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Abstract: The Tuberous Sclerosis complex (TSC) integrates metabolic and growth signals. Recent data demonstrate that 

this pathway is a major player in regulation of metabolism and energy balance. In this review, we will focus on the role of 

TSC in modulation of -cell mass and function. 
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 The capacity of -cells to adapt to stress conditions is a 
major factor for the development of diabetes. Type 1 
diabetes is characterized by autoimmune destruction of -
cells. In contrast, in physiologic and pathologic states of 
nutrient excess and increased insulin demand pancreatic -
cells adapt by expanding function and mass. -cell responses 
to nutrient excess occur by several mechanisms, including 
hypertrophy and proliferation of existing -cells, increased 
insulin production and secretion, and formation of new -
cells from progenitor cells. Failure of the pancreatic -cells 
to adequately adapt and expand in settings of increased 
insulin demand leads to hyperglycemia and type 2 diabetes. 
The signals driving the adaptation of -cells during the 
different stages of type 2 diabetes are not completely 
understood, but growth factors including insulin and 
nutrients are involved. Insulin, as well as other growth 
factors, glucose and certain amino acids are known to 
regulate -cell mass and function. Work form multiple 
laboratories have identified IRS/PI3-kinase/Akt signaling as 
a major component linking growth factor insulin and 
incretins signaling to the regulation of -cell mass. 
Downstream of PI3K/Akt, the TSC (Tuberous Sclerosis 
Complex) is an important component in this process because 
it integrates signals from both growth factors and nutrients. 
Recent reports have identified a critical role for the 
TSC/mammalian target of rapamycin (mTOR) pathway on 
whole body metabolism. In this review we will focus on the 
evidence indicating the importance of TSC and downstream 
events in modulation of -cell mass and function. 

TSC1/TSC2 INTEGRATES GROWTH FACTOR AND 
NUTRIENT SIGNALS 

 The tumor suppressor genes, TSC1 and TSC2, are 
involved in regulation of cell growth [1] and proliferation [2-
4]. Although TSC1/TSC2 are present in most eukaryotes 
they are not present in the yeast S. cerevisiae, and  
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C. elegans. TSC1 consists of 21 exons [5] and encodes for 
Hamartin. The major function of TSC1 is to stabilize TSC2 
and prevent its ubiquitin-mediated degradation [6, 7]. TSC2 
has 41 exons and encodes for Tuberin. TSC2 contains the 
GTPase activating function (GAP activity) of the TSC1-
TSC2 complex (Fig. 1). The two proteins form a ubiquitous 
cytoplasmic heterodimer called Tuberous sclerosis complex 
(TSC). This complex acts as a functional inhibitor of mTOR. 
Studies in human, mice, Drosophila and yeast models 
strongly suggest that their gene products are interdependent 
and that these proteins function primarily as a complex. 
Mutations of TSC lead to Tuberous Sclerosis, an inherited 
autosomal dominant pathology with a high penetrance. The 
symptoms range from hypo-pigmented skin to epilepsy, 
severe mental retardation, to renal failure. Mutation of both 
alleles of TSC1 or TSC2 in affected tissues leads to the 
development of tumor-like hamartomas in various organs 
[8]. Deletion of one allele of either gene leads to similar 
pathology with increased incidence of tumors [9, 10]. 
Homozygous global deletions of TSC1 or TSC2 are 
embryonic lethal [10, 11]. 

 mTOR positively regulates anabolic processes that 
include transcription, protein synthesis (translation or post-
translational events), ribosome biogenesis, nutrient transport, 
and mitochondrial metabolism. On the other hand, TOR 
negatively regulates catabolic processes such as mRNA 
degradation, ubiquitin-dependent proteolysis, autophagy, and 
apoptosis [12]. Besides its functions in the regulation of 
protein synthesis, cell growth and proliferation, mTOR is 
also implicated in transcriptional regulation in response to 
nutrients and stress by controlling the phosphorylation and 
cellular localization of various transcription factors [13-17]. 
mTOR protein kinase is found in two functionally and 
structurally separate complexes: mTOR complex 1 
(mTORC1) is rapamycin sensitive and controls cell growth. 
It is composed of TOR bound to Raptor (regulatory 
associated protein of mTOR), mLst/G L and proline-rich 
PKB/Akt substrate 40 kDa (PRAS40) (Fig. 1) [18, 19]. On 
the other hand, mTORC2 (mTOR complex) 2 is not 
regulated by the TSC1-TSC2 complex and is unaffected by 
rapamycin except that prolonged exposure to the compound  
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Fig. (1). Schematic diagram of TSC activation and signaling. TSC/mTOR signaling can be activated by insulin, growth factors and 

nutrients. Activation of insulin and growth factor receptors is mediated by Akt signaling. A critical step leading to activation of Akt is 

the generation of phosphatidylinositol (3,4,5) P3 phosphate (PIP3) by Phosphoinositide 3-kinase (PI3K). PIP3 binding to the Pleckstrin 

homology-domain (PH) of Akt/PKB and phosphoinositide-dependent kinase-1 (PDK1) recruits these proteins to the
 
plasma membrane 

favoring phosphorylation of T308 (309 in AKT2 and 305 in AKT3). Phosphorylation of S473 by the mTORC2 

(mTor/Rictor/G L/mSin/PRR5) complex is necessary for full activation of Akt. The inactivation of Akt/PKB signaling is mediated by 

protein phosphatase 2A (PP2A) and the  isoform of PH-domain leucine-rich repeat phosphatase (PHLPP)-mediated dephosphorylation of 

T308 and S473 respectively. Akt/PKB activity is also negatively regulated by the dephosphorylation of PIP3 molecules by the phosphatase 

and Tensin homologue deleted on chromosome 10 (PTEN). Another level of regulation is achieved by binding to Akt-interacting proteins 

that lack significant kinase activity like the mammalian homolog of Drosophila Tribbles (TRB3) among others. Recent evidence suggests 

that increased mTORC1 (mTOR/Raptor/G L) signaling inhibits insulin signaling by phosphorylation of IRS1 and possibly IRS2 in a 

ribosomal S6 kinase (S6K)-dependent manner. Akt phosphorylates TSC2 and disrupts the complex. The disruption of the complex inhibits 

the GTPase activating function (GAP activity) of the TSC1-TSC2 complex towards Rheb and favors the GTP bound form of Rheb (active). 

Active Rheb phosphorylates and activates the rapamycin sensitive mTORC1 (composed of TOR bound to Raptor, mLst/G L and proline-

rich PKB/Akt substrate 40 kDa (PRAS40)). Akt can also activate mTORC1 by phosphorylation and inhibition of PRAS40. Active mTORC1 

phosphorylates and activates S6K. In addition, phosphorylation of the complex eIF4E-4E-BP by mTORC1 at multiple sites leads to 

dissociation of eIF4E from 4E-BP leading to protein synthesis. Additional mTORC1 targets include ATG1, PPAR , PGC1  and HIF-1. 

Glucose can indirectly modulate mTORC1 by inhibiting AMPK activity. Amino acid activation of mTORC1 is more complex and includes 

the Rag GTPases. Rag GTPases are involved in transporting mTORC1 to facilitate the ability of Rheb-GTP to activate mTORC1. Stress 

conditions such as hypoxia can regulate TSC complex through REDD1/2. Finally, mTORC2 is not regulated by the TSC complex and is 

involved in multiple biological processes that include actin cytoskeleton remodeling, survival and vesicle trafficking. 
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may inhibit mTORC2 in a subset of cancer cells [20]. It is 
composed of TOR linked to Lst8/G L, Rictor (rapamycin-
insensitive companion of mTOR) [21], PRR5 (proline-rich 
protein 5) and mSIN (stress-activated-protein-kinase-
interacting protein 1) (Fig. 1) [22-25]. All the components of 
this complex are essential since deletion of any of the 
partners results in embryonic lethality. This complex 
regulates Actin cytoskeleton remodeling and certain AGC 
kinases such as Akt by phosphorylation on Ser

473
 [22] and 

PKC  [12, 14, 15, 21, 24-27]. Since there is no strong 
evidence linking TSC to regulation of mTORC2, we will 
focus our discussion on mTORC1. 

UPSTREAM SIGNALS OF TSC1/TSC2/MTORC1 

 The TSC1/TSC2 complex is often seen as a traditional 
target of Akt/PKB (reviewed in [26], but a diverse range of 
additional regulating kinases have since been identified and 
now over thirty different proteins are known to interact with 
TSC (reviewed in [28]). Under normal conditions, the TSC1-
TSC2 complex serves as a GAP activity towards Ras 
enriched in brain tissue (Rheb), favoring the GDP-bound 
form of Rheb (inactive) (Fig. 1) [29]. Upon stimulation with 
growth factors or insulin, Akt/PKB will inhibit the TSC 
complex by phosphorylating TSC2 on four different residues 
(Ser

939
, Ser

1086
, Ser

1088
 and Thr

1422
 [30-32]). The mechanisms 

responsible for activation of Rheb by Akt are not completely 
understood but TSC2 phosphorylation by Akt dissociates the 
TSC1-TSC2 complex resulting in derepression of Rheb and 
up regulation of mTORC1 [29, 30, 32-37]. Modulation of 
FoxO1 and GSK3  are two additional downstream Akt 
regulatory molecules affecting the stability of the TSC 
complex. Mutation of all the Akt phosphorylation sites on 
FoxO1 facilitates its binding to TSC2 and stabilizes the TSC 
complex (Fig. 1), suggesting that this is an additional 
mechanism whereby Akt can modulate TSC signaling [38]. 
GSK3  is one of the main effectors of the Wnt signaling 
pathway and is also inactivated by Akt. When active, GSK3  
phosphorylates and activates the GAP function of TSC2 in 
an AMPK-dependent manner [39]. 

 Recent studies identified a TSC complex-independent 
activation of mTORC1 by Akt signaling. This mechanism 
implicates the PRAS40 protein [19]. In response to growth 
factors, Akt phosphorylates and inhibits PRAS40, releasing 
the inhibition on mTORC1. 

 The insulin and growth factor receptors can also activate 
the Ras/MAPK pathway independently of IRS. Erk-
dependent phosphorylation of TSC2 leads to the dissociation 
of the TSC1-TSC2 complex and activation of mTOR 
signaling [40]. Erk also activates p90 Ribosomal S6 Kinase 1 
(Rsk1), which in turn phosphorylates TSC2 at Ser

1798
, further 

inhibiting the formation of the TSC complex [41]. 
Additional growth factor-independent pathways can also 
regulate TSC. AMP-activated protein kinase (AMPK) is an 
energy sensor and a potent activator of the TSC complex. 
AMPK can prime TSC2 at Ser

1345
, allowing subsequent 

activating phosphorylation by GSK3  [39]. In conditions of 
low energy, AMPK is activated resulting in activation of the 
TSC complex and suppression of protein synthesis. 

 The signaling events relating the effect of amino acids to 
different biological responses include mTORC1. Amino 
acids are important regulators of TORC1 activity, although 

the mechanism responsible for this activation is not as well 
characterized as the regulation by insulin or growth factors. 
Rag GTPases have been identified as important regulators of 
this process by transporting mTORC1 to an ill defined 
location and facilitating the ability of Rheb-GTP to activate 
mTORC1 (Fig. 1) [42, 43]. Ste20-related kinase, MAP4K3 
and the class III PI3K mVps34 have also been implicated as 
mediators of amino acids signaling to mTOR [44-46]. 
Amino acids have been recognized as potent signaling 
mediators in pancreatic -cell function. In addition to their 
role in regulating insulin and glucagon secretion [47, 48], 
they also have been implicated in modulation of -cell 
proliferation [49]. In vitro studies on primary islets have 
further demonstrated how amino acids modulate -cell 
replication [50-53]. Among all amino acids, leucine, in the 
presence of glutamine, exerts the strongest effect on 
mTORC1 [54]. The importance of amino acids has also been 
emphasized in different animal models of malnutrition [55]. 
Maternal undernutrition during gestation results in fetuses 
with intrauterine growth retardation that leads to decreased 

-cell mass by low proliferation rates and impaired glucose 
metabolism that persist during adult life [55]. Finally, stress 
and hypoxia also act as growth and protein synthesis limiting 
factors through the activation of the regulated in 
development and DNA damage responses protein 1 
(REDD1), REDD1 enhances TSC2 activity leading to 
inhibition of Rheb. Deletion of REDD1 demonstrated that 
this protein was key in the regulation of S6 ribosomal kinase 
(S6K) through TSC under hypoxic conditions, for instance 
[56, 57]. 

DOWNSTREAM SIGNALS OF MTORC1 

 Activation of mTORC1 signaling leads to increased 
translation, including the synthesis of secreted proteins. 
mTORC1 constitutes the rapamycin-sensitive arm of mTOR 
signaling and phosphorylates and modulates the activity of 
ribosomal S6 kinase 1 and 2 (S6K1 and 2) and eukaryote 
initiation factor 4E binding protein 1 and 2 (4E-BP), key 
regulators of protein translation, cell growth and 
proliferation (Fig. 1). 

REGULATION OF -CELL MASS AND FUNCTION 
BY TSC1/TSC2 SIGNALING 

 TSC2. The direct implication of TSC2 in the regulation 
of -cell mass and carbohydrate metabolism in vivo was 
demonstrated through two independent genetic models of 
conditional deletion of TSC2 by crossing mice carrying a 
TSC2 floxed allele with mice in which Cre expression is 
under the control of the Insulin promoter (RIP-Cre) [58, 59]. 
Mice with a conditional deletion of TSC2 in -cells 
displayed decreased glucose levels and hyperinsulinemia in 
the fasting and fed state. These changes were associated with 
improved glucose tolerance that was maintained with aging. 
As a result of the absence of TSC2, the phosphorylation of 
the downstream targets of mTORC1, S6K, S6 and 4E-BP 
was significantly increased and -cells grew both in size [59] 
and number [58]. In a separate report, Shigeyama et al. 
demonstrated that conditional TSC2 deletion in -cells 
exhibited a similar phenotype including lower glucose levels, 
hyperinsulinemia and improved glucose tolerance during the 
first 30 weeks of life. These metabolic changes were 
associated with increased -cell mass and cell size. 
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Interestingly, at 40 weeks of age these mice developed 
progressive hyperglycemia and hypoinsulinemia 
accompanied by a reduction in -cell mass. Both of these 
studies did not evaluate the effect of TSC2 deletion in -cells 
during developmental stages. The differences in glucose 
phenotype between these reports are most likely explained 
by different genetic backgrounds of the floxed TSC2 mice 
and the use of different RIP-Cre lines. 

 TSC1. Most recently, the importance of TSC1 in 
metabolism and -cell mass and function has been 
investigated. Since complete inactivation of TSC1 in mice is 
embryonic lethal [10, 11, 60], the investigation of the 
importance of this protein in the pancreas has been studied 
by conditional deletion of TSC1 in pancreatic -cells using 
the RIP2-Cre transgenic mice [61, 62]. Given that TSC1 and 
TSC2 products are interdependent and these proteins 
function primarily as a complex, it was expected that 
conditional deletion of TSC1 in -cells would produce a 
similar phenotype to that observed with TSC2. Interestingly, 
these mice exhibited hyperphagia, obesity and insulin 
resistance that could be explained by the deletion of TSC1 in 
the hypothalamus due to the ectopic expression of the Rip2-
Cre transgene [62]. The energy balance phenotype was 
associated with hyperglycemia and reduced -cell mass after 
12 weeks of age. Examination of the -cell phenotype in 
younger mice demonstrated that these mice had lower 
glucose levels and improved glucose tolerance that was 
associated with a modest increase in total -cell area and 
individual cell size. Although some evidence suggest that 
mTORC1 is involved in insulin mRNA translation [63], the 
effect on insulin synthesis by activation of mTOR signaling 
requires further pulse labeling experiments and detailed 
assessment of insulin content per cell should be performed to 
demonstrate this action of mTOR. 

 Rheb. In addition to deleting the components of the TSC 
complex, mTOR could also be induced by overexpression of 
Rheb. This strategy was evaluated by overexpressing Rheb 
in transgenic mice using the rat insulin promoter [64]. These 
mice exhibited improved glucose tolerance and lower 
glucose levels. The glucose-stimulated insulin secretion was 
increased as a result of elevated -cell mass. In this model 
most of the changes in mass appear to be caused by 
increased cell size. Moreover, Rheb transgenics were more 
resistant to obesity- and streptozotocin-induced diabetes 
[64]. 

 mTORC1. The role of mTORC1 in -cells has been 
explored by in vivo and in vitro experiments using 
rapamycin. Rapamycin treatment of human and rodent islets 
inhibited 

3
H Thymidine incorporation and cell cycle 

progression suggesting that mTORC1 regulates growth and 
proliferation of -cells in vitro and in vitro [49, 53, 65-67]. 
Rapamycin has also been used in vivo in different settings. 
Rapamycin treatment resulted in reduced -cell proliferation 
but not function in a pregnancy model [65]. Administration 
of rapamycin to Psammomys obesus, an animal model of 
type 2 diabetes, significantly worsened the diabetic 
phenotype as a result of insulin resistance, reduction of -
cell mass and increased apoptosis [68]. These studies suggest 
that mTORC1 regulates -cell mass in adaptation to signals 
that induce -cell mass such as insulin resistance. A more 
direct effect of mTORC1 in -cells comes from the use of 

rapamycin in animal models with conditional activation of 
mTOR signaling in -cells. Inhibition of mTORC1 by 
rapamycin treatment decreases the -cell mass expansion 
and cell size of mice with deletion of TSC2 or TSC1 [58, 64, 
69]. Similar findings were observed in transgenic mice 
overexpressing Rheb treated with rapamycin. These changes 
were accompanied by reversion of improved glucose 
tolerance and hyperinsulinemia. While the reversal of the 
metabolic phenotype in these models could be explained by 
changes in -cell mass, it is also possible that inhibition of 
mTORC1 could alter insulin secretion. It is important to note 
that the contribution of proliferation to augmented -cell 
mass has not been reproduced in all the models of genetic 
activation of mTORC1 signaling [64]. The explanation for 
this is unclear but it is possible that there are different 
downstream targets for TSC1, TSC2 or Rheb. Most recently, 
inhibition of mTORC1 by rapamycin reduced proliferative 
responses induced by conditional activation of Akt signaling 
[70]. More importantly, these studies demonstrated that 
activation of mTORC1 induces cyclin D2 and D3 levels. The 
changes in cyclin D2 levels resulted from regulation of 
cyclin D2 synthesis and stability [71]. A potential limitation 
of these studies is that different rapamycin protocols have 
been used and that this agent can induce systemic insulin 
resistance making it difficult to interpret some of the specific 
alterations in -cells. Further experiments using mice with a 
conditional deletion of raptor will elucidate the role of 
mTORC1 in -cell mass and function. 

 S6K. The ribosomal protein S6 kinase (S6K) is described 
as a regulator of cell growth, protein translation and 
proliferation [72]. S6K1 and S6K2 are the products of 
alternative splicing of a single transcript and both proteins 
exist in two forms (short and long). Only the short form of 
S6K1 (p70

S6K1
) is cytoplasmic. The activity of S6K1 is 

regulated by both mTORC1 and PDK1. Several downstream 
targets of S6K have been identified. S6K1 and S6K2 
regulate the 40S ribosomal protein S6, the elongation 
initiation factor 4B (eIF4B), SKAR and the elongation factor 
2 kinase (eEF2K) [35]. S6K1 and S6K2-mediated 
phosphorylation is required for full activation and 
subsequent induction of the 40S ribosomal protein S6. S6 
can then induce cell growth and proliferation. S6K also 
negatively regulates IRS1 and 2, therefore inactivating the 
PI3K signaling pathway [16, 73-76]. The importance of S6K 
signaling in -cells has been assessed in genetically modified 
models. S6K1-deficient mice are viable and fertile and only 
present mild phenotypes during development because of a 
concomitant increase in S6K2 [77, 78]. Mice deficient in 
S6K1 further display glucose intolerance and 
hypoinsulinemia with impaired insulin secretion. The 
pancreatic -cells displayed a reduced size and decreased 
insulin transcription. This study demonstrated the 
importance of S6K1 in regulating glucose homeostasis as 
well as cell growth. Interestingly, when placed on a special 
diet, S6K1-deficient mice were resistant to age and high fat 
diet-induced obesity. These animals remained insulin-
sensitive due to the loss of the negative feedback loop from 
S6K on IRS1 and IRS2. These results and studies from other 
groups suggest an in vivo role for S6K in desensitizing 
tissues to insulin [16, 75, 76]. Although the significance of 
this feedback regulation on IRS1 has recently been 
questioned [79]. In contrast, S6K2-deficient mice are 
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phenotypically similar to the control, suggesting that S6K1 
might be more important than S6K2 in glucose homeostasis 
[80]. Recent findings also showed that S6K is important for 
insulinoma formation induced by activation of Akt signaling, 
implicating this kinase in regulation of -cell cell cycle 
progression [81]. Less is known about the signaling events 
downstream of S6K. The importance of ribosomal S6 protein 
was assessed by knock-in mice, whose rpS6 contains alanine 
substitutions at all five phosphorylatable serine residues [82]. 
These mice exhibit impaired glucose tolerance, lower insulin 
levels and increased insulin sensitivity. The pancreatic 
insulin content was reduced in these mice and this finding 
was not associated with alterations in -cell mass implying 
an effect of S6 protein on insulin synthesis. The similarity of 
this phenotype with that of S6K deficient mice suggests that 
ribosomal S6 protein is a critical substrate in relating 
metabolic signals from S6K. 

 4E-BP/EIF. The 4E-BP proteins are repressors of the 
translation initiation factor 4E (eIF4E) and therefore inhibit 
protein translation. Phosphorylation of the eIF4E-BP 
complex by mTORC1 at multiple sites leads to dissociation 
of eIF4E from 4E-BP allowing its binding to eIF4F and 
eIF4G. This promotes the translational machinery of 
mRNAs with high 5 -UTR secondary structures, such as 
those that encode ribosomal proteins, elongation factors and 
other proteins involved in the assembly and function of the 
translational machinery [83-85]. The combined disruption of 
4E-BP1 and 4E-BP2 in mice increased their sensitivity to 
diet-induced obesity by accelerated adipogenesis. The 
animals displayed increased insulin resistance associated 
with increased ribosomal protein S6 kinase (S6K) activity 
and impaired IRS2/Akt signaling in peripheral tissues. 
Unfortunately, the -cell phenotype of these animals was not 
analyzed [86]. Most recent experiments have revealed an 
important role for 4E-BP in protection against endoplasmic 
reticulum (ER) stress in -cells. These studies demonstrated 
that 4E-BP1 expression was increased in islets under ER 
stress in several mouse models of diabetes [87]. The 
induction of 4E-BP1 levels resulted from direct 
transcriptional activation of the Eif4E-BP1 gene. Most 
importantly, islets from 4E-BP1 null mutant mice were more 
susceptible to ER stress-induced apoptosis suggesting that 
4E-BP1 could be a survival factor for -cells. 

CONCLUDING REMARKS 

 The current evidence suggests that the TSC/mTORC1 
signaling pathway plays a critical role in regulation of 
metabolism and energy balance. In particular, this signaling 
pathway is responsible for relating metabolic and growth 
signals to modulate -cell mass and function in vivo. Future 
experiments are needed to determine the specific role of the 
different components of the pathway in the modulation of 
cell size, proliferation, energy balance, mitochondrial 
function and -cell mass, proliferation and insulin secretion. 
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