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Abstract: This study constructs a novel four-dimensional fractional-order chaotic system. It verifies chaotic nonlinear dy-

namic behaviors and physical reliability by numerical simulation and hardware circuit design. For a class of parameter 

uncertainty fractional different-lags (
i
) chaotic systems, the authors design a time-delayed ( ) synchronization control-

lers and parameter adaptive laws. It proves that the drive system and the response system tend to be synchronized and 

identified parameter when the control parameter matrix K  satisfies the condition that nEK  is a positive definite ma-

trix. Simulation results show physical reliability of the fractional-order different-lags chaotic system and verify effective-

ness of different-lags synchronization in time-delayed system method design. 
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1. INTRODUCTION 

Chaos is ubiquitous nonlinear phenomena that it is a 
macro disorder and micro order in nature. Since the 1960s, 
Lorenz, the American meteorologist, stumbled across the 
first chaotic attractor from numerical weather changes exper-
iments [1], Chaos theory has been gained tremendous and 
profound developments. Fractional-order calculus is the 
mathematics study of arbitrary order derivative, integral op-
erator characteristics and applications; it is also an extension 
and promotion of integral-order calculus concepts. As the 
theory of fractional calculus widely application in a fluid 
mechanics of time-dependent, electro analytical chemistry, 
fractional model of animal nerves, modern signal analysis 
and processing, chaos phenomena in nonlinear regression 
model, molecular spectroscopy, fractional regression models 
and other areas [2], researches on the fractional calculus and 
fractional differential equations have become one of the hot 
issues in the field of applied mathematics and dynamics. 
Researchers discovered in the course of integer-order chaotic 
system, it exist richer dynamic behaviors when the system is 
fractional-order, it better able to accurately describe real-
world dynamics and the system's actual physical phenomena 
using fractional calculus operator [3]. Therefore, the study of 
fractional-order chaotic system has extremely important the-
oretical values and practical significances. 

Because of extreme sensitivity to initial conditions in the 
chaotic system, many scholars thought that it is impossible to 
achieve synchronization between two chaotic systems. Since  
 
 

 

 

Pecora and Carroll achieved synchronization within two 

chaotic systems by electronic circuits firstly in 1990 [4], 

synchronization of chaotic system has caused many scholars 

strongly concerns. Synchronization control methods have 

been proposed, such as complete synchronization [5-7], lag 

synchronization [8, 9], phase synchronization [10], anti-

synchronization [11, 12], partial synchronization [13], gen-

eralization synchronization [5, 14], impulsive synchroniza-

tion [15], projective synchronization [16, 17] and so on. Un-

til now, synchronization of chaotic systems is still a hot re-

search topic. In the hardware circuit, due to the effects of 

environment and other factors, component parameters will 

drift, small changes of system parameters can cause big 

changes in system performance. Therefore, it has important 

practical value to study on synchronization of chaotic sys-

tems with parameters uncertainty [6, 11, 12, 16, 17]. 

Strictly, the current status of any actual system is influ-

enced by past state inevitably, that is the change rate of cur-

rent state not only depends on the current state, but also the 

status of a past time, the system with this particular charac-

teristic is called lag system [5, 8, 9, 15, 18-21]. It is clear that 

lag systems are existed in a wide physical world, such as, 

biophysics, lasers, electronic oscillators, nuclear reactors, 

neural networks, population dynamics and communication 

networks [19]. The lag systems have infinite-dimensional 

state space, they can produce more positive Lyapunov expo-

nents than their dimensions, so simple structure lag systems 

also have very complex dynamical behaviors. Any signal 

transmission requires a certain time due to the limit of signal 

transmission speed, the response system usually delays the 

drive system. Therefore, research on time-delayed system 

has reality significance. 
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2. CONSTRUCTION AND CIRCUIT SIMULATION 
SYSTEM MODEL 

2.1. Construction of the New Fractional-order Chaotic 
System 

We construct a new four-dimensional chaotic system, its 
dynamic equation of state is: 
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where wzyx ,,,  are state variables, dcba ,,,  are parameters, 

iq ( 4,3,2,1=i ) are the fractional-order dimension and 

10 << iq . For the case 12,8,65.3,2 ==== dcba , we cal-

culate the Lyapunov exponents as: 0.71201 =L , 0.00412 =L , 

7.04433 =L , 12.02184 =L , and its Lyapunov dimension is: 
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Therefore system (1) has a chaotic behavior. When 

95.04321 ==== qqqq , the phase diagram of the state var-

iable trajectory as shown Fig. (1). 

The divergence of flow of the system (1) is 

dcba
z

z

y

y

x

x
V +=+++=  (3) 

When 21,8,65.3,2 ==== dcba ,

018.35 <=+ dcba . Therefore the system (1) is 

dissipative and its exponential rate is 

ttdcba ee
dt

dV 18.35)( ++
==  (4) 

That is, in the system (1), a volume element )0(V  is ap-

parently contracted by the flow into a volume element 

V (0)e-18.35t  in the time   t.  This means that each volume  

 

containing the trajectories of the system (1) shrinks to zero 

as t  at an exponential rate )( dcba ++ . Therefore, 

all the orbits of the dynamical system (1) will be eventually 

confined to a special subset that has zero volume, and the 

asymptotic motion of system (1) will settle onto an attractor 

of the system. 

2.2. Fractional-order Chaotic System Circuit Simulation 

2.2.1. Definition of Fractional Calculus and Frequency-
Domain Approximation 

The fractional-order integer differential operator [17] can 
be expressed as follow: 
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where q  is the fractional-order and )(qR  is the real of q , 
and in this paper 10 << q .  and t  are the upper and low 
limits of the integral operation. 

Many scholars propose several different definitions [3] in 
the development process of fractional calculus, and the most 
common is RL (Riemann-Liouville) fractional calculus defi-
nition, which is given by 

dq f (t)

dtq
=
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where )(  is the gamma function and nqn <1 . Upon 

considering all the initial conditions to be zero, the Laplace 

transform of the RL fractional calculus is 

{ })(
)(

tfLs
dt

tfd
L q

q

q

=  (7) 

Thus, the fractional integer differential operator q  can be 
represented by the transfer function qssH /1)( =  in the fre-
quency domain. Engineering often uses time domain and 
complex frequency domain conversion method to solve the 
fractional differential equations, Bode plot approximation  
 

 

 

Fig. (1) Chaotic attractors of the system (1). 
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method [22] based on the use of the frequency domain 
Charef et al. proposed, Ahmad et al. gave approximate trans-
fer function qsH /)0( ( 9.01.0=q step 0.1, 2dB approxi-
mation error) in frequency domain expressions [23], Li and 
Chen gave approximate transfer function qsH /)0(  ( 0.95=q , 
1dB approximation error) in frequency domain expressions 
[24]. 

2.2.2. Fractional-order Chain Circuit Unit 

Fractional equivalent circuit of the complex frequency-

domain can be achieved through chain circuit unit, A and B 

can be realized 9.0~1.0=q  (2dB approximation error, step 

0.1) and 95.0=q  (1dB approximation error) of the approxi-

mate 1/ sq  in Fig. (2a). According to circuit theory, chain 

complex frequency domain transfer function of equivalent 

circuit expression is given by 
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When 95.0=q , )(sH  approximate expression can be 

given as follow (9), and achieving 0.95/1 s  chain circuit unit is 

shown in Fig. (2b). 

H (s) =
1

s0.95

1.2831s2
+18.6004s + 2.0833

s3
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+ 2.6574s + 0.003
 (9) 

When 95.0=q , 3=n , the transfer function is given by 
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It can be calculated the element parameter values by 
comparing (10) and (9) in Fig. (2) as follows: 

= kR 1.151 , = MR 51.12 , = MR 9.6923 , FC μ616.31 = , 

FC μ602.42 = , FC μ267.13 = . 

2.2.3. The Circuit Simulation of the New Fractional-order 
Chaotic System 

Due to the allowable voltage limitations of electronic 
components, circuit experiment is required reliably, there-
fore, the output signal of the system is reduced to half of its 
original size. In accordance with the system of equation (1), 
its design of fractional-order circuit diagram is shown in Fig. 
(3a). According to the system circuit schematic diagram and 
circuit basic theory, mathematical equations can be obtained 
for the system (11). 
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(11) 

Comparing system (1) with (11) and we can obtain 
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(a) qs/1 chain circuit unit 

 

 

(b) 0.95/1 s chain circuit unit 

Fig. (2) Chain circuit unit. 
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(a) Circuit diagram 

   

(b) x-y  

 

(c) x-z  
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(d) x-w 

Fig. (3) Fractional-order chaotic circuit simulation and its phase portraits. 

 

 

Fig. (4) Chaotic attractors of system (12). 
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kRR 203212 == , kR 7221 = , R
31

= 12.5k , we obtain 

its phase portraits as shown in Fig. (3b~d) by using Multisim 

10 software to simulate system (11). Comparing with Fig. 

(1), it can be seen that circuit simulation results and numeri-

cal calculations agree well, so the fractional-order chaotic 

system circuit can be implemented by physical. 

3. FRACTIONAL DIFFERENT-LAGS CHAOTIC 
SYSTEM AND ITS ADAPTIVE TIME-DELAY SYN-
CHRONIZATION 

3.1. Fractional-order Lags Chaotic System Model 

Typically, fractional delay differential equation can be 
described as 

)),(),(()),(),(( ttXtXfpttXtXFXD ii
q
ta +=  (12) 

where nT
n RtxtxtxX = ))(,),(),(( 21 is the system state vari-

ables, mnn RRF :  is a linear function, nn RRf :  is a 

nonlinear function, mRp  is a linear parameter vector of the 

system, 0>i ),,2,1( ni =  are the lags system constants. 

The system (12) as the drive system, if it participates in 
synchronization controller )(tU , the system response is ob-
tained as follow: 

)()),(
~

),(
~

(~)),(
~

),(
~

(
~

tUttXtXfpttXtXFXD ii
q
ta ++=  (13) 

where nT
n RtxtxtxX = ))(~,),(~),(~(

~
21  is the system state var-

iables, mRp~  is a linear unknown parameter vector of the 

system, nT
n RtutututU = ))(,),(),(()( 21  is the synchroniza-

tion controller. 

3.2. Fractional Different-lags Chaotic System and its Cir-
cuit Simulation 

3.2.1. Fractional-order Different-lags Chaotic System 

According to (12), the dynamic lags equation of the sys-
tem (1) as follow: 
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When 
  
q

1
= q

2
= q

3
= q

4
= 0.95 ,   a = 2 , b = 3.65 ,   c = 8 , 

  d = 12 , 
 1

= 0.03,
2

= 0.02 , 
 3

= 0.01,
4

= 0.08 , the largest 

Lyapunov exponent of the system (14) is 3.6532, clearly 

greater than the system (1), indicating that the system (14) 

has a more complex nonlinear dynamical behaviour. The 

phase diagram of the state variable trajectory as shown Fig. 

(4).  

3.2.2. Circuit Implementation of the Time Delay Unit 

A circuit implementation of the delay unit is shown in 
Fig. (5). This is a network of T-type LCL filters with match-
ing resistors of the circuit unit. The time delay  can be ap-
proximated by 

LCn 2  (15) 

where n  is the number of the LCL filter and 1n . Low-

pass filter network is limited by signal frequency, the delay 

circuit unit cut-off frequency below 100 with smooth fea-

tures. When the noise frequency and the signal frequency are 

near, single-stage filter fails to achieve the desired effect. It 

needs to use multiple filters to prevent noise interference, 

and located between the input and output 01=n  groups T-

type filter, match port configuration resistors 

== kRR 14329
 and passband characteristic impedance is 

constant, and = kR 2245
, 

373533 RRR ==  = k10  are 

chosen in this circuit. When the values of the time delay 

)4,3,2,1( =ii
 are 

1
= 0.03,

2
= 0.02,

 3
= 0.01,

4
= 0.08,  

the value of capacitance and inductance of each time 

 

delay circuit unit can be calculated respectively 1mH, 4.5nF; 

1mH, 2nF; 1mH, 0.5nF and 1mH, 32nF according to (15). 

3.2.3. Fractional-order Different-lags Chaotic System Cir-
cuit Design and its Circuit Simulation 

When 95.04321 ==== qqqq , 2=a , 65.3=b , 8=c , 

12=d , ,02.0,30.0 21 == 0.08,10.0 43 == , in accordance 

with the system of equations (14) design of fractional-order 

different-lags circuit diagram as shown in Fig. (6a), and the 

circuit simulation experimental results as shown in Fig. (6) 

b~d. Compared with Fig. (5), it can be seen that circuit simu-

lation experimental results and numerical results agree well, 

so the fractional-order different-lags chaotic system circuit 

can be implemented on the physical. 

3.3. Adaptive Synchronization in Time-delayed Design of 
the Fractional Different-lags System 

Synchronization in time-delayed refers the state of the 

drive system after a fixed period of time  to the state of the 

response system, drive system tends to become synchronized 

with the response system finally. 

The system (14) corresponds to the fractional different-
lags system of delay-time as follow: 

  a
D
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),t ) p
 

)),(),((+ ttXtXf i
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X (t ) = (x

1
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2
(t ), ,x

n
(t ))T , 0>  

is delay-time constant. 

Let e(t) = X X (t ) , 
   
e

p
(t) = p(t) p . Therefore the 

error equation can be written as  
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Fig. (5). Circuit implementation of the time delay unit. 
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(d) x-w 

Fig. (6) Different-lags chaotic system circuit simulation and its phase portraits. 

 

 

 The system error equations curves 

 

 The identification of the unknown parameters curves 

Fig. (7) Adaptive synchronization simulation result in time-delayed design of the fractional different-lags system. 

 

Theorem 1. If the synchronization controllers are de-
signed as 

   

U (t) = Ke(t) + f ( X (t ), X (t
i

),

t ) f ( X (t), X (t
i
),t)  

+(F(X (t ), X (t
i

),t ) F(X (t),

X (t
i
),t))p(t)

 (18) 

and the unknown parameter p~  meets the parameter adaptive 
laws as 
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)()),(),(()( tettxtxFteD i

T

p
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ta =  (19) 

where T

ikkkK ],,,[ 21=  is a positive vector of the control-

lers. If nEK  is a positive definite matrix, the response of 

the system (13) and the drive system (16) tend to be syn-

chronized, that is 0)(lim =te
t

, where E  is a identity matrix, 

n  is the dimension of the system (14). 

Proof. Substituting (18) into (17) yields 
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 (20) 

Construct the following Lyapunov-krasovskii functional: 
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Substituting (19) into (22) yields 
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Since nEK  is a positive definite matrix, thus 

  a
D

t

qV (t) 0 , obviously 0)(tV , so 0)(lim =te
t

. Therefore 

the response of the system (13) and the drive system (16) 

tend to be synchronized. 

3.4. Numerical Simulation 

According to (16), the drive system the system (14) with 

delay-time  is 
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4
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(24) 

And according to (13), its response system is 
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where, x~ , y~ , z~  and w~  are the system state variables, a~ ,

b
~

, c~ and d
~

 are unknown parameters of the system, 

  i
> 0(i = 1,2,3,4.)  are the lags system constants, 

  
u

i
(t)(i = 1,2,3,4)  are the synchronization controllers. 

Let the system error equations are 
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According to Theorem 1, the synchronization in time-
delayed controllers are designed as 

++

++=

+

+=

++

+=

++

+=

))()(~(
~

)(~)(

)(~)()(~)()()(

))()(~(~
)(~)(~)()()()(

))(~)((
~

)(~2)(2

)(~)(~)()()()(

))()(~(~)(~)(

)(~)(~3)()(3)()(

44

444

33

333

22

222

11

22

111

twtwdtztz

tytytxtxtektu

tztzc

tytxtytxtektu

tytybtwtw

tztxtztxtektu

txtxatyty

tztytztytektu

 (27) 

And the unknown parameters adaptive laws as 
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where TkkkkK ],,,[ 4321=  is a positive vector of the control-

lers. Therefore the response system (25) and the drive system 

(24) tends to be synchronized, that is, 

  
lim
t

e
i
(t) = 0(i = 1,2,3,4). When 

  
q

1
= q

2
= q

3
= q

4
= 0.95 , 

2=a , b = 3.65 , 8=c , 12=d , 
 1

= 0.03,
2

= 0.02,  
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3
= 0.01,

4
= 0.08 ,  = 2 . The initial values for the drive 

system (24) and the response system (25) are given as 

]1,2,2,4[  and ]1,3,1,1[ . The initial values for the un-

known parameters adaptive laws and the parameters of the 

controllers K  are ]4,3,2,1[  and T]5,5,5,5[ . Fig. (7) ( ) 

shows the system error equations, and Fig. (7) ( ) shows the 

identification of the unknown parameters. 

Simulation results show that the proposed method in ac-
cordance with the design of synchronous controllers and 
adaptive laws can make the response system (25) and the 
drive system (24) tend to be synchronized, it demonstrates 
that the design method is effective. Further analysis showed 
that reaches the required to synchronize the system time with 
the initial value of the parameter, the delay time, and control 
the size of the parameter are closely related, due to space 
limitations, it isn’t detailed discussion in the paper. 

CONCLUSION 

A novel four-dimensional fractional-order chaotic system 
is constructed. Numerical simulation and circuit experiment 
show that there exist chaotic behaviors and demonstrate that 
the new chaotic system can be implemented on the physical. 
For a class of parameter uncertainty fractional different-lags 
chaotic systems, this paper designs synchronization in time-
delayed controllers and adaptive laws, and it proved that the 
drive system and the response system tend to be synchro-
nized, when the control parameter matrix K satisfies certain 
conditions. The numerical simulations show that it is univer-
sality and effectiveness of different-lags synchronization in 
time-delayed system method design. 
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