix D. According to (7-2) and (4): 
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Thus, the constraint sensitivity of variable concerning the 
tight constraints has been formed. Constraint sensitivity is 
the rate of change of x  to 2y  under the coordinated condi-

tions of 1y , and it reflects the special characteristics of the 
system. 

4) The constraint sensitivity of objective function z  to 
variable 2y makes a differential, then: 
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Extreme condition equation of optimization function is 
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Connecting to the variable constraint sensitivity in (9), 
equation (11) is extreme condition equation concerning ine-
quality tight constraints. Extreme equations reflects the con-
nection of variables y1 to 
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2
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5) The constraint sensitivity of the objective function to 
the control mode, according to the differential coefficient of 
optimization function is: 
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Then the constraint sensitivity of the objective function 
to the control mode should be: 
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Current extreme point is acquired in accordance with the 
extreme conditions of (11), and must be tested whether it is 
the global optimum. For D11, which is in other control 
methods or 1y  (i.e. D22, D12, D21) which intends to be 
selected respectively and be substituted in  equation (13), the 
results are as follows: If other control methods are taken for  
optimization, the deviation sensitivity of the corresponding 
extreme value to the current extreme value is the constraint 
sensitivity of the objective function to the control mode.  

3. STEADY - STATE POWER FLOW CONTROL 
PROBLEM 

The steady-state power flow control problem means that 
formula (14-1) had solution with the conditions of  (14-6), 
simultaneously meeting the operating conditions equations 
(14-3) (14-4), (14-5) and the desired optimization objective 
function (14-2) 
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( , ) ( ) 0g x y y h x= − =   (14-1) 

min     ( , )f x y   (14-2) 

( ) 0S x ≥   (14-3) 

s
j jx x=   (14-4) 

min maxx x x≤ ≤   (14-5) 

min maxy y y≤ ≤   (14-6) 

A．The mathematical model of Power Flow Control  

The transmission power of the tie line power or power 
flow control flow control meets 
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straint is 
 
P

ij
+ jQ

ij
= P

ij

s
+ jQ

ij

s . The load node is when the cen-

tral point voltage of the voltage management s
i iV V=  be-

comes the PQV node while 
  
P

Di
,Q

Di
,V

i
 are  definite values. 

Load point voltage can be higher than the supply voltage 
in the power grid with k*>1 transformer (In the k*>1 model, 
the k*>1 means the secondary p.u. voltage is higher than the 
primary p.u. voltage). When the voltage sector 
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tor iV  is out of the boundary of inequality, 

 
V

i
 is the loose 
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The generation  is represented as PV node which has ac-
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ing adjustable, and a slack bus with adjustable voltage  set . 

n  is setting the grid node amount is, 
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Where 1 2y y y= U , 1y is the generation variable with ad-
justable capacity. 2y  is the un-adjustable constant genera-
tion variable. 

Nodal power equations of PQ node and PV node are re-
spectively: 
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The inequality constraint equation works while branch 
power and nodal voltage are the definite values, i.e. 
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Equations (15) and (16) are the mixed power flow model, 
which is formed by the node power equations and the con-
tributing inequality tight constraint equations are also the 
basic form of power flow control. 

B．Unconstrained sensitivity for grid power flow model 
The specific forms of (15), and (2) turn out to be: 
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Connecting (17) according to the method of (3), we ob-
tain: 
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C. The constraints sensitivity of the variable  
The constraints sensitivity of the variable is the form of 

(9). 
D. Constrained extremum equation of the active power in 

the slack bus 
The node power equation of the grid active power loss is: 
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Where the slack bus power 
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According to (11), the extreme equation for the active 
power optimization is 
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The extremal equation for the reactive power optimiza-
tion is: 
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In (21) and (22), the partial derivatives to 
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and the constraint partial derivative of 1y , 2x  to 2y  can be 
achieved by (9).  

4. THE SOLUTION TO THE POWER FLOW 
CONTROL EQUATION 

Due to the large number of voltage inequality equations 
and uncertainty of out-of-limit, according to (7), voltage ine-
quality constraints serve as a check and deal with more limit. 
Only the simultaneous solution of flow equations and the 
branch power condition equations with mixed variables and 
PQV node are solved. The steps of Newton method for solv-
ing are as follows: 

Step1: Request the correction amount  !x . 
The correction equation of power flow model without re-

garding the voltage inequality conditions should be: 
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Solving  !x  and line conditions control 
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Step 2: Tight constraints determine the conditions correc-
tion to determine 
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1
 compensated by

  
!y

1
 gives the method of compensa-

tion: 
A. Condition Control of N to N Linear Combination  
According to (7-2), selecting appropriate combination of 

control Δy1, the correction of compensation 1xΔ  required 
for conditions control can be obtained: 

  
!y

1
= "D

11

"1
!x

1  (24-1) 

B. N to 1 Redundant Condition Control  

According to (7-1), selecting appropriate control 
  
!y

1
,

the condition control variables required for compensation 

1xΔ  can be acquired. E.g. the form of a weighted average is 
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C．One to One Condition Control 

For the exceeding amount, selecting larger sensitivity 

 
D

ij
, according to (7-2), 
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1
becomes 
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Step 3: Variable correction 
The variable corrections are: 

  x
(k+1)

= x
(k )

+ !x
(k )

 (25-1) 

  
y(k+1)

= y(k )
+ !y

1

(k )

 (25-2) 

Comparing the above process with the conventional 
power flow calculations, the mixed power flow model re-
places the grid power flow model in more than 2 steps of 
out-of-limit special process for x . 

5. EXAMPLES AND ANALYSIS 

Fig. (1) is the IEEE 5 buses system which is featured in 
both-side power supply, large impact of generation adjusting 

 

～ ～ 

④ ② ③ ⑤ 

① 
 

Fig. (1). IEEE 5 buses system. 
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to power flow change, and the step-up transformer making 
the load point voltage higher than the supply voltage. That is 
why the author chose it for the principle analysis in this pa-
per. 

A．The inspection and application of the constraint sen-
sitivity 

For IEEE 5 buses system, the calculation cases for veri-
fying the constraint sensitivity and its application are listed 
in Table 1 and are as follows:  

According to power supply settings listed in Table 1, 
making power flow calculation and constraint sensitivity 
calculation in (21) and (22), the result is listed in Table 2. 

The gird loss of constraint sensitivity ∂PL/∂PG, 
∂PL/∂VG in Scheme (1) is close to zero, which shows that 
the state is: V1=0.93, the active power is optimized, and the 
reactive power is optimized for the operating point. Scheme 
(2) and Scheme (3) maintain V1 = 0.93 and the reactive 
power is optimized. Only the active power has a small devia-
tion which shows that the after state has a slight deviation 
from Scheme (1). The value of ∂PL/∂PG increases, and the 
loss of the corresponding power is slightly larger than that of 
Scheme (1). Similarly, Scheme (4) and Scheme (5) are in 
reverse. The results of Table 2 show the points which satis-
fied (21), and the extreme points of (21) which can withstand 
the small deviation of calibration. Also, according to the 
state of the operating point, constrained extreme conditions 
can be the judgment and the basis for calculations. 

According to (18), the calculations of the system’s sensi-
tivity matrix D for power flow state in Scheme (1) are listed 
in Table 3. The array element of matrix D reflects the prop-
erties system without the constraints of the natural rate of  
 

change, among which, the sensitivity of the voltage state to 
the voltage source is much larger than the voltage state to the 
power source. 

When 1x  equals to V1 that is restricted and the corre-

sponding variable 1y  equals to VG5, divide matrix D into D11, 
D12, D21 and D22; the variable constraint sensitivity calculated 
according to (9) is listed in Table 4. 

The constraint sensitivity in Table 4 highlights that state 
to constraint sensitivity of active power (PG) is slightly dif-
ferent with the unconstrained sensitivity in Table 3, but for 
constraint sensitivity of reactive power (VG), it is quite dif-
ferent from the unconstrained sensitivity in Table 3. This re-
sult shows that when addressing the voltage inequality con-
straints, adopting unconstrained sensitivity simply to make the 
active power characteristics analysis an approximation, and 
the deviation of reactive power characteristics is large. 

B． Algorithms and calculation of the power flow con-
trol and voltage management 

Table 5 sets an example that the transmission line power 
and load point voltage which are counted for the required 
value of the flow control, apply equation variable mode to 
solve and deal with the exceeding voltage in (24). 

Table 5 gives  example solutions of power control and 
voltage management,among which, multiple objective de-
terministic control of three different types of objectives in-
cluding flow control, voltage management and reactive pow-
er optimization are proceeded in Scheme (8). 

  

Table 1. Solutions for extreme character check. 

Scheme Caption The Setting For PQ Nodes And Slack Node 

1 V1=0.93, optimize active and reactive power  

PG4 =3.19680, 

VG4=1.07323, 

VG5=1.07828 

2 V1=0.93, optimize reactive power, △PG4=-0.01 

PG4 =3.18680, 

VG4 =1.07300, 

VG5=1.07870 

3 V1=0.93, optimize reactive power , △PG4=＋0.01 

PG4 =3.20680, 

VG4 =1.07346, 

VG5=1.07786 

4 V1=0.93, optimize active power, △VG4=-0.01 

PG4 =3.16732, 

VG4 =1.06323, 

VG5=1.09307 

5 V1=0.93, optimize active power , △VG4=+0.01 

PG4 =3.22654, 

VG4 =1.08323, 

VG5=1.06352 
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Table 2. Small derivation check of extreme point. 

Scheme 4 2 1 3 5 

 
△VG4 

-0.01 

△PG4 

-0.01 

optimize active, 

reactive power 

△PG4 

＋0.01 

△VG4 

＋.001 

θ1/rad -0.30349 -0.30783 -0.30666 -0.30550 -0.30996 

θ2/rad -0.07599 -0.08110 -0.07924 -0.07738 -0.08261 

θ3/rad -0.11138 -0.11362 -0.11344 -0.11326 -0.11559 

θ4/rad -0.03330 -0.03888 -0.03691 -0.03493 -0.04062 

V1/p.u 0.93 0.93 0.93 0.93 0.93 

V2/p.u 1.09952 1.10829 1.10850 1.10872 1.11747 

V3/p.u 1.09783 1.08538 1.08497 1.08457 1.07213 

V4/ p.u 1.06323 1.07300 1.07323 1.07346 1.08323 

V5/ p.u 1.09307 1.07870 1.07828 1.07786 1.06352 

PG4/p.u 3.16732 3.18680 3.19680 3.20680 3.22654 

PG5/p.u 1.09307 4.21431 4.20431 4.19431 4.17513 

Ploss/p.u 0.10169 0.10112 0.10111 0.10112 0.10168 

∂PL/∂PG4 

-8.14444 

×10-7 

-8.91308 

×10-4 

5.36430 

×10-8 
0.00089 

-8.20054 

×10-7 

∂PL 

/∂VG4 
-0.11455 

9.81031 

×10-7 

9.73436 

×10-7 

9.69353 

×10-7 
0.11436 

 
Table 3. The system sensitivity of Scheme 1. 

 Matrix D of Scheme (1) 

∂V1 0.65712 D11 -5.70322×10-3 0.95411 D12 

∂V2 8.95447 -1.54966×10-3 1.02558 

∂V3 0.98440 2.63313×10-3 0.17726 

∂θ1 0.61517 D21 -0.13862 0.17499 D22 

∂θ2 0.46626 -0.21136 -0.26808 

∂θ3 0.21324 -2.68593×10-2 2.47262×10-2 

∂θ4 0.46284 -0.22456 -0.34674 

 / ∂VG5 (y1) / ∂PG4 (y2.1) / ∂VG4 (y2.2) 
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Table 4. Variable constrained sensitivity of Scheme 1. 

 Variable Constrained Sensitivity of Scheme 1 

y1 ∂VG5 8.67908×10-3 -1.45195 

x2 

∂V2 -7.72502×10-4 0.89557 

∂V3 1.11768×10-2 -1.2520 

∂θ1 -0.13328 -0.71821 

∂θ2 -0.20732 -0.94508 

∂θ3 -2.50085×10-2 -0.28489 

∂θ4 -0.22054 -1.01877 

y2  / ∂PG4 / ∂VG4 

 
Table 5. Example solutions of power control. 

Scheme Operating Condition Power Combination Adjustment Mode 

6 V3=1.05, P23= 0.2 
PG4 Adjust the line active power, 

VG5 voltage management 

7 
V3=1.05, 

P23=Q23=0.2 

PG4,VG4 Adjust the line active and reactive power, 

VG5 voltage management 

8 
V3=1.05, P23= 0.2, 

optimize reactive power 

PG4 Adjust the line active power, 

VG4 optimize reactive power, 

VG5 voltage management 

9 V3=1.05, optimize active and reactive power 

PG4 optimize active power, 

VG4 optimize reactive power, 

VG5 voltage management 

 
Table 6. Calculation examples of power control. 

Scheme 6 7 8 9 

operating condition 
V3=1.05, 

P23= 0.2 

V3=1.05, 

P23= 0.2, 

Q23= 0.2 

V3=1.05, 

P23= 0.2, 

LVG=0 

V3=1.05, 

LPG=0, 

LVG=0 

V1/ p.u 0.88679 0.91699 0.94101 0.94289 

V2/p.u 1.08191 1.11728 1.14622 1.14821 

V3/p.u 1.05 1.05 1.05 1.05 

V4/p.u 1.05 1.08493 1.11360 1.11551 

V5/p.u 1.04732 1.04095 1.03580 1.03557 
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Table 6. contd…. 

Scheme 6 7 8 9 

θ1/rad -0.32009 -0.31583 -0.31334 -0.30723 

θ2/rad -0.07064 -0.08155 -0.09052 -0.08229 

θ3/rad -0.11881 -0.11906 -0.11937 -0.11818 

θ4/rad -0.02523 -0.03886 -0.04987 -0.04127 

P23/p.u 0.2 0.2 0.2 0.22886 

*Q23/p.u -0.22647 -0.11208 -0.01247 -0.01212 

Ploss/p.u 0.11233 0.10648 0.10500 0.10492 

∂PL/∂PG4 
4.48478 

×10-3 

-1.56166 

×10-4 

-3.92074 

×10-3 

-9.74024 

×10-9 

∂PL/∂VG4 -0.23488 -0.10263 
-9.8783 

×10-7 

-9.87534 

×10-7 

* Grounding capacitance branch is calculated in Q23. The power transmission condition of the calculation case doesn't include the grounding capacitance branch. 
 

Table 6 gives the calculation examples of power control 
and voltage management. 

The examples of Table 5 and the results of Table 6 indi-
cate that the mixed power flow model is formed by node 
power and branch power. A good  differentiate coherence 
method can be an effective algorithm for power flow control 
and voltage management issues. As 1x  is definite value, and 
needs to revise 1y constantly in the iteration, increasing the 
number of iterationsgives the extent of super-linear conver-
gence of Newton method.  

CONCLUSION 

Association and coordination of △ 1x and △ 1y  can 
solve the calculating coherence problem of tight constraints 
for 1x . On the basis of the mixed power flow model formed 
by the power flow control and the solving iterative solution 
of the least variable patterns, which are similar to the normal 
power flow, its calculation scale, convergence and robust-
ness are basically consistent with the conventional power 
flow algorithm, and it maintains the simplicity and efficiency 
required for calculations. 

The constraint sensitivity of the variable may constitute 
the constraint sensitivity of the operating objective (The 
composite function of the variable) which is mainly con-
cerned, and the constraint sensitivity of the operating objec-
tive to the control power can  depict the adjustment direction 
and sensitivity. The composite function of the target (varia-
ble) sensitivity runs the target to control the power of con-
straint sensitivity which identifies the direction of regulation 
and sensitivity. The sensitivity from operating objective to 
control mode can make the effect of control mode definite, 
and for the flow control,  it is required to provide a flexible 
choice of control methods and analysis.  
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