Can Conventional Risk Factors Explain Excess Coronary Artery Disease Risk in South Asians: Dyslipidemias and Dysfunctional High Density Lipoprotein (HDL)

Sunita Dodani*

Center for Outcome Research and Education (CORE), Department of Internal Medicine, School of Medicine, Kansas University Medical Center, Wescoe Room # 4008, 3901 Rainbow Blvd., MS 1022, Kansas City, KS 66160, USA

Abstract: Over the past several years, the overall prevalence and incidence of cardiovascular diseases in general and coronary artery diseases (CAD) in particular have declined in the United States (US). However, among South Asian in general and South Asian immigrants in particular, a disturbing trend toward high rates of CAD has been noted. This trend is associated with a high prevalence of conventional risk factors and metabolic syndrome in this population, yet these conventional risk factors may not account for the greater CAD risk among SAIs. A search for additional markers is warranted, to enable early detection and prevention of CAD in this high risk group. High density lipoprotein (HDL) is one of the predictor of CAD and is considered to be cardio-protective. However, some of the recent studies have shown that HDL is not only ineffective as an antioxidant but, paradoxically, appears to be pro-oxidant, and has been found to be associated with CAD. Such HDL is called dysfunctional HDL. More research is required in South Asians to explore associations with CAD and to enhance early detection and prevention of CAD in this high risk group. We present here an overview on risk factors of CAD in general and dyslipidemias in particular in South Asians. In addition, concepts on dysfunctional HDL and its impact on CAD are also presented. At the end, recommendations are made to improve and prevent CAD morbidity and mortality in the South Asian communities.

INTRODUCTION

Among cardiovascular diseases, coronary artery disease (CAD) is the leading cause of death in the United States (US), and certain populations, such as South Asians, African Americans, and Hispanics, carry a disproportionately larger burden of CAD [1-3]. Even though CAD event rates have decreased by 50% in the US and other developed countries over the past 30 years, rates have doubled in South Asians—people with ancestors from the Indian subcontinent (i.e. India, Pakistan, Bangladesh and others), and have risen even more among South Asians who immigrate to the US [2]. The mortality rates from CAD in South Asians are reported to be two to three times higher than those for Caucasians, irrespective of gender, religion, social class, dietary practices or country of residence [3, 4]. This higher prevalence is seen in South Asians living in the United States, as well as, in those living in India, and rates are similar among vegetarians and non-vegetarians [3-8]. South Asian Indian women in California have the highest death rate from CAD in the United States, higher than Caucasians, Blacks, Hispanics, and Native Americans [9]. Specifically, 33% of all deaths among Indian women are due to CAD compared with 11% among Japanese, 16% among Chinese, and 20% among Hispanics, Blacks, and Caucasians [9]. In California, South Asian immigrants have the highest rate of hospitalization for CAD, and Chinese have the lowest rate. Intermediate rates have been reported for Caucasians, Japanese, and Filipinos [9].

The high rates of CAD among South Asian immigrants are not limited to the United States and appear to be part of a global phenomenon [10]. Further, CAD risk factors are present in South Asians at a younger age compared to other populations, resulting in CAD at a younger age than in other populations [3]. The reasons for early development of CAD risk factors at a relatively young age in South Asian immigrants are still unclear.

More than 3.6 million South Asians live in the United States, and although this group represents the second fastest growing Asian immigrant population, little is known regarding their increased risk for CAD [2]. There has been much speculation about what causes the increased occurrence of and mortality from CAD in South Asian immigrants. Differences in CAD and stroke mortality between South Asians in other countries and those in South Asian countries could be due to either the effect of a new environment triggering latent susceptibilities that weren't triggered in the home country, or merely an effect of environmental and behavioral changes due to immigration on the incidence of these diseases. Not uniform groups, South Asians include ethnic subgroups with different cultures and practices, and the prevalence of recognized risk factors for CAD varies among the subgroups [8, 10-12]. As a whole, however, South Asians and South Asian immigrants have a much higher prevalence of diabetes, insulin resistance, central obesity, dyslipidemias (increased lipoprotein [a], higher triglycerides), increased thrombotic tendency (increased plasminogen activator inhibitor-1 and decreased tissue plasminogen activator levels), decreased levels of physical activity, and lower birth weights, commonly known as "fetal origins hypothesis syndrome" [3, 8, 11-17].

*Address correspondence to this author at the Department of Internal Medicine, School of Medicine, Kansas University Medical Center, Wescoe Room # 4008, 3901 Rainbow Blvd., MS 1022, Kansas City, KS 66160, USA; Tel: 913-588-4765; Fax: 913.588.3995; E-mail: sdodani@kumc.edu
The higher CAD risk in South Asians may be related to a higher prevalence of metabolic syndrome which has become increasingly common among South Asian immigrants [16, 18, 19] as compared to other populations (Fig. 1). However, even taking these differences into account, classical risk factors may not fully explain the increased risk for CAD in South Asians [3, 17-19]. Furthermore, conventional risk factors, insulin resistance parameters, metabolic syndrome may not account for the increased risk in South Asian immigrants [9, 17-20].

The CAD rates in the US, Australia, Canada, France, Japan, and Finland [14] have declined to half over the past 30 years (Fig. 1). These vast reductions in CAD mortality are generally attributed to nationwide changes in specific risk factors that were identified through epidemiological research and addressed through population-based interventions [21-23]. Reduction in risk factors explains most of the decline with modest contributions from advances in treatment [24-28]. Ironically, during this time, the CAD rates doubled in South Asian immigrants, and the impact of risk factors and genetic susceptibility appears to be greater in this population compared to others, making South Asian immigrants a high risk group [29]. Migration is an important factor in determining the increased risk of CAD; however, other migrating populations (e.g. Afro-Caribbean) do not have an increased risk of CAD compared with the indigenous population [13]. Thus, other specific factors must apply to this high risk population.

DYSLIPIDEMIAS IN SOUTH ASIANS

Among numerous genetic and lifestyle parameters, dyslipidemias are one of the most prominent risk factors for CAD. Epidemiological studies have identified low-density lipoprotein (LDL) and high-density lipoprotein (HDL) as independent risk factors that modulate CAD risk [30, 31]. Though the primary goal is to reduce LDL levels, however HDL cholesterol levels are among the most predictive risk factors for CAD [30, 31]. A growing body of experimental evidence suggests that augmenting the levels or function of HDL and its apolipoproteins can have major vascular protective effects ranging from prevention to stabilization and regression, independent of total or non-HDL cholesterol levels [24-28]. The National Cholesterol Educational Program Adult Treatment Panel III (NCEP ATP III) guidelines clearly define an HDL level of < 40 mg/dl as an independent risk factor for CAD, and low HDL is often present in high-risk patients with CAD [30-32]. Although an inverse relationship between HDL and risk of acute myocardial infarction is highly significant, the relationship is far from perfect.

South Asian, in general tend to have higher triglycerides, lower HDL, and higher Lipoprotein a (Lpa) levels [33]. However, few recent studies on South Asian immigrants in the US showed that the average HDL level in both men and women was either normal or high [34, 35]. Whether this difference in HDL level is due to differences in migration, physical activity, gene-environment interactions, or other unknown factors is not known.

Based on known ethnic differences in risk prediction, the Framingham prediction model accurately predicts the CAD risk among Caucasians and blacks living in the United States. For Americans of Japanese and Hispanic descent and for Native Americans, the Framingham model overestimates CAD risk. For South Asian immigrants, the Framingham model may underestimate CAD risk by greater than 100% [36-38]. Total cholesterol and LDL levels are correlated with the extent and severity of CAD in South Asian immigrants as in Caucasians, but at any given total cholesterol or LDL level, South Asian immigrants have a greater CAD risk than Caucasians [36-38]. Therefore, South Asian immigrants with dyslipidemias should be treated as aggressively as if they had a CAD risk equivalent to patients with diabetes or CAD.

Over the past decade, lowering LDL levels has been the major target in cardiovascular protection strategies and clinical trials have clearly established that reductions in LDL are associated with a 30-45% reduction in clinical events [24-28]. However, despite low LDL and normal HDL levels, many patients continue to have cardiac events. One can calculate from the published Framingham data [39] that 44% of the CAD clinical events occurred in men with HDL levels greater than 40 mg/dl and 43% in women with HDL levels greater than 50 mg/dl. Because a significant number of CAD events occur in patients with normal LDL and HDL levels, there has been a continuing search for markers with better
predictive value. Here we present the review of HDL role in preventing CAD and theories underlying dysfunctional HDL concepts. In this paper, dysfunctional HDL (Dys-HDL) and pro-inflammatory HDL terms are used interchangeably.

HDL ROLE IN CAD

HDL is a heterogeneous lipoprotein, containing several surface apolipoproteins (Apo A-I, AII, C, E, AIV, J, and D). Apolipoprotein A-I (Apo A-I) is the principle protein of HDL, which also carries enzymes, such as paraoxonase 1 (PON 1), platelet activating factor (PAF) -acetylhydrolase, lecithin cholesterol acyltransferase (LCAT), and cholesteryl ester transfer protein (CETP). Differences in HDL particle size result mainly from the number of apolipoprotein molecules and the volume of the cholesterol ester in the core of the particle [30].

HDL has antioxidant, anti-inflammatory, and anti-thrombotic properties that contribute to its function as an anti-atherogenic agent. Although our understanding of how HDL protects against CAD is still incomplete, evidence supports at least three major athero-protective mechanisms of HDL (Table 1).

1. **HDL is an integral component of the reverse cholesterol transport process, functioning as a carrier of excess cellular cholesterol from peripheral tissues to the liver, where it is excreted from the body as bile acids and cholesterol. More specifically, HDL mediates efflux of cholesterol from cholesterol-loaded macrophages by passive diffusion, through scavenger receptor B1 (SR B1), and, most significantly, via the protein Apo A-I [40, 41]. Apo A-I functions through an ATP-binding cassette transporter A1 (ABCA1) in the vessel wall, where it accepts free cholesterol, forming pre-beta HDL that matures after esterification to cholesteryl esters (CE) and then by lecithin-cholesterol acyltransferase to alpha migrating HDL [42].**

2. **A series of antioxidant enzymes which protect LDL from oxidation are associated with HDL. Oxidized lipids are transferred to HDL from LDL and are hydrolyzed by HDL-associated PON1, LCAT, and platelet activating factor (PAF) acetylhydrolase enzymes [44-49]. The activities of these enzymes destroy oxidized lipids and also inhibit their formation. Removing the oxidized lipids initiates a positive feedback loop that results in further activation of the enzymes and further destruction of the oxidized lipids. In addition, Apo A-I reduces lipid peroxides within LDL, independent of PON1 [45].**

3. **HDL may protect against CAD by selectively decreasing endothelial cell adhesion molecules, which facilitate the binding of mononuclear cells to the vessel wall and promote lesion development [44, 45, 50].**

EVIDENCE THAT HDL MAY NOT BE PROTECTIVE: PRO-INFLAMMATORY HDL

According to several recent studies, in patients with CAD, HDL is not only ineffective as an antioxidant but, paradoxically, appears to be pro-oxidant, promoting LDL oxidation and monocytes chemotactic activity in the human artery wall as well as increase in HDL lipid hydroperoxides, as assessed by its lipid peroxide content [51-55]. In addition, HDL from patients with a history of CAD enhances the oxidation of LDL and of phospholipids in LDL [51, 53]. This pro-inflammatory HDL, which is dysfunctional, accumulates oxidants that inhibit HDL-associated antioxidant enzymes, render Apo A-I unable to promote ABCA1 mediated cholesterol efflux, and promotes the formation of LDL-derived oxidized lipids [55] (Figs. 2, 3). The mechanisms underlying this phenomenon are not completely understood. One of the hypothesized mechanisms involves myeloperoxidase [56]. Apo A-I is targeted by myeloperoxidase, and, when oxidized and nitrated, impairs ABCA1-dependent cholesterol efflux [56]. Furthermore, exposing HDL or Apo A-I to myeloperoxidase almost entirely prevents ABCA1-dependent reverse cholesterol transport [55]. It has been hypothesized that a certain variant of Apo A-I is susceptible to oxidation and nitration [57].

Table 1. Pleiotropic Effects of HDL

<table>
<thead>
<tr>
<th>HDL</th>
<th>Key References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell proliferation</td>
<td>↑ proliferation, apoptosis [41, 42]</td>
</tr>
<tr>
<td>Vascular tone</td>
<td>↑ NO, ↑ PGI2 [43, 44]</td>
</tr>
<tr>
<td>Inflammation</td>
<td>↑ VCAM-1, ↑ ICAM-1, ↑ E-selectin, ↑ TGF-β2 [40, 44, 45, 50]</td>
</tr>
<tr>
<td>Coagulation, fibrinolysis</td>
<td>↑ TF, ↑ PAF, ↑ activated protein C, ↑ protein S [40]</td>
</tr>
<tr>
<td>LDL oxidation</td>
<td>↓ metal ions mediated oxidation [39, 40, 4144]</td>
</tr>
<tr>
<td></td>
<td>↓ 12-Lox mediated oxidation</td>
</tr>
<tr>
<td></td>
<td>Scavenging of lipid peroxides and LPC, PON, PAF-AH and GPX</td>
</tr>
</tbody>
</table>

CETP= Cholesteryl ester transfer protein, GPX= Glutathione peroxidase, IL= Hepatic lipase, HPETE = Hydro-peroxy eicosatetraenoic acid, HPODE = Hydroperoxyoctadecadienoic acid, PON = Paraoxonase, PAF-AH = Platelet activation factor acetyl hydrolase, PS = Phosphatidylserine, PC = Phosphatidylcholine, PLTP= Phospholipid transfer protein, LCAT= Lecithin-cholesterol acyltransferase, SR-BI= Scavenger Receptor type BI, Lox= Lipoxygenase.

The diagnosis of dysfunctional HDL has historically been made with a cell-based assay that requires endothelial cells, smooth muscle cells, and monocytes. However, the use of a cell-based assay is not practical for large-scale studies. Recently, a cell-free assay was developed to detect HDL that is dysfunctional in preventing the formation or inactivation of oxidized phospholipids [58, 59]. This is a rapid test for HDL function that does not require cells and gives results highly comparable to those of the previously described cell-based assay [58]. Using this assay, investigators determined that HDL from patients with documented CAD was pro-inflammatory, while HDL from normal subjects was anti-inflammatory. These patients had normal levels of blood lipids, had no major risk factors for CAD, and therefore, would not have been predicted to be at risk for atherosclerosis by conventional risk factor analysis. In short, the new cell-free assay has the potential to allow wide-spread testing for HDL that is dysfunctional and identification of individuals at risk for CAD.
Systemic inflammation/oxidative stress:

1. Coronary artery disease
2. Diabetes mellitus
3. Metabolic syndrome
4. Infection
5. Rheumatic conditions
6. Chronic kidney disease
7. Surgery
8. Obstructive sleep apnea

Fig. (2). Dysfunctional HDL and its adverse effects.

![Diagram](image)

Potential therapies
- Niacin/Statins
- Apolipoprotein mimetic peptides
- Polyunsaturated fat diet
- Exercise/diet

Possible therapies
- Recombinant HDL
- Delipidated HDL

*CAD=Coronary Artery Disease

Fig. (3). Model of bidirectional conversion of high-density lipoprotein (HDL) from anti-inflammatory (a) to pro-inflammatory (b) Modified from Fogelman et al. Nat Med 2004 Sep; 10(9): 902-3.
The inflammatory/anti-inflammatory properties of HDL can be determined by calculating HDL inflammatory index [58, 59]. This index is calculated by normalizing the cell-free assay values obtained for a standard LDL alone to <1.0. Using normalization procedure, a test HDL is classified as pro-inflammatory (dysfunctional) when addition of the test HDL along with an LDL standard to the assay results in a normalized value of 1.0 or greater. Conversely, a value less than 1.0 classifies the test HDL as anti-inflammatory. In recent studies of Caucasians and Chinese Asians with CAD, HDL was not only found to be ineffective as an antioxidant but, paradoxically, appeared to be pro-oxidant [58, 60] The Association of Dys-HDL has also been seen in metabolic syndrome, diabetes, systemic lupus erthmatosis and other diseases causing systemic infection [61-68]. This pro-inflammatory HDL or Dys-HDL accumulates oxidants that inhibit HDL-associated antioxidant enzymes, render Apolipoprotein A-I (Apo A-I), the main protein component of HDL unable to promote ABCA1 mediated cholesterol efflux (Fig. 3), and promotes the formation of LDL-derived oxidized lipids [58, 59] Association of Dys-HDL with CAD has been seen in small scale studies of Caucasians [58, 59, 69]

PRO-INFLAMMATORY (DYSFUNCTIONAL) HDL IN SOUTH ASIAN IMMIGRANTS?

The current data indicates that a 1% increase in HDL serum concentration can decrease cardiovascular risk by 2-3%, independent of LDL levels [30]. However, HDL can have this protective effect only if it is functional. The incidence of pro-oxidant or pro-inflammatory HDL (dysfunctional HDL) in South Asian immigrants is not known.

A small study done on South Asian immigrants without CAD showed inflammatory index values of ≥ 1.00 in 50 percent (95% CI 0.8772, 1.4333) suggesting pro-inflammatory HDL [70, 71]. In addition, pro-inflammatory HDL (≥ 1.00) was associated with sub-clinical CAD, using IMT values ≥ 0.80mm as surrogate marker for CAD (p= 0.04) [42]. The mean HDL inflammatory Index was 0.8772 in the group with CAD and 0.6269 in the group without CAD.

Given that animal and small-scale human studies suggest that measures of the quality and functionality of HDL can provide an improved means of identifying subjects at increased risk for atherosclerotic events, compared with the current practice of only measuring the level of HDL [32], the level of dysfunctional HDL and its association with CAD in South Asian immigrants needs to be explored in bigger studies. Given the results of small studies, we can hypothesize that South Asian immigrant populations have a high prevalence of dysfunctional HDL and that this could be related to their excessive risk of CAD. Similarly, South Asian immigrants carry an increased prevalence of metabolic syndrome and diabetes (sub-clinical chronic inflammation) as compared to other groups, therefore, we predict that this population has increased dysfunctional HDL that could be related to coronary events [16, 18, 19]. Patients with metabolic syndrome tend to have dysfunctional HDL (pro-inflammatory HDL) more often than controls [62]. Identification of dysfunctional HDL and its association with CAD and metabolic syndrome in South Asian immigrants will help to identify high risk individuals; high risk that cannot be explained by traditional risk factors. Patients found to have dysfunctional HDL and no other CAD risk factors can be targeted for early lipid lowering treatment which has been shown to improve HDL anti-inflammatory function [59, 60, 69].

APO A-I AND GENE POLYMORPHISMS

Apo A-I (APOAI gene, Apo A-I protein) is the major protein of HDL and consists of 243 amino acid long peptide, synthesized mainly in the liver and to some extent in the small intestine. The inverse relationship between HDL plasma levels and CAD has been attributed to the role that HDL and its major constituent Apo A-I play in reverse cholesterol transport (RCT). The efficiency of RCT depends on the specific ability of Apo A-I to promote cellular cholesterol efflux, bind lipids, activate lechitin: cholesterol acyltransferase (LCAT), and form mature HDL that interacts with specific receptors and lipid transfer proteins [72-78]. The APOAI gene is present along with the APOC3 and APOA4 genes, on chromosome 11(11q23.3-qter). It has also been shown that the A allele of the APOAI gene contributes to the severity of CAD and low levels of HDL among North-ern Indians [75].

Epidemiological studies have shown that HDL and Apo A-I levels are inversely correlated with the risk of developing CAD [57, 67, 68, 72]. Although various factors such as genetic variations, diet, exercise, alcohol, smoking, hormones, and certain drugs can significantly influence the levels of HDL and Apo A-I [76], family and twin studies have demonstrated a strong genetic heritability, accounting for up to 66% of the variability of HDL and Apo A-I levels [77-79]. Furthermore, 40-60% of the inter-individual variation in HDL concentrations is controlled at the genetic level [80, 81] and the strong positive correlation between plasma levels of Apo A-I and HDL suggests that Apo A-I gene polymorphisms may be linked to variability in HDL levels as well as to dysfunction [57, 67, 72].

More than 40 mutations in Apo A-I have been identified in several ethnic populations [82-88] each producing differing HDL activity and levels. Apo A-I gene mutations are separated into three classes. Class I includes mutations that prevent the formation of Apo A-I; class II defects lead to expression of a truncated Apo A-I protein; and class III defects result in an altered functional state of Apo A-I. Not surprisingly, class I mutations are associated with CAD, xanthomatosis, and corneal opacifications, whereas class II mutations exhibit variable phenotypes [84-88]. Mutations affecting the structure of Apo A-I (nonsense mutations with premature stop codons or large genomic deletions) result in an absence of Apo A-I in plasma and a marked reduction in HDL levels [88]. Interestingly, of the 12 mutations that truncate Apo A-I, not all are associated with CAD. Further, several point mutations have been identified [80-83], and one in particular is associated with low levels of HDL but not with an increased CAD risk and is, instead, associated with a reduction in CAD risk [84]. This Apo A-I mutations is called Apo A-I Milano (Apo A-I_{tg 173 cyz}).

APO A-I POLYMORPHISMS IN SOUTH ASIAN IMMIGRANTS

A majority of the studies on Apo A-I polymorphisms and their association with HDL level and CAD have been carried...
out in Caucasian and other populations. The association of Apo A-I gene polymorphisms with carotid IMT as a surro-
gate marker for atherosclerosis has been examined, but not
fully. For example, Apo A-I (L178P) was found to be asso-
ciated with high IMT measurements (p< 0.001) in a Euro-
pean population, however due to the small sample size, re-
results cannot be generalized [86]. Similarly, Apo A-I/C-
III/A-IV SstI polymorphism was found to be associated with
high carotid IMT measurements in a study of a young Fin-
nish population [87]. However, the role of Apo A-I poly-
morphisms in individuals with metabolic syndrome and its
association with dysfunctional HDL has not yet been fully
studied. A few studies have examined Apo A-I polymor-
phisms in native populations of South Asians from India,
however, to our knowledge, no study has examined Apo A-I
polymorphisms in South Asian immigrants and its associa-
tion with dysfunctional HDL, IMT, or CAD. Polymorphisms
in Apo A-I and other lipid metabolism-related genes have
been suggested to be clinically useful in assessing an indi-
vidual’s risk for cardiovascular disease and in conducting
genetic-epidemiological evaluations [85].

Given that South Asian immigrants are significantly un-
der-represented in major clinical trials, evidence-based man-
gagement strategies for treatment and prevention of CAD spe-
cifically in this population is seriously lacking. A literature
search for Apo A-I gene mutations in South Asian popula-
tions yielded a small solo study that showed polymorphisms
in the Apo lipoprotein C-III promoter gene that were associ-
ated with features of metabolic syndrome in South Asian
Indians, however, the relationship of these polymorphisms to
CAD was not examined [86-89]. A recent small study con-
ducted in Pakistanis suggested that the promoter region of
the Apo A-I gene may play a role in determining blood pres-
sure [90]; however, due to insufficient power, these results
cannot be generalized. Chhabra and colleagues [91] found a
association between the expression of the Apo A-I G-75A
polymorphism in northern Indians, the severity of CAD, and
low levels of HDL; however this study was restricted to one
ethnic group and relationship was not examined in other eth-
nic groups. Studies have shown that South Indians carry
more CAD risk as compare to North Indians [35].

In small study on South Asian immigrants, six novel pol-
ymorphisms were identified, one of which, G4 (C938T),
was significantly associated with low (< 40 mg/ dl) HDL
levels (p=0.03) [92]. Further research is required to explore
Apo A-I polymorphisms in South Asian immigrants and cor-
relate possible associations with dysfunctional HDL and
CAD. Moreover, the identification of these genes may lead to
creasing tests that will allow persons at risk for develop-
ing CAD to be identified early enough that preven-
tion/intervention strategies can be implemented to prevent or
ameliorate the disease process, and may also lead to the de-
development of gene therapy mechanisms useful in the treat-
ment of CAD in South Asian immigrants.

CONCLUSION

South Asian immigrants are the second fastest growing
Asian immigrant population in the United States, constitut-
ing a large, visible minority, and are known to be at height-
ened risk for premature CAD. Conventional risk factors
clearly confer risk in South Asians but do not adequately
explain their excess risk compared with other populations.
New risk factors and markers like dysfunctional HDL,
known genetic polymorphisms though shown to be linked
with CAD; however greater research is required in South
Asians. The rates of CAD have accelerated dramatically
amongst South Asians, driven to an important extent by the
atherogenic dyslipidemia and type 2 diabetes that have be-
come so common amongst them. South Asians may have a
genetic predisposition to CAD; however, environmental,
nutritional, and lifestyle factors may also be responsible.
South Asians have a much higher prevalence of metabolic
syndrome, diabetes, insulin resistance (and resultant hyper-
inulinemia), central obesity, dyslipidemias (lower high-
density lipoprotein, increased lipoprotein[a], higher triglyc-
eride levels), increased thrombotic tendency (increased
plasminogen activator inhibitor-1 and decreased tissue plas-
minogen activator levels), decreased levels of physical activ-
tity, and low birth weights. In addition, the dietary indiscre-
tions and sedentary lifestyle practiced by most South Asians
puts them at a higher risk. A multidisciplinary approach in-
volving the population at risk, healthcare personnel, and the
government is required to diminish the incidence.

The key to combating the increasing incidence of CAD
among South Asians is early diagnosis and treatment of
CAD risk factors to prevent future CAD morbidity and mor-
tality. An aggressive treatment of known risk factors through
both an individual-based as well as a population-based ap-
proach aimed at comprehensive risk factor reduction is
needed. The Assessment of dysfunctional HDL and its asso-
ciation with coronary artery diseases in a larger South Asian
immigrant population is under way. In addition, further re-
search is needed to discover new risk factors like dysfunc-
tional HDL that can be responsible for an excess CAD risk
not explained by conventional risk factors.

ACKNOWLEDGEMENTS

I would like to thank Ms. Cathey Ellis, my Office Spe-
cialist for her help in editing and format this manuscript.

AUTHORS’ CONTRIBUTIONS

SD conceived the idea and wrote whole paper including
literature search.

REFERENCES

[1] Nordlie MA, Wold LE, Kloner RA. Genetic contributors toward
increased risk for ischemic heart disease. J Mol Cell Cardiol 2005;
39: 667-79.
[2] Uppaluri CR. Heart disease and its related risk factors in Asian Indi-
farction in South Asians compared with individuals in other coun-
Coronary heart disease and its risk factors in first-generation immi-
grant Asian Indians to the United States of America. Indian Heart J
Indians: thoughts on pathogenesis, prevention, and treatment. Clin
Cardiol 1995; 18: 131-5.
Population Study (CUPS No.5). Prevalence of coronary artery dis-
ease and its relationship to lipids in a selected population in South In-
dia. The Chennai Urban Population Study (CUPS No. 5). J Am Coll
Cardiol 2001; 38: 682-7.
Excess Coronary Artery Disease Risk in South Asians

The Open Epidemiology Journal, 2009, Volume 2

61

Forouhi NG, Sattar N, Tillin T, McKiege PM, Chaturvedi N. Do known risk factors explain the higher coronary heart disease mortality in South Asian compared with European men? Prospective follow-up of the Southall and Brent studies. Diabetologia 2006; 49: 2580-8.

Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and

[68] Gowri MS, Van der Westhuyzen DR, Bridges SR, Anderson JW. Ansell BJ, Fonarow GC, Navab M, Fogelman AM. Modifying the properties of high-density lipoprotein distinguish patients from control subjects against LDL oxidation may be due to the abnormal composition of HDL. Arterioscler Thromb Vasc Biol 1999; 19: 2226-33.

© Sunita Dodani; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.