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Abstract: The analysis of human-centered systems (HCS) is complex, involving vagueness, uncertainty and ill-defined 

data. The subjective nature of human classifications renders classical logics approaches almost useless to deal with HCS. 

Fuzzy Logics (FL) provides a mathematical framework for the systematic treatment of vagueness and imprecision; 
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1. INTRODUCTION 

 Human-Centered Systems (HCS) is understood as the 
system Human-Machine-Environment, i.e., the people at 
work and their relations with the surrounding environment, 
equipment and fellow workers. The analysis of such systems 
can be performed aiming different goals - like safety, health, 
human reliability, stress or usability-, and may be addressed 
from different perspectives - like the physical, physiological, 
organizational, cognitive, or socio-psychological. 

 A HCS intervention can be performed at a design or 
redesign phase of a work system, and is focused on 
identifying incompatibilities between work requirements and 
hazards, and human capabilities. The objective is eliminating 
the incompatibilities or, at least, reducing them, so that 
working systems become safer, healthier, more productive, 
comfortable, and satisfying [1]. 

 Is a basic principle in the law of many countries that 
employers have to take the necessary measures for the safety 
and health protection of workers. For instance, within the 
European Community, the legal framework was settled by 
the Council Directive of 12 June 1989 on the introduction of 
measures to encourage improvements in the safety and 
health of workers at work (89/391/EEC), and then adopted 
by Member States’ national laws. For this purpose 
employers must analyze HCS regarding safety and health at 
work, and decide on preventive measures to take and, if 
necessary, protective equipment to use. 

 The knowledge required to analyze HCS is 
multidisciplinary and the data used to evaluate them is often 
characterized by being complex, imprecise, uncertain and 
vague. The problem complexity and data vagueness (for  
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instance, the ill-definition resulting from the subjective 
nature of human classifications) renders classical logics 
approaches almost useless to deal with HCS. 

 Fuzzy Logics (FL) provides an appropriate logical-
mathematical framework to handle problems with such 
characteristics, since [2]: 

• deals with uncertainty and imprecision of reasoning 
processes; 

• allows the modeling of the heuristic knowledge (that 
cannot be described by traditional mathematical 
equations); and 

• allows the computation of linguistic information. 

 The aim of this paper is to divulge examples of the 
application of FL in HCS highlighting the advantages that 
arise from the use of the fuzzy methodology. 

 This paper presents a survey on the publications issued 
on the last 12 years regarding the use of fuzzy logic in 
human-centered systems. The sources were Portuguese and 
English language edited books and papers retrieved from 
searches in databases such as B-on, ISI Web of knowledge 
and INSPEC, using expressions such as: “FL and 
Ergonomics”, “FL and Safety” or “FL and occupational 
stress”. 

 The following sections of paper will provide a brief 
overview about Fuzzy Logics, present several examples of 
fuzzy systems applied in the assessment of HCS-related 
issues, namely, comfort, human reliability, workload stress, 
health, and safety. At the end some conclusions will also be 
presented. 

2. FUZZY LOGICS 

 Fuzzy Logic is based on the concept of fuzzy set 
formulated in the Fuzzy Set Theory (FST) by Lotfi Zadeh, in 
1965 [3]. FST provides a mathematical framework for the 
systematic treatment of vagueness and imprecision. The 
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subjective nature of human classification processes renders 
classical (Boolean/dichotomous) approaches almost useless 
to deal with human-centered systems. So FST facilitates the 
elicitation and encoding of uncertain knowledge. It provides 
a representation mechanism that improves the flexibility for 
dealing with data associated to complex concepts. The result 
of using FST is more robust tools that perform better for a 
wider variety of conditions and users. From an encoding 
point of view, fuzzy sets support the representation of 
knowledge and its uncertainty as a unique entity. The 
resulting representation is very flexible and it can be easily 
coupled with non-fuzzy forms of knowledge representation, 
and manipulated by a variety of evaluation methods. 

 A fuzzy set presents a boundary with a gradual contour, 
by contrast with classical sets, which present a discrete 
border. Formally, let U be the universe of discourse and u a 
generic element of U, a fuzzy subset A, defined in U, is one 
set of the dual pairs: 

A= {(u, μA(u))  u U} 

where μA(u) is designated as membership function or 
membership grade u in A. The membership function 
associates to each element u, of U, a real number μA(u), in 
the interval [0,1]. 

 There are some typical shapes for the membership 
functions of fuzzy sets, such as  or trapezoidal, Bell or 
Gaussian, triangular, Z – shape and S – shape. Fig. (1) 
presents graphics that illustrate some continuous fuzzy sets 
defined with such shapes. 

 Based on these principles it is possible to evaluate the 
degree of membership of some observed data. Let us 
consider, for instance, the evaluation of the “working height” 
risk (as done on the AR_X system [4]). The analysis of such 
concept can be performed based on an objective attribute: the 

height to the ground of the area where a worker operates. 
Fig. (5a) presents an example of fuzzy set to use in such 
evaluation. Based on this fuzzy set is possible to observe that 
the “working height” risk increases with the height. There is 
no fall risk, i.e. the risk degree is 0, when the height is 0 m. 
This degree increases proportionally to the working height 
until it becomes maximal, i.e. the risk degree reaches 1. On 
the depicted example working heights above 3 m 
corresponds to highly risky situations. 

 An important concept in FST is the one of linguistic 
variables [5-8]. A linguistic variable is a variable that admits 
as values words or sentences of a natural language, which 
can be represented as fuzzy sets. Linguistic variables serve 
as a means of approximate characterization of phenomena 
which are too complex or to ill-defined to be susceptible of 
description in precise terms. Furthermore, in the human 
discourse, variables are, normally, expressed by words, not 
by numbers. Thus, one advantage of using linguistic 
variables is that one can deal directly with semantic concepts 
of imprecise nature, with a consistent mathematical 
formulation. 

 As an example, let us consider the acceptability linguistic 
variable, used to collect opinions for ergonomic or risk 
inadequacy degree evaluation (as used in ERGO_X [9] and 
AR_X [4]). In the example, this linguistic variable 
comprehends a set of 5 linguistic terms (Good, Acceptable, 
Little Acceptable, Bad, Very Bad), to which correspond 
inadequacy degrees. Fig. (2a) presents an example of this 
linguistic variable, where the terms are defined as continuous 
fuzzy sets. However, due to considerations about the 
numerical efficiency related with computational systems the 
linguistic variable terms can also be assumed as discrete 
fuzzy sets. A discrete fuzzy set corresponding to the same 
acceptability linguistic variable is depicted in Fig. (2b). 

 

Fig. (1). Typical continuous fuzzy set membership function shapes: (a)  or trapezoidal, (b) Bell or Gaussian, (c) triangular, (d) Z – shape 

and (e) S – shape. 
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 Typically the processing of a Fuzzy Logic system is 
performed on 3 stages (Fig. 3). The first is the fuzzification 
stage, where crisp input data (either numerical or linguistic) is 
transformed in fuzzy sets. The second is the inference stage, 
where fuzzy rules are applied aggregating input data by means 
of fuzzy logical operators and fuzzy IF-THEN rules producing 
fuzzy output results. The last stage, the defuzzification, 
corresponds to the conversion of fuzzy results into crisp results 
(either numerical or linguistic) to be presented to users. 

 Fuzzy logics admits basic arithmetic and logic operations 
[5] and also a set of fuzzy operators (t-norms, t-conorms and 
means) that provide a continuum of data aggregation 
behaviors which allow the simulation of several aggregation 
types (like, for instance, the synergy resulting of the 
interaction of 2 risk factors). Fig. (4) illustrates the 
continuum of fuzzy operators’ space, referring some 
operators that typically define the upper and lower behaviors 
in each category. The fuzzy operators can be parametric or 
non-parametric, meaning that the results can either depend or 
not on the value of a parameter. Parametric operators are 

computationally more demanding but offer more flexibility 
than non-parametric operators. There is a very large variety 
of operators and references about them. For a thorough 
analysis of fuzzy operators refer, for instance, to [10]. 

 With the wide range of fuzzy operators offered it is 
possible to handle most of the human-centered problems 
characterized by uncertainty and subjective data. 

3. EXAMPLES OF APPLICATIONS OF FUZZY 
LOGICS TO HUMAN CENTERED SYSTEMS 

 In the following sub-sections is given a brief description 
of some examples of application of fuzzy logics on the fields 
of Occupational Safety (risk assessment for work accidents) 
and Ergonomics (human reliability, manual materials 
handling, work-related musculoskeletal disorders and layout 
design) identified on a literature review on reference 
publications issued on the last 12 years, as described in 
Section 1. 

 The examples of fuzzy systems here presented illustrate 
several approaches adopted in dealing with uncertainty 

 

Fig. (2). Linguistic Variable acceptability (a) continuous fuzzy set terms (b) discrete fuzzy set terms. 

 

Fig. (3). Fuzzy Logic system stages. 

 

Fig. (4). Fuzzy operators continuum. 
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reasoning as a methodology for the development of human-
centered decision support systems. 

3.1. Risk Assessment for Work Accidents 

3.1.1. Fuzzy Inherent Safety Index 

 Gentile et al. proposed a fuzzy version of Heikkila’s 
Inherent Safety Index (ISI), applied to the evaluation of 
chemical industry plants [11]. The Inherent Safety Index 
considers three factors: chemical substances, process hazard 
and the process equipment and tanks. Each factor is 
characterized by several parameters, which in the fuzzy logic 
model are defined as linguistic variables terms, evaluated as 
bell-shaped fuzzy sets. The parameters of ISI factors are 
presented on Table 1. 

Table 1. Inherent Safety Index Parameters 

 

ISI Factors Parameters 

Flammability 

Toxicity 

Explosivity 

Chemical interaction 

Reactivity 

Chemical Substances 

Water 

Higher temperature 

Higher pressure 

Material 

Personal Protective Equipment  

Process Safety 

Packing degree of the area 

Heat of the main reaction 

Process Hazard 

Heat of the side reactions 

Type of process equipment 

Type of other equipment 

Tank volume 
Process Equipment and Tanks 

Tank’s pressure 

 

 The evaluation of each fuzzy ISI factor is performed 
based on the aggregation, using an OR operator, of the 
results of applying a set of IF-THEN rules, based on a 
Mamdani model. The fuzzy output is defuzzified using a 
center of mass technique, resulting on a crisp output value. 
The evaluation of the final index is performed using a 
weighted sum of the individual factors outputs. 

 To perform the analysis of a complete chemical plant the 
procedure includes four steps: 

1. divide the chemical plant into operating sub-processes 
according to the unit operations of each area; 

2. for each unit identify chemical substances, operating 
conditions and processing equipment; 

3. evaluate the ISI for each unit; 

4. add the values of the indices for each area. 

 Compared to the Heikkila Index the Fuzzy Logic-based 
Index has the advantage of being sensitive to changes on the 
input data, since it yields continuous results, eliminating the 
problems presented by the traditional interval approach. In 
fact, the Heikkila Index inputs are discrete values classified 
based on range intervals, meaning that the output is the same 
for any input values that fall on the same interval. 

3.1.2. AR_X 

 Nunes presented AR_X, which is an expert system 
aiming to support risk analysis for work accidents. Its main 
objective is to identify and evaluate exposure to occupational 
risks and advice on measures to implement in order to 
control risks [4]. The methodology supports the assessment 
of potential factors that contribute for accident occurrence 
and guides the user on the adoption of corrective measures. 

 The AR_X will perform an Accident Risk Degree 
assessment based on the evaluation of protection factors and 
risk factors that are relevant to the situation under analysis. 
Table 2 presents an example for the assessment of the “fall 
risk” identifying the Attributes to use on the evaluation 
process. 

Table 2. Example of Attributes and Protection and Risk 

Factors Considered for the Assessment of the Fall 

Risk 

 

Work Accident Protection Factors Attributes 

Collective Protection  Safety barriers 

Individual Protection 
Harness 

Lifeline 

Risk Factors Attributes 

Work Activity  

Working height 

Type of floor 

Manual materials handling 

Use of tools 

Handling of suspended loads  

Environmental Factors  

Cold 

Wind 

Rain 

Noise 

Vibration 

Illumination 

Dust  

Psychosocial 

Work pace 

Extra Work 

Stress 

Fall risk 

Individual 

Auditory insufficiency 

Visual insufficiency 

Alcohol consumption 

 
 The inference process used for evaluating the risk degree 
adopts an approach defined in a Fuzzy Multiple Attribute 
Decision Making model, which stands in an inference chain 
based on fuzzy rules. The degree of risk for accident is 
considered to be high if protection measures are missing or 
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not adequate and simultaneously there are risk factors 
present on the workplace. The following rule illustrates the 
assessment of the “fall risk”, presented on Table 2. 

IF fall protection is inadequate AND 

      fall risk factors are high 

THEN fall risk is high 

 The inadequacy of the protection measures and the 
severity of the risk factors are evaluated based on relevant 
attributes. The following rule illustrates the evaluation of the 
“fall protection inadequacy” for the assessment of “fall risk”. 

IF safety barrier are inadequate OR 

harness use is inadequate OR 

lifeline use is inadequate 

THEN fall protection is inadequate 

 The attributes may be evaluated based on objective 
and/or subjective data. For instance, on the “fall risk” 
example, the working height is a key factor for the existence 
of risk. Since the working height is an attribute that can be 
quantified it is possible to define a fuzzy set its 
quantification. Fig. (5a) presents an example of fuzzy set to 
use in such evaluation. On other hand the attributes 
(including the ones that can be evaluated objectively) can be 
evaluated based on subjective data using Linguistic 
Variables. In order to ensure numerical efficiency, in the 
evaluation process, the linguistic variables terms adopted on 
AR_X model are discrete fuzzy sets. 

 Let us consider, for instance, the periodicity Linguistic 
Variable used to collect the opinions about attributes related 
for instance with “tools usage” or “alcoholic beverage 
consumption” frequency. This Linguistic Variable 
comprehends five linguistic terms that corresponds to risk 
degrees uniformly distributed over the [0, 1] interval. The 
corresponding discrete fuzzy set (see Fig. 5b) is defined as: 

periodicity = {0/Never + 0.25/Not often + 0.5/Occasionally + 

0.75/Almost always + 1/ Always} 

 The individual attribute evaluations are aggregated using 
a logical OR operator. The fuzzy OR operator can however 
simulate synergistic effect, meaning that the degree of risk 
resulting from the combination of different risk attributes is 
higher than any of the individual risk attributes considered. 

 AR_X results are presented as natural language sentences 
where the assessed degree of risk is qualified using terms of 
a linguistic variable, for instance: 

The risk of fall is <qual> 

where <qual> is a term (low, medium, high, very high, 
extreme) from the linguistic variable “risk”. 

3.1.3. Fuzzy Inference System 

 Guimarães and Lapa developed a fuzzy inference system 
(FIS) dedicated to risk analysis. The objective is to obtain an 
understanding of the aging process of a nuclear power 
system and how it affects the overall plant safety [12]. 

 They developed a ranking Failure Mode and Effects 
Analysis (FMEA), using a direct method with one expert 
opinion. They also used a fuzzy inference engine with fuzzy 
IF–THEN rules to determine a mapping from fuzzy sets in 
the input universe of discourse to fuzzy sets in the output 
universe of discourse. The risk priority number was 
calculated and compared to fuzzy risk priority number using 
scores from expert opinion to probabilities of occurrence, 
severity and not detection. This FIS was applied to study the 
standard four-loop pressurized water reactor containment 
cooling system. The results demonstrated the potential of the 
inference system for using the FMEA in aging studies. 

3.1.4. Fuzzy Multi-Attribute Model 

 Grassi et al. develop a fuzzy multi-attribute model for 
risk evaluation in workplaces. The model is based on the 
evaluation of five different risk factors: injury magnitude, 
occurrence probability, sensitivity to Personal Protective 
Equipment non-utilization, undetectability and sensitivity to 
maintenance non-execution [13]. The first two factors are 
introduced as the same as in the classical risk model and the 
last three risk factors represent the most important aspects of 

 

Fig. (5). (a) Fuzzy set for evaluation of the “working height” attribute; (b) periodicity linguistic variable. 
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human behavior and environmental interaction in an 
industrial field. The relative importance of the risk factors 
was done through the assignment of weights by the analyst. 
To do that the analyst uses a weight scale of seven linguistic 
variables. 

 The authors proposed six linguistic variables for the 
evaluation of the risk factors (Negligible, Definitely low, 
Lower than high, Higher than low, Definitely high and 
Maximum) that are present in each activity. The 
methodology uses ‘‘fuzzy TOPSIS” to manage the linguistic 
judgments of experts and to produce the final ranking of 
activities. The authors stressed that this methodology made 
possible to obtain a classification more representative of the 
management feelings, being able to emphasize some tangled 
aspects, one being, the relation among PPE utilization, injury 
magnitude, and occurrence probability. 

3.2. Human Reliability Analysis 

3.2.1. HEROS 

 Richei et al. developed HEROS (Human Error 
Assessment and Optimization System), which is a fuzzy 
rule-based expert system applied to the analysis of tasks of 
personnel operating in a nuclear power plant [14]. HEROS is 
a fuzzy version of the Technique for Human Error Rate 
Prediction (THERP), which is a probabilistic approach for 
the evaluation of human actions. 

 HEROS provides a procedure which can be employed for 
the qualitative and quantitative evaluation of human error in 
operating technical systems. The rule-based expert system 
considers the factors related with the “management”, “man-
machine interface”, and “working environment” as fuzzy 
sets in order to make possible the evaluation despite the 
uncertainty. The knowledge base was derived from results of 
previous ergonomic and psychological studies. 

 The evaluation of an action is based on pertinent 
Performance Shaping Factors (PSFs), which are identified 
after the description of action and its environmental 
conditions. 

 For evaluating the influence of the “management” on 
human performance a linguistic variable Human Error 
Probability (HEP) was defined which takes into account 
criteria such as motivation, training, education, decision 
hierarchy, safety culture, and team composition. This HEP 
linguistic variable definition resulted from the transformation 
into possibilities of the existing HEP (probabilities). 

 For assessing the “working environment” six PSFs are 
considered, the climatic load, ambient noise, lighting, day 
time, hazard and stress. Each PSF can be determined based 
on several sub-criteria like, for instance, temperature, 
humidity and work energy expenditure, for “climatic load”. 
As previously, the working environment PSFs are defined as 
linguistic variables. 

 For assessment of “man-machine interface” is based on a 
total of 23 PSFs, that characterize the “task profile” and the 
“ergonomic design”. As previously, the working 
environment PSFs are defined as linguistic variables. 

 Table 3 synthesizes the criteria used for the assessment of 
“management”, “man-machine interface”, and “working 
environment”. 

Table 3. HEROS Criteria 

 

HEP MMI Areas Linguistic Variables 

Management HEP 

Climatic Load PSF 

Ambient Noise PSF 

Lighting PSF 

Day Time PSF 

Hazard PSF 

Working Environment 

Stress PSF 

Task profile PSF 

Action 

Man-Machine Interface 
Ergonomic design PSF 

 

 The linguistic variables are used on a set of fuzzy rules 
that aggregate the data in order to qualitatively evaluate the 
membership function of the term of the conclusion linguistic 
variables that characterize the HEP for management, and the 
PSFs for environment, task profile, ergonomic design and 
cognitive tasks. 

 Linguistic variables form the condition of rule which 
have the general form: 

IF (Condition 1 AND … Condition n) THEN Conclusion m 

where the logical AND operator is represented by the fuzzy 
minimum function. 

 The partial conclusions are then aggregated using a 
logical OR operator (the fuzzy maximum function). The 
evaluation of the rules is carried out by a generalized “modus 
ponens” approximate reasoning process, calculated using the 
conclusion rules by Mamdani. 

 The combination of the HEROS with a fault tree analysis 
allows the identification of the weak points on the man-
machine interface and the elaboration of improvement 
proposals. 

3.2.2. Fuzzy CREAM 

 Konstandinidou et al. proposed a fuzzy modeling 
application for human reliability analysis based on the 
Cognitive Reliability Error Analysis Method (CREAM) [15]. 
THERP methodology, referred on the previous example is a 
first generation method conceived mainly for the nuclear 
industry. CREAM is an evolution of THERP, which is 
mentioned as a second generation method based on the 
cognitive model of human decisions and actions. 

 CREAM involves an error classification system that 
integrates individual, technological and organizational 
factors. This methodology was derived from Contextual 
Control Model (COCOM), which models the operator 
performance considering how people are able to maintain 
control of a situation. COCOM considers four characteristic 
control modes: scrambled, opportunistic, tactical and 
strategic. 

 The control modes provide a fast overall assessment of 
human reliability, which is combined with a detailed 
classification of erroneous actions. Such classification 
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describes the relations between causes and effects. To define 
sets of possible error modes and probable error causes, 
instead of PSFs, CREAM uses Common Performance 
Conditions (CPCs). 

 In the fuzzy version of CREAM, proposed by 
Konstandinidou et al., the CPCs are used as linguistic 
variables, whose terms were defined as triangular fuzzy sets. 
Table 4 lists the CPCs linguistic variables used as input 
variables and the corresponding terms used for the 
description of each parameter. The table also presents the 
output variable and refers the respective terms. 

 Following the logic of CREAM, fuzzy rules were 
developed based on the above mentioned linguistic variables. 
An example of a fuzzy rule is: 

IF Adequacy of organization is deficient AND  

Working conditions are incompatible AND 

Availability of procedures and plans is 

inappropriate AND 

Adequacy of MMI and operational support is 

inappropriate AND 

Number of simultaneous goals is more than 

actual capacity AND 

Available time is continuously inadequate AND 

Time of day is night AND 

Adequacy of training and experience is 

inadequate AND 

Crew collaboration quality is deficient 

THEN Operator will act in a SCRAMBLED way 

 The inference process considers the minimum degree of 
activation for each rule. The output is the union of the effect 
of all fuzzy rules. The final output is a crisp number for the 
human error probability obtained by defuzzifying the output 
fuzzy set. 

 This way, the application user supplies the input values 
for a specific working environment and the system estimates 
the possibility that the operator will perform an erroneous 
action within the specific context. 

3.3. Manual Material Handling 

 Genaidy et al. developed a study regarding Manual 
Materials Handling (MMH) activities [16]. This study 
focused on the classification of load heaviness in terms of 
workers’ perceived load using FST. The study was 
conducted on male and female workers in the package 
delivery industry to estimate the amount of load that 
corresponds to various linguistic terms that express load 
heaviness (e.g. light, medium, somewhat heavy, heavy, etc.). 

 Employees were asked to estimate the most 
representative amount of load that could be assigned to 
various levels of load heaviness as defined according to the 
Borg Scale. The distribution of amount of load handled for 
each heaviness level was modeled using a method based on 
the distribution of demarcation points between levels, which 
allowed for the calculation of fuzzy set membership 
functions. 

 The calculation process involved the computation of 
means and standard deviations for the various load heaviness 
levels, and for the demarcation points. Intermediate 
distribution values were then computed for membership 
functions using a cumulative normal distribution function. 
The resulting membership functions were normalized scaling 
their maximum values to 1. 

 The findings pointed for the relationship between linguist 
terms and amount of load handled, considering a 1.0 
certainty factor for the combined membership functions 
(male and female), presented on Table 5. 

 The determination of distribution functions for the 
linguistic terms of ergonomic risk factors is relevant since it 
can assist researchers and practitioners in establishing rule-
based systems for MMH risk assessment. 

3.4. Work-related Musculoskeletal Disorders 

3.4.1. Fuzzy Linear Regression Model 

 McCauley-Bell et al. presents a study for the 
development of a Fuzzy Linear Regression (FLR) model to 
predict the relationship of known risk factors to the onset of 

Table 4. Fuzzy CREAM Parameters 

 

Linguistic Variable 
 

Name (CPCs) Terms  

Adequacy of organization Deficient, Inefficient, Efficient, Very efficient 

Working conditions Incompatible, Compatible, Advantageous 

Availability of procedures and plans Inappropriate, Acceptable, Appropriate 

Adequacy of MMI and operational support Inappropriate, Tolerable, Adequate, Supportive 

Number of simultaneous goals More than actual capacity, Matching current capacity, Less than current capacity, 

Available time Continuously inadequate, Temporarily inadequate, Adequate 

Time of day Night, Day 

Adequacy of training and experience Inadequate, Adequate with limited experience, Adequate with High experience 

INPUT 

Crew collaboration quality Deficient, Inefficient, Efficient, Very efficient 

OUTPUT Action Failure probability Scrambled, Opportunistic, Tactical, Strategic  
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upper body Work-Related Musculoskeletal Disorders 
(WRMD) [17]. 

 According to the authors the use of FLR analysis presents 
some advantages, namely: 

• Is based on the possibility theory that describes the 
ambiguity of events or the degree to which they 
occur; 

• Is effective for small data sets; 

• It can accommodate the inaccuracy and distortion 
introduced by linearization. The linear regression 
model itself contains vagueness, which is interpreted 
as a regression band instead of a regression line. 

 The developed model focused on WRMD in office 
environment, and identified a total of 30 primary risk 
associated with task, joint deviation, personal, and 
anthropometric risk factors categories. Some were later on 
discarded. The final risk factor list is presented in Table 6. 
The same table presents the relative weights (wi) that were 
determined for each risk factor category using an AHP  
 

Table 5. Study Results Relating Linguist Terms and Amount 

of Load Handled 

 

Linguistic Term Load Handled [kg] 

Negligible 0 

Very very light 2.5 

Very light 4.5 

Light 7.5 

Moderate 14 

Somewhat heavy 23 

Heavy  32 

Very heavy 43 

Very very heavy 56 

Maximum 110 

 
analysis, after consultation of 3 ergonomic experts. The 
result of the linear model can be represented as 

Table 6. Identified Primary Risk Factors Per Category 

 

Risk Factor Category Relative Weight Risk Factor 

Task w1=0.497 

 

x1: 

x2: 

x3: 

x4: 

x5: 

x6: 

x7: 

x8: 

x9:  

 

Total typing hours (per day) 

Typing speed 

Continuous typing time 

Hand temperature 

Comfortability of workstation orientation and height 

Work surface hardness 

Hand rest time 

Rating of perceived exertion 

Working under pressure 

(0.231,0) 

(0.144,0) 

(-0.078,0) 

(0.039,0.298) 

(-0.133,0.044) 

(-0.152,0.115) 

(0.059,0) 

(-0.007,0) 

(-0.001,0) 

(0.051,0) 

Joint deviation  w2=0.319 

 

x1: 

x2: 

x3: 

x4: 

x5:  

 

Wrist ulnar deviation 

Wrist flexion 

Wrist extension 

Forearm flexion 

Hand suspension 

(0.259,0.105) 

(0.095,0.136) 

(0.125,0.25) 

(0.086,0.232) 

(0.036,0) 

(-0.005,0) 

Personal w3=0.110 

 

x1: 

x2: 

x3: 

x4: 

x5: 

x6:  

 

Age 

Medical history 

Alcohol usage 

Smoking 

Years on the job 

Previous trauma disorders 

(0.198,0.121) 

(-0.032,0) 

(0.012,0) 

(-0.024,0) 

(0.033,0) 

(0.042,0) 

(0.17,0.352) 

Anthropometric  w4=0.073 

 

x1: 

x2: 

x3: 

x4: 

x5: 

x6: 

x7:  

 

Body mass index 

Hand length 

Hand breath 

Hand thickness 

Wrist circumference 

Joint circumference 

Maximum pinch strength 

(0.283,0.675) 

(0.046,0.11) 

(-0.102,0) 

(0.101,0) 

(-0.119,0) 

(0.087,0) 

(-0.011,0) 

(-0.144,0) 
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Y = w1y1+ w2y2+ w3y3 + w4y4 

where y1,y2, y3, and y4 are, respectively, the results of the 
fuzzy linear regression for task-, joint deviation -, personal-, 
and anthropometric-related risk factors. 

 Furthermore Table 6 presents the fuzzy parameters for a 
linear regression level at a confidence (or threshold) level 
h=0.5 for each of the risk factors. The fuzzy parameters are 
represented as an ordered pair Ai= ( i, ci), where the i 
parameter denotes the center value for the regression 
coefficient and the ci parameter is the width or fuzziness of 
the i

th
 parameter. The first pair of values of each category 

represents the A0 ordered pair of a fuzzy linear regression 
formulated as follows: 

y = A0 + A1x1+ A2x2+ …+ Anxn 

 In fuzzy linear regression analysis, the outputs are still 
fuzzy numbers with a center value and a width. For the 
defuzzification process the center value it will be adopted. 

 The results of the study were validated on a small 
validation group. 

3.4.2. ERGO_X 

 Nunes developed the ERGO_X, which is a modular 
fuzzy expert system intended to support ergonomic 
workstation analysis, namely regarding Posture and WRMD 
[9, 18]. 

 The assessment of the ergonomic inadequate situations is 
based on the assessment of the risk factors, which are 
evaluated using attributes. Table 7 shows the Attributes and 
Physical Risk Factors considered for the evaluation of the 
Carpal Tunnel Syndrome which is an example of WRMD. 

Table 7. Example of Attributes and Risk Factors considered 

for evaluation of Physical Risk Factors of the Carpal 

Tunnel Syndrome 

 

WRMD Physical Risk Factor Attribute 

Wrist flexion/extension  

Wrist ulnar/cubital deviation Posture 

Hand pressure type /grip-keying 

Force Wrist/hand force  

Wrist/hand frequent movements 
Repetition 

Finger flexion frequent movements 

Cold Wrist/hand cold 

Vibration Hand/arm vibration  

Wrist contact pressure type  

Carpal  
Tunnel  

Syndrome 

Contact Pressure 
Hand palm contact pressure type 

 

 ERGO_X assessment is performed based on an inference 
process involving a chain of production rules, like the one 
that is presented to illustrate the evaluation of the “Carpal 
Tunnel Syndrome”. 

IF Wrist flexion/extension is inadequate OR 

Wrist ulnar/cubital deviation is inadequate 

OR Hand pressure type /grip-keying is 

inadequate 

THEN posture is inadequate 

… 

IF Hand/arm vibration is inadequate 

THEN vibration is inadequate 

IF posture is inadequate OR … OR  

vibration is inadequate 

THEN there is a possibility for occurrence of 

Carpal Tunnel Syndrome 

 The OR operators are fuzzy union operators, meaning 
that condition truth degrees are aggregated producing a new 
truth degree on the interval [0, 1]. Since truth degrees are 
quantifiable the logical operators can be defined as 
mathematical expressions and the results computed 
numerically. For instance, the ERGO_X uses as OR operator 
the Dubois and Prade Union (μA ’B) defined on the following 
expression: 

μA +μB - μA μB – min(1- ’, μA, μB) 

μA ’B = , ’  [0,1] 

max (1- μA, 1- μB, ’) 

where μA and μB are the truth degrees (in this context referred 
as inadequacy degrees) to aggregate using the operator. 
Since this is a parametric operator we can simulate specific 
behaviors, like synergy, tuning the value ’. 

 ERGO_X results are presented as natural language 
sentences where the assessed degree of risk is qualified using 
terms of a linguistic variable, for instance: 

 The possibility for occurrence of Carpal Tunnel 
Syndrome is <qual> 

where <qual> is a term (low, medium, high, very high, 
extreme) from the linguistic variable “risk”. 

 ERGO_X system has been applied on the Ergonomic 
analysis of workstations, mainly on office and industry 
environment. The validation process of the knowledge base 
was performed by comparison of ERGO_X results against 
the results produced by other evaluation methods, and 
against data from occupational physicians [19]. Later a 
software based on this model, FAST ERGO_X was 
developed [20]. 

3.5. Layout Design 

 Hanson et al. propose a fuzzy comfort model to integrate 
in human simulation tools in order to reduce the need for 
ergonomic tests in real physical environments [21]. The 
application context is the design of a car interior, namely 
regarding the location of controls. The motivation for this 
work was the awareness that the car interior is a complex 
man-machine interface, and that poorly designed interiors 
contribute to traffic accidents as well as discomfort and 
disorders in professional and long distance drivers. 

 The authors used a fuzzy clustering process to validate 
the assumption that the perceived comfort is related with 
physical parameters from the human anthropometry (the 
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body stature) and the technical system, i.e. the control 
position (related with the reach distance). The study started 
with 744 samples of perceived comfort. The outliers were 
identified and removed from the data set using the least 
trimmed squares regression resulting on a data pool of 652 
samples. These samples were randomly separated on two 
sets of equal size. The first set was the training set used to 
perform the clustering and to estimate the model parameters. 
The second set was applied to check the performance of the 
achieved model. The model accuracy estimators were the 
average, the standard deviation and the root mean square 
error. Four variables were used to model the input-output 
relation: the height (x) and side (z) coordinates of the control 
position, and the body stature and shoulder-finger tip length. 

 Each sample fuzzy membership value was calculated 
using a distance measure to the cluster centers. The 
clustering identified three comfort levels, very comfortable, 
neutral and very discomfortable. 

 Common perceived comfort estimation models used on 
human CAD tools are based on body posture and joint 
inclination. As mentioned, the fuzzy model uses individual 
anthropometric data and control position as inputs, which 
when combined are similar to the body posture. 
Nevertheless, as Hanson et al. highlighted, driver’s 
anthropometric data and control positions are easier to access 
than body postures and angles between segments. This way, 
the model opens room for the development of ergonomic 
evaluation tools combined with human simulation tools. 
Such tools lead to minimize development costs, due to fewer 
resources allocated for experimental evaluation, e.g. the use 
of mock-ups. 

 Using this type of models, the ergonomic problems can 
be identified early in the design process, avoiding the 
resulting high costs if discovered late in the design process. 

4. CONCLUSIONS 

 This paper is based on a literature review of the 
application of FL in HCS from 1998 to 2009, using a 
keyword search in several databases. 

 Ten examples of application of Fuzzy Logics approaches 
to the assessment of Human-Centered Systems were 
presented, four being related with Risk Assessment for Work 
Accidents, two with Human Reliability Analysis, one with 
Manual Material Handling, two with Work-related 
Musculoskeletal Disorders and one with Layout design. 
Most systems adopted a rule-based or a multiple attribute 
methodology to address the evaluation problem, but other 
systems followed different methods such as fuzzy linear 
regressions or fuzzy clustering processes. 

 Despite the differences on the methodologies adopted 
and on the fields of application all authors stress the benefits 
resulting from the use of Fuzzy Logics. There is unanimity 
about the usefulness of using Fuzzy Logics in addressing the 
uncertainty associated with the definition and modeling of 
HCS. This is particularly important since ergonomic and 
safety risk analysis raise decision making problems of ill-
defined nature, due to the complexity of the intervening 
factors, the context dependencies, or the subjectivity of some 
of the processed data, generally collected using linguistic 
information. 

 Fuzzy Sets and Fuzzy Logics is a generalization of 
Classical Sets and Boolean Logics that extends their 
potential providing a mathematical framework for the 
systematic treatment of vagueness and imprecision. In 
general terms a Fuzzy approach can do whatever is a 
Classical approach does and can go beyond. Fuzzy Logics 
facilitates the elicitation and encoding of uncertainty-related 
knowledge; offers a flexible representation mechanism for 
dealing with vague data that allows a seamless and coherent 
integration of subjective and objective data; eliminates the 
problem of using interval categories allowing the use of 
continuous ranges of values; and by provides a host of 
aggregation operators that can simulate several behaviors, 
such as synergy. Maybe this is the reason why no references 
were found refuting the merits of a Fuzzy Logics approach. 

 This paper is a small sample of the attention that Fuzzy 
Systems is attracting both from academics and software 
developers to deal with complex issues from a great variety 
of knowledge domains. Some methodologies (for example, 
fuzzy rule-based systems and fuzzy expert systems) are 
commonly used, but the flexibility that Fuzzy Logics offers 
allows the adoption of much diversified methodologies 
according to authors' expertise and the problem domains on 
hand. This feature allows an easier approach in addressing 
quite complex tasks such as knowledge acquisition, 
knowledge representation, and decision-making modeling 
required for developing human-centered systems. 

 The importance of improving HCS is critical due the 
personal, social and financial impacts (illness, injuries, 
material damage, productivity loss and liabilities) on society 
and on companies due to accidents, disorders and errors 
resulting of poorly designed work environments, systems 
and procedures. 

REFERENCES 

[1]  Karwowski W, Mital A. Fuzzy concepts in Human 

Factors/Ergonomics research. In: Karwowski W, Mital A, editors. 
Applications of Fuzzy Set Theory in Human Factors. Amsterdam: 

Elsevier Science Publishers B.V. 1986; pp. 41-54. 
[2]  Zadeh LA. Fuzzy Logic = Computing with words. IEEE 

Transactions on Fuzzy Systems. 1996; 4(2): 103-11. 
[3]  Zadeh LA. Fuzzy sets. Inform Control 1965; 8: 338-53. 

[4]  Nunes IL. Fuzzy Multicriteria Model for Ergonomic workplace 
analysis and Risk analysis. Information Technology, Knowledge 

Management and Engineering for Enterprise Productivity and 
Quality of Working Life (International Conference: Computer-

Aided Ergonomics and Safety - CAES'05) 2005 25-28; Mai, 
Kosice-Slovak Republic. 

[5]  Zadeh LA. The concept of a linguistic variable and its application 
to approximate reasoning-part I. Inf Sci 1975; 8: 199-249. 

[6]  Zadeh LA. PRUF-a meaning representation language for natural 
languages. Int J Man Mach Stud 1978; 10: 395-460. 

[7]  Zadeh LA. Linguistic variables, approximate reasoning and 
dispositions. Med Inform 1983; 8(3): 173-86. 

[8]  Zadeh LA. Test-score semantics as a basis for a computacional 
approach to the representation of meaning. In: Yager RR, 

Ovchimnikov S, Tong RM, Nguyen HT, Eds. Fuzzy Sets and 
Applications: Selected Papers by L A Zadeh: John Wiley and Sons 

1987; pp. 655-83. 
[9]  Nunes IL. ERGO_X - The Model of a Fuzzy Expert System for 

Workstation Ergonomic Analysis. In: Karwowski W, Ed. 
International Encyclopedia of Ergonomics and Human Factors: 

CRC Press 2006; pp. 3114-21. 
[10]  Zimmermann H-J. Fuzzy Set Theory and Its Applications. 3rd ed. 

Kluwer Academic Publishers; 1996. 
[11]  Gentile M, Rogers W, Mannan M. Development of an Inherent 

safety Index Based on Fuzzy Logic. AIChE J 2003; 49(4): 959-68. 



48    The Ergonomics Open Journal, 2010, Volume 3 Isabel L. Nunes 

[12]  Guimarães ACF, Lapa CMF. Fuzzy inference to risk assessment on 

nuclear engineering systems. Appl Soft Comput 2007; 7: 17-28. 
[13]  Grassi A, Gamberini R, Mora C, Rimini B. A fuzzy multi-attribute 

model for risk evaluation in workplaces. Saf Sci 2009; 47: 707-16. 
[14]  Richei A, Hauptmanns U, Unger H. The human error rate 

assessment and optimizing system HEROS - a new procedure for 
evaluating and optimizing the man-machine interface in PSA. 

Reliability Engin Sys Saf 2001; 72: 153-64. 
[15]  Konstandinidou M, Nivolianitou Z, Kiranoudis C, Markatos N. A 

fuzzy modeling application of CREAM methodology for human 
reliability analysis. Reliability Engin Sys Saf 2006; 91: 706-16. 

[16]  Genaidy AM, Karwowski W, Christensen D, Vogiatzis C, Deraiseh 
N, Prins A. What is "heavy"? Ergonomics 1998; 41(4): 420-32. 

[17]  McCauley-Bell P, Crumpton LL, Wang H. Measurement of 
cumulative trauma disorder risk in clerical tasks using fuzzy linear 

regression. IEEE Trans Syst Man Cybern C Appl Rev 1999; 29(1): 

1-14. 
[18]  Nunes IL. National Patent nº 103446: Método de Análise 

Ergonómica de Postos de Trabalho. [Workstation Ergonomic 
Analysis Method]; 2009. 

[19]  Nunes IL. Modelo de Sistema Pericial Difuso para Apoio à Análise 
Ergonómica de Postos de Trabalho [Fuzzy Expert System Model to 

Support Workstation Ergonomic Analysis] [PhD Dissertation]. 
Lisbon, Portugal: Universidade Nova de Lisboa 2003. 

[20]  Nunes IL. FAST ERGO_X – a tool for ergonomic auditing and 
work-related musculoskeletal disorders prevention. WORK: J 

PrevAssessm Rehabil 2009; 34(2): 133-48. 
[21]  Hanson L, Willfried W, Sperling L. A control handling comfort 

model based on fuzzy logics. Int J Ind Ergon 2003; 31: 87-100. 

 

 

Received: April 16, 2010 Revised: June 13, 2010 Accepted: June 30, 2010 

 

© Isabel L. Nunes; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http: //creativecommons.org/licenses/ 

by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 

 
 


