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Abstract: Anthropogenic and demographic processes cause worldwide air problems, giving rise to focus on exhaust air 
purification to counteract these effects. Due to the large number of substances found in exhaust air and the various 
operational parameters needed, a huge amount of often high dimensional data has to be analyzed. The ultimate goal is to 
finally reduce data complexity in terms of information reflecting the substances´ characteristics. 

The Cluster Analysis (CA) of data from 30 exhaust air compounds with 11 indices representing both structural 
characteristics and physicochemical data resulted in 7 clusters. The Principal Component Analysis (PCA) led to the 
identification of 6 Principal Components (PCs) and therefore to a dimensional reduction compared to the originally used 
11 indices. After re-gathering the total information of the original data-set upon the 6 PCs only, a re-clustering showed 
that we were able to restore the same cluster structure as in the original CA based on the 11 indices. This process is a first 
proof of principle in successful re-clustering after dimensional data reduction by our proposed combined CA-PCA method 
and hence a step towards a possible development of an adsorption method to selectively remove malodorous/toxic 
components from the exhaust air. 

Keywords: Cluster Analysis, Dimensional Reduction, Exhaust Air Purification, Graph Theory, Odour Control, Principal 
Component Analysis. 

1. INTRODUCTION  

 Air-quality has become a serious problem in many cities 
world-wide caused by the emission of air pollutants which 
are generated by different anthropogenic processes [1]. The 
tolerance against malodors in exhaust air streams especially 
in an urban environment is low, giving rise to the urgent 
need for the further development of industrial exhaust air 
purification processes [2]. In practice, control-ling air 
pollution is a very complex problem. In different industrial 
applications complex multicomponent mixtures have to be 
purified in industrial air purification systems. Several 
industrial applications have already been proposed and 
discussed, as e. g. the electrostatic precipitator (ESP) for 
cleaning gas streams which is mainly used in industrial dust 
collection and home ventilation systems [3]. The 
regeneration of activated carbon after adsorption of waste 
gas streams and waste water components by dielectric barrier 
discharge (DBD) oxidation opened up another way of 
industrial exhaust air purification [4]. Furthermore, there are 
technological approaches dealing with the specificity of 
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the adsorbent to answer the question which components only 
need to be removed from the complex multicomponent 
mixture to set both malodor and toxicity of the exhaust air to 
a level of zero. Once a selective adsorbent is found, the 
possibility is to keep concentrations below the odor threshold 
by combining the selective adsorption process with on-site 
regeneration of the adsorbent by microwave, ultrasound, 
ultrasound with water, water desorption [5] or by the concept 
of a rotary adsorber [6]. Applying thermally stable 
adsorbents instead of highly selective ones can be used for 
the removal of volatile organic compounds in a hybrid 
adsorption/inci-neration multifunctional adsorber/reactor 
concept along with high energy efficiency [7]. 

 All these recent developments in analytical 
methodologies contributed to improvements of odorous 
emissions in terms of understanding multicomponent 
composition and concentration. However, methods and 
studies applied beforehand the purification process, leading 
to classification and identification of the complex mixtures´ 
compounds, produce a massive quantity of high dimensional 
data [8]. To facilitate the process of selection, design and 
management within the industrial exhaust air purification, a 
precise analysis of these often high data amounts is an 
essential task to be performed in the future [9]. 

 To analyze such data sets, the goal is to finally reduce 
data complexity in terms of information reflecting the 
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characteristics of the substances [10], as shown here by 
applying Cluster Analysis combined with a two-step 
Principal Component Analysis. Therefore, first a significant 
grouping of the compounds according to the characteristics 
of each substance needs to be performed in such a way that 
at the end they represent the original set as well as its 
diversity. A statistic tool helping to organize the observed 
data into meaningful subsets is Cluster analysis whereby a 
file of objects may be divided into several classes based on 
structural parameters as well as on physicochemical values 
[11]. The members of each class should be similar among 
each other and different from the members of the other 
classes [12]. The CA is used in many different fields of 
application and its approaches are numerous and diverse 
such as for example chemical research, drug discovery and 
many others, making the analysis of complex, high 
dimensional data sets easier [13,14]. Here, in our application, 
this statistic tool is followed by PCA which identifies 
Principal Components (PCs) representing as much substance 
information in as few Principal Components as possible. 
Hence, the PCA aims at reducing data complexity by 
dimensional reduction ideally without loss of any 
information [15]. 

 The idea of this study is to establish our combined CA-
PCA method to reduce data complexity already beforehand 
the development of an industrial exhaust air purification 
process. 

2. THEORETICAL BACKGROUND 

2.1. Descriptors in Graph Theory  

 Different structural indices are calculated translating the 
molecular properties into numerical values. This is achieved 
by representing the structural formula of the molecule by a 
chemical graph, replacing the atoms by numbered vertices 
and the molecular bonds by edges which associate two 
vertices with each edge [16-18]. A distance matrix is created 
upon the number of lines describing the shortest path 
between two points i and j in a simple graph. By definition, 
the distance of adjacent points equals one whereas the 
distance of non-adjacent points equals zero [19]. The 
generation of such a distance matrix completely defines the 
adjacency matrix that represents the chemical structure of 
substances used in the present study (Fig. 1). 

 This method has already been used in different studies 
where chemical properties are predicted according to 

quantitative structure-activity relationships (QSAR) as well 
as quantitative structure-property relationship (QSPR) 
models [18,20]. 

2.2. Cluster Analysis  

 One way to quantify the degree of similarity or 
dissimilarity is given by the question of how close or apart 
two substances (objects) are from each other. This distance 
or proximity between two objects can be calculated by 
mathematical methods which can be visualized in a 
dendrogram according to the characteristics of each 
compound. Different types of clustering can be performed. 
Mainly, the hierarchical clustering (agglomerative) [21,22] 
and the nonhierarchical clustering or partitional clustering 
(k-means) is applied [21,23]. 

 The hierarchical clustering method sets up the clusters 
using an iterative algorithm in a bottom up process. A matrix 
of similarity (or dissimilarity) measures between each pair of 
compounds is used first by merging individual compounds 
into clusters followed by merging clusters into super 
clusters. The final merge brings all the compounds into a 
single cluster. Considering the idea of ``distance'' described 
above, a simplified way to see how clusters are generated 
with the hierarchical clustering method is first to consider 
each object as its own cluster. Two clusters, at this level still 
individual objects that have a small ``distance'' between 
them, are going to be grouped into one cluster hosting two 
individual objects. Then the similarity matrix is recalculated 
considering the distances between new clusters (individual 
objects) and the cluster hosting already two individual 
objects in order to obtain the smallest distance to a new 
cluster and so on. This process is repeated until all objects 
are joined in one ``Megacluster''. 

 The k-means clustering works on actual observations 
rather than on larger sets of dissimilarity measurements and 
therefore creates a single level of clusters in contrast to the 
agglomerative, hierarchical clustering method. In the k-
means clustering process, k must be defined a priori to 
distribute all data points into the k clusters by choosing 
cluster centers. In the process presented here, k was chosen 
beforehand upon the number of clusters yielded by the 
hierarchical clustering method in an unbiased approach. 
Setting up the k-means clustering on this basis, an iterative 
algorithm over a given starting partition is used to minimize 
the sum of distances over all clusters from each object to its 
cluster centroid. Objects are sorted between clusters until the 

 
(A) (B) 

Fig. (1). (A) Chemical structure of acetic acid. (B) Chemical Graph structure of acetic acid. 
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sum cannot be decreased any further by the algorithm. A set 
of clusters that are as compact and well-separated as possible 
is given as the result. Applying several optional input 
parameters to k-means, the process can be controlled in 
detail, for example via the initial values of the cluster 
centroids coming from the hierarchical clustering as well as 
via the maximum number of iterations [22,24,25]. 

 For a successful process of Cluster Analysis, three 
decisions must be taken [26]: 

1. The concerns of a possible transformation of the 
variables 

2. The selection of the algorithm (Clustering method) 

3. The selection of the similarity measurement  

2.3. Principal Component Analysis (PCA) 

 Principal component analysis is a multivariate statistical 
technique used in exploratory data analysis. Moreover, 
predictive models can be generated in which a data table 
representing observations described by several dependent, 
generally inter-correlated variables is elucidated. The 
purpose of PCA is to extract the most important information 
from the data set, the compression of its size as well as the 
generation of a simplified view of the original data set by 
dimensional reduction, ending up in an analysis of the 
structure of the observation and variables. In order to achieve 
this goal a set of new orthogonal, non-correlated variables 
(q) called Principal Components is calculated as linear 
combinations of the original variables (p) with q <  p [15]. 

 The first Principal Component is required to have the 
largest possible variance and therefore this component will 
represent best the diversity of the given data. The second 
Principal Component is generated under the assumption of 
being orthogonal to the first component combined with also 
having the largest possible variance. The other components 
are calculated likewise. These components are exactly the 
eigenvectors of the correlation matrix which are employed as 
a basis for a new coordinate system [12,15,27]. 

 Applying a basis transformation of the given data will 
result in new coordinates for each substance. Ideally, the first 
k calculated coordinates can be used to approximately 
describe the substances´ characteristics. Thus, for dimen-
sional reduction it is possible to use only a subset of these 
coordinates. This does not necessarily result in a reduced 
number of indices needed to describe the substances´ 
characteristics, as generally all indices might be involved in 
those selected coordinates. 

 A PCA may be carried out on data from either a 
covariance or a correlation matrix differing basically in 
normalization. To use a covariance matrix the variables 
should have the same order of magnitude and no significant 
difference in the variances. If the data do not fulfill this 
condition the use of a covariance matrix can for the 
unfulfilled variables produce a greater variance and 
assignment of larger weights resulting in certain errors in the 
results. To avoid this it is preferred to perform the PCA on 
standardized data -- thus using the correlation matrix [28]. 

 

3. MATERIALS AND METHODOLOGY 

3.1. Choice of substances  

 30 substances were chosen from a list of 155 substances 
based on the experimental and theoretical data collected for 
each substance. The 155 substances represent an average 
exhaust air stream of livestock facilities, fat refineries, and 
cocoa and coffee production plants [29]. The chosen 30 
compounds were examined as regards to their structure, 
solubility and vapor pressure. 

3.2. Cluster Analysis 

 Structural indices (calculated from the graph theory) as 
well as physicochemical values for the present work are 
described in Table 1. 

 The first eight indices of Table 1 describe topological 
characteristics of the substances and belong to the tools 
applied as descriptors in Graph Theory (Fig. 1) [29]. In 
contrast, the last three indices represent the substances´ 
chemical properties. A more detailed view of how the 
indices are employed in the present study in Graph Theory is 
given as follows: 

 The Zagreb Index measures the connectivity of a 
molecular graph (Fig. 1B) by first counting the number of 
edges adjacent to each vertex calculating the vertex´s degree 
and afterwards summing up the square values of each 
vertex´s degree. Consequently, the Zagreb Index does not 
weight the vertices evenly as it leads to a higher weight for 
the more inner vertices. The Wiener Index gives a measure 
of the compactness for molecular structures as it leads to 
higher numbers for long chains and smaller numbers for 
branched structures. Although the Randic Index once more 
emphasizes the connectivity of a molecule like the Zagreb 
Index, the calculation always involves a pair of adjacent 
vertices. Hence, it is referred to as a second-generation 
index. Its numbers are calculated by the sum over all edges 
combined with the inverse square root of the vertices´ 
degrees being adjacent to the edge. In contrast to the Zagreb 
Index, the Randic Index therefore does not overvalue the 
inner vertices but the outer vertices due to the inverse of the 
square root. The Balaban Index resembles both the Wiener 
Index and the Randic Index but introduces a normalization 
factor ``A'' with B being the number of edges and X 
representing the cyclomatic number of the graph, thus 
discriminating easily between cyclic and non-cyclic 
molecules. The Information Index on Atomic Composition 
discriminates among different elements within one molecule. 
According to the information theory the information content 
is dependent on the intramolecular variety, leading to the 
total number of atoms being expressed as ``N'' in contrast to 
all atoms of the same type ``i'' being expressed as ``N i ''. In 
an analogous manner the Information Index on Molecular 
Bonds is calculated simply replacing the atoms by molecular 
bonds and their bond characteristics. The electron 
configuration of a molecule is considered by splitting up the 
electron distribution around the atomic nucleus into different 
partial bond spaces, while the carbon skeleton of the whole 
molecule forms a finite bond space. Basically, a distinction  
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is made between the valence bond space versus the non-
valence bond space in closer proximity to the atomic nulei. 
The aim of the Topological Information Index is to generate 
equivalent classes of graph elements, i. e. vertices which can 
be substituted among each other without destroying or losing 
any of the graph properties. That means that a permutation of 
vertices must exist that maps the graph exactly to itself. If 
this requirement is fulfilled, vertices are grouped into one 
equivalent class subsequently subjected to the information -- 
theoretical equation expressing the Topological Information 
Index [17,29,30]. 

 The data of the present study were analyzed by 
ClustanGraphics8 §  released 2005 by Clustan -- A Class Act 

  1998 Clustan Ltd., UK. If variables are measured in 
different scales, variables with large values would contribute 
more to the distance measure than variables with small 
values. Thus, each substance´s values for all eleven original 
variables (Table S1) were first put under the z-core 
standardization (decision no. 1) to avoid differences between 
magnitudes of data being a failure source when calculating 
the distance. As decision no. 2 the clustering method k-
means (k = 7, selected due to the number of clusters yielded 
by the hierarchical clustering in an unbiased approach 
beforehand) was chosen with the Euclidean sum of squares 
as a clustering criterion and started out with a random 
partition of data (initial centers). After the clusters are 
grouped the proximities between the objects are calculated. 

Table 1. Structural Indices and Physicochemical Values Used in the Cluster Analysis. The Original Data Matrix Including All 
Single Index Values Listed Under their Abbreviations can be Found in the Supporting Information in Table S1 

 Name (Abbreviation S1)   Description  

 Zagreb Index (ZI)    2
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 Information Index on Atomic Composition (IIAC)  
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k

1=i2aa NN ZZges   

 Information Index on Molecular Bonds (IIMB)   i2i
m

1=i2B Blog·BBlog·=I Bges   

 Information Index on Electron Configuration (IIEC)  
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k
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22g Nes   

 Topological Information Index (TII)  
)

C

C
log·

C

C
(=I i

2
ik

1=i0    

 Normalized Molar Mass (MM)  

n

m
=M   

m=Molar mass of molecule  

n= Number of atoms in molecule 

 Water Solubility (WS)  Maximum amount of a substance that can dissolve in water at equilibrium 
conditions.  

 Vapor Pressure (VP)  
  

)(
=ln

TC

B
Ap


   

A,B,C = Antoine constants  

T= Temperature (K) 
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For continuous data, the Square Euclidian distance equation 
(1) is the one mostly used due to the fact that in chemical 
studies most of the data sets are continuous (decision no. 3) 
as in our case.  
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 As a result of this proximity calculation, a graphical 
output of the clustering process as a dendrogram is generated 
showing the arrangement of the clusters as a tree-like 
structure [31]. A dendrogram containing the clustering 
results of the study is presented in Fig. (2). 

3.3. Principal Component Analysis (PCA) 

 Data of the structural as well as physicochemical 
characteristics of the given volatile substances analyzed in 
the present study were collected and organized in a matrix. 
The rows of this matrix correspond to the substances while 
the indices are organized in columns. So each row represents 
one substance with its own characteristic index values. The 
original data matrix can be found in Table S1 of the 
supporting information. Subsequently, this matrix was 
imported into MATLAB®. 

 For each cluster a theoretically ideal substance (called 
main focus) for representation was selected via the 
arithmetic mean value over the substances. A real substance 
for follow-up experiments to represent each cluster should 
ideally combine the characteristics of the theoretically ideal 
substance or show at least the lowest deviance. The Principal 
Component Analysis was carried out twice in total. The first 
step was performed over the main foci as we chose the 
variance between the main foci being of greater importance 

than the variance among the substances to distinguish 
between the clusters first. Within the second PCA step it 
turned out to be sensible to repeat the whole process on the 
remaining data basis taking into account the complete 
variance of the data and not only the main foci. We 
established this process on the basis of a descriptive minimal 
mathematical example that can be found in the supporting 
information (chapter S 3.3.1) accompanying this study. 

 After a successful establishment of the minimal 
mathematical example, we applied the process to our 
experimental data set. Focusing on our 30 volatile 
substances, the corresponding data is set up in Matlab as a 
matrix  

icT   (2) 

containing the theoretically ideal substance for each cluster 
in each row. Thus, the number of rows equals the number of 
clusters c. The indices are organized in a number of i 
columns. 

 Next, data were shifted and scaled [32] in order to 
achieve a variance of 1 about zero mean among the indices. 
All the information by the indices have now an equal weight 
and can contribute equally to the following data processing. 
We defined the matrix C as the covariance matrix of z-
scores, being symmetric positive semidefinite and resulting 
in  

iiC   (3) 

 The Principal Components of C are calculated according 
to equation 4. For all j with  ij 1,  applies:  

jjj vvC ·=·  (4) 

where jv  is the eigenvector to the eigenvalue j . The 

Fig. (2). Dendrogram showing the 7 different clusters obtained from the Cluster Analysis. (* = 4-Isopropenyl-1-methyl). 
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eigenvectors are the Principal Components and each 
corresponding eigenvalue respectively represents their 
weight in terms of original information they contain. 
Without loss of generality we assume them sorted 
descending. To have them in the range of percentage, the 
eigenvalues were scaled as defined in equation 5: 

1

:=~:
a

a
aj 












  with  ja :=  (5) 

 As we regard covariance matrices having positive 
diagonal entries by nature the trace, which is the sum of 
diagonal entries being invariant under similarity 
transformations, equals the so called 1-norm (Manhattan 
Norm) of the vector a  of eigenvalues. Hereby we took the 
decision to use this norm for normalization. 

 With these values j  the significance of the new 
directions given by the eigenvectors can be distinguished. 
This method will yield at most  

),1(m icin   (6) 

not vanishing eigenvalues and corresponding vectors [27]. 

 As this method might not deliver enough Principal 
Components for successful reclustering, a cutoff   on the 
eigenvalue (by nature 0= ) is introduced to control which u  
eigenpairs of the first step are accepted ( = ) or rejected 
[33]. 

 For the remaining subspace given by  

  ujvV jr >,=  (7) 

again the eigenfactorization is calculated but this time from 
the covariance matrix of all single substances scaled and 
shifted by means of the z-score from the main foci. 

 Using the four values 0.25, 0.50, 0.75 and 1 for the cutoff 
  results in different numbers of PCs in each case. A value 
of 0.25=  results in seven PCs for successful reclustering 
while in all other cases only six PCs were necessary. Hence, 
selecting the cutoff 0.5=  (dotted line in Fig. 3) yielded 
already the right result by the lowest possible  -value at the 
same time: Using five PCs from the first step (calculated 
over the main foci) and one additional PC from the second 
step (calculated over all single substances) instead of the 
original eleven indices (Fig. 3) lead to the same clustering 
result (Fig. 5) as compared to the original result from Cluster 
Analysis (Fig. 2). Thus, the benefit of our newly established 
two-step PCA process could clearly be underlined 
empirically by introducing this value for the cutoff  . With 
this ordered set of new directions we introduce a new 
(orthogonal) basis. The variances (scaled to sum up to one) 
of all (scaled and shifted) substances in terms of this basis 
are plotted in Fig (3) with decreasing weight. 

4. RESULTS AND DISCUSSION 

 The results of the Cluster Analysis are described and 
discussed followed by the results´ analysis and discussion of 

 

Fig. (3). Information content of the eleven Principal Components. Cross markers reflect the single information each Principal Component 
contains, circles represent the cumulative percentage of information from the first PC up to the current one. The dotted line marks the 
selected cutoff   (cf. 3.3) within the two-step PCA process. 
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the Principal Component Analysis. We describe how the 
clusters were calculated after transformation of the data, the 
performance of the Principal Component Analysis, the 
recollection of information for each substance after 
dimensional reduction as well as the reproduction of the 
original cluster structure on the reduced data set. 

4.1. Cluster Analysis  

 Clustering of the 30 substances resulted in 7 clusters 
graphically displayed in form of a dendrogram (Fig. 2). The 
corresponding structure of each molecule is shown in Table 
S2 of the supplement. The dendrogram offers a view of the 

 

Fig. (4). Visualization of the Principle Components (PCs). Each colored line represents one PC and shows its decomposition into the 
originally used index quantities. Continuous lines (PC #1-6) carry in total already about 95 % of the original information, dotted lines (PC 
#7-11) do nearly carry no information as can be obtained from Figure 4. 

 
Fig. (5). Scatterplot of the Re-Clustering after the two-step PCA process. a): Two dimensional scatterplot made up of the first two PCs 
reflecting about 71 % of the original data information. b): Three dimensional scatterplot made up of the first three PCs covering about 85 % 
of the original information. The cluster numbers 1-7 represent the original clusters in Figure 2. 
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``distances'' between molecules, reflecting how similar or 
dissimilar they are. If two molecules are bound by the same 
line (level) they are more similar or chemically closer to 
each other than other molecules in the same cluster, not 
connected directly. This applies also for distances between 
two clusters. 

 Since some of the variables applied to the clustering 
process explain structural parameters, by examining the 
substances of each cluster some characteristics can be 
observed: 

 Cluster 1 presents four members, two of them 
(pyrrolidine and piperidine) are cyclic molecules with a 
density of 0.86 g/mL each and provide a characteristic amine 
odor, and two group members are of linear structure with a 
density of 0.79 g/mL each and a pleasant odor. The only 
difference among the cyclic ones is one additional carbon 
substitution at the ring; hence they are together at the same 
level of the dendrogram but different to acetone and 
methanol (Fig. 2). All four molecules are water-miscible, 
colorless and highly flammable. 

 Substances with aliphatic intramolecular bonding archi-
tecture are grouped in cluster 2. The first three substa-nces 
are water soluble and have only saturated hydrocarbons in 
their molecular structure. The last two substances, trie-
thylamine and 1,3-pentadien show amine groups, and double 
bonds. They are insoluble in water. Most of cluster 2 
substances have an unpleasant odor. 

 Cluster 3 hosts molecules with a carbonyl group, one 
cyclic molecule without (4-Isopropenyl-1-methylcyclohe-
xane), one molecule with an alcohol group (1-octen-3-ol) 
and one with two terminal amine groups (cadaverine). It is 
interesting to note that almost all substances in this cluster 
are colorless to pale yellow liquids having very pleasant, in 
most cases fruit-like, odors. Besides, they all show quite 
similar densities (0.82-0.84 g/mL) except for n-decane. Only 
n-decane has a mild gasoline-like odor and a density of 0.73 
g/mL, cadaverine has a decomposition characteristic odor. 1-
Octen-3-ol is the only molecule without a fruit-type odor; it 
has rather an earthy, mushroom-like characteristic odor. 

 It is worth noting that dimethyldisulfide forms a single 
cluster (cluster 4) being the only molecule containing sulfur 
atoms in the structure and an alliaceous onion odor. 

 In cluster 5, only two substances differ as regards to their 
functional group from the other substances as they are the 
only carboxylic acids in the list, both with pungent vinegar 
odor, soluble in water, ethanol, diethylether and other 
organic solvents. Their aliphatic chains vary in length in only 
one carbon atom. 

All molecules with aromatic ring systems are in cluster 6. 
Toluene and benzene share the same level in the dendrogram 
due to their similar structure. Both are insoluble in water, 
have a water-clear appearance, are highly flammable and 
give off a characteristic sweet odor. 

 Water as well stays alone, building up cluster 7, showing 
its particular structure and unique behavior compared with 
the other substances. 

 A chemical analysis of the substances within each cluster 
was conducted and physicochemical as well as odorous 

characteristics were found that validate the cluster analysis in 
the first step. According to Linusson et al., this kind of 
analysis can be taken as a validation procedure for clustering 
of chemical data regarding the chemical interpretation of the 
substances in each cluster [34]. Although not all molecules 
fit perfectly into the clusters, analyzing them in this case as 
described above, all clusters obtained do make sense: all 
molecules with fruit odor were grouped into one cluster 
(cluster 3) except for cadaverin but only concerning its odor. 
Taken together, similarities in structural and topological 
parameters led to correct clustering of substances according 
to their similarities in physicochemical parameters, as 
regards density or appearance. 

4.2. Principal Component Analysis 

 The Principal Component Analysis was carried out to 
check the possibility of dimensional reduction that could be 
successfully verified in a repeated Cluster Analysis of the 
data set re-generated after PCA and dimensional reduction. 
Due to this fact, an experimental verification is currently 
being performed on all substances presented in this paper. 

 In total, eleven Principal Components were calculated 
based on originally eleven indices used in the CA in the first 
part of this study. At the beginning, each of the indices 
carried one eleventh (   9 %) of the total information. Some 
of the newly calculated Principal Components carry 
significantly more than one eleventh of the original total 
information as shown in Fig. (3). 

 Fig. (3) depicts the information content of all eleven Pri-
ncipal Components calculated. They are sorted descending 
according to their percentage of single information shown by 
the cross markers. The cumulative percentage of information 
(circle markers) is calculated as the sum of percentages of 
information using all PCs from the first to the current one. 
Each of the first four PCs contains more than one eleventh of 
the total original information whereby one eleventh equals a 
cutoff value 1=  in our two-step PCA process (cf. 3.3). PC 
number 5, 6 and 7 still carry information contributing to a 
significant increase in the cumulative percentage of 
information. PCs No. 8-11 contain neglectable information. 
It can be deduced from Fig. (3) that the first six Principal 
Components already reflect a total of about 95 % of the 
original information. The PCs No. 8-11 do not add any major 
information as the percentage for each of these components 
is near 0 and their cumulative percentage of information 
stays close to 100 %. The dotted line between PCs No. 5 and 
6 represents the selected cutoff 0,5=  yielding best results 
by the lowest possible  -value at the same time in our two-
step PCA process (cf. 3.3): Whereas the first five PCs were 
calculated over the variance of the main cluster foci 
(theoretically ideal substances), PCs No. 6-11 were 
calculated over the variance among all 30 substances. 
Graphically spoken, the eleven Principal Components define 
new orthogonal axes of the eleven dimensional vector space 
over the original indices representing one dimension each 
[35]. 

 The proportion of each original index represented by 
each PC can be depicted in Fig. (4). This visualization shows 
one PC by each colored line. The original indices are marked 
on the abscissa whereas the ordinate shows the proportion of 
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each index, e. g. the first PC (displayed in a continuous blue 
line) combines about 5 % of index 1, 6 % of index 2 and so 
on, comprising a total of already 43 % of the original 
information. Those PCs contributing significantly to the total 
of about 95 % of the original information are drawn in 
continuous lines (PC #1-6), the dotted lines (PC #7-11) do 
nearly carry no more information and therefore do not 
contribute significantly to the cumulative percentage of 
information as shown in Fig (4). 

 Each of the eleven Principal Components displays quite 
an even mixture of the original index quantities. There is no 
PC that represents mainly one index but each PC comprises a 
significant part of each original one. This finding may lead 
to difficulties in dimensional reduction, as the Principal 
Components are calculated under the condition to maximize 
the original data information each component covers and 
thus, this information cannot be deduced to derive simply 
from mainly a single index. 

 However, it was possible to reduce dimensions and 
therefore complexity of the original data set. This was tested 
and verified by applying the k-means clustering process once 
again to the substance data set fully regenerated after the 
combined CA-PCA process, reproducing the same clustering 
result as obtained from the original Cluster Analysis (Fig. 2). 
For visualization, the two dimensional scatterplot made up of 
the first two PCs already shows a clear differentiation 
between the 7 clusters (Fig. 5a), reflecting about 71 % of the 
original data information. The three dimensional scatterplot 
covers about 85 % of the original information and is built 
upon the first three PCs (Fig. 5b). In both projections a clear 
grouping of the substances belonging to the 7 different 
clusters marked in different colors can be noted. Therefore, 
this process could be taken as a proof of principle for the 
functionality of the proposed method. 

 Moreover, no loss of information occurred if a reduction 
of the data to six dimensions, represented by the first six 
PCs, is performed as deduced from the cumulative 
percentage of information in Fig. (3). The result showed 
exactly the same structure of clusters containing exactly the 
same substances within each cluster as obtained from the 
Cluster Analysis in the first part of this study (Fig. 2). 

5. CONCLUSIONS AND OUTLOOK 

 We conclude that a dimensional reduction to six PCs is 
sufficient to represent the chemical behavior of all single 
substances for successful reclustering in our study, although 
we cannot deduce the information of a single PC to derive 
mainly from one index as the PCs display quite an even 
mixture of the original indices. Hence, all eleven indices are 

independent from each other (orthogonal) according to the 
analysis by our combined CA-PCA method. 

 Moreover, substances belonging to the same cluster 
should behave similar so that the results obtained for one 
representative substance can be assigned to other substances 
in the same cluster. The behavior of substances could be 
predicted if new substances are added to the clusters. Upon 
the analysis of new exhaust air it should ideally be possible 
to assign certain substances to already existing clusters 
solely upon their physicochemical values which are not any 
more to be analyzed by each single original index but only 
by the reduced set of PCs according to our combined CA-
PCA process. 

 Based on the knowledge about their predicted 
physicochemical behavior it might be possible to give a first 
estimation about which substances need necessarily to be 
removed by e. g. a selective adsorption process from the 
exhaust air to guarantee the removal of any malodor or even 
toxic substance, respectively. In the future, it might therefore 
not be necessary to analyze all substances but just a few 
representative substances in experiments. Both the addition 
of new substances to the already existing cluster structure 
and their experimental validation of the chemical behavior 
are currently being investigated in our laboratories. In total, 
this would lead to a significant reduction of money (time, 
complexity and number of experiments) in purification 
process development for selective adsorption of malodorous 
or toxic substances from exhaust air. 

ABBREVIATIONS 

CA = Cluster Analysis 

DBD = Dielectric barrier discharge 

ESP = Electrostatic precipitator 

PC = Principal Component 

PCA = Principal Component Analysis 

QSAR = Quantitative structure-activity relationship 

QSPR = Quantitative structure-property relationship 
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APPENDIX 

Supplementary Material 

 The original data matrix including all single index values is shown in Table S1 of the supplementary material. The list of 30 
substances along with their structures and cluster numbers can be found in Table S2. Chapter S 3.3.1 describes the minimal 
mathematical example we constructed and calculated to first establish our process. 
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Table S1. Original Data Matrix Including All Single Index Values Subsequently Subjected to the Combined Cluster Analysis and 
Principal Component Analysis. This Table was Imported into MATLAB §  acco Rding to Chapter 3.3. 

   ZI   WI   RI   BI   IIAC   IIMB   IIEC   TII   MM   WS (g/L)   VP 
(hPa)  

 Acetone  1,2955  0,4529  1,5710   8,6095  4,8000  11,1000  0,4155  0,4231  5,908  10000,0000  246,00  

 Cadaverine  1,2060  0,0000  2,8685   9,6166  5,3333  37,3333  0,4232  0,2900  4,866   1021,8000   0,90  

 Dimethyldisulfide  1,3710  0,0000  1,3710  16,3241  4,6000  12,7000  0,4207  0,3563  9,420   2,5000   38,00  

 Acetic Acid  1,5000  0,5177  2,4056  11,5733  4,2500   7,8750  0,4352  0,4529  7,506  602,9000   16,00  

 2 -- Heptanone  1,1433  0,2636  3,6635  9,9016  5,4545  40,7727  0,4161  0,2781  5,190   4,3000   4,50  

 n -- Heptane  0,8865  0,0000  2,8057  7,9391  5,5652  42,9565  0,4130  0,2770  4,357   0,0500   47,00  

 Piperidine  1,1661  0,0000  2,7933  9,1015  5,8824  23,0588  0,4209  0,2096  5,009  10000,0000   33,00  

 Propionic Acid  1,4354  0,4264  2,8454  11,3557  4,7273  13,0909  0,4301  0,4044  6,735   20,2500   4,00  

 Pyrrolidine  1,1981  0,0000  2,3788  8,7377  5,8571  16,7143  0,4218  0,2418  5,080  10000,0000  170,00  

 Skatol  1,2448  1,0526  3,9977  13,0239  5,5789  30,6316  0,4519  0,1275  6,904   0,4500   1,33  

 Toluene   0,9968  0,9710  3,0566  10,2249   5,2000  21,2000  0,4450   0,1979   6,143   0,4700   29,00  

 Triethylamine   1,0907  0,0000  2,0254   8,9828   5,4545  38,4545  0,4144   0,2970   4,600   133,0000   69,00  

 Water   0,9183  0,0000  0,9183   4,7354   2,0000   1,3333  0,4714   0,5443   6,007   10000,0000   23,40  

 Benzene   1,0000  1,0000  1,0000  10,5061   5,0000  14,5000  0,4553   0,2300   6,509   1,8000  100,00  

 4 -- Isopropenyl -- 1 
-- Methylcyclohex-
ene  

0,9612 0,3912 4,0270 9,8942 5,6923 49,0000 0,4266 0,1500 5,240 0,0300 1,90 

 Ethanol   1,2244  0,0000  2,4194   7,3672   4,6667   9,1111  0,4234   0,4605   5,119  10000,0000  58,00  

 Pyridine   1,3486  0,9940  2,7322  12,5100   4,9091  12,7273  0,4579   0,2387   7,191   10000,0000   20,50  

 2, 5 - Dimeth-
ylpyrazine  

1,4056 0,9544 2,4056 13,6475 5,2500 25,5000 0,4395 0,1743 6,759 32,0000 4,00 

 Hexanal   1,1674  0,2933  3,5766   9,8437   5,3684  31,2632  0,4181   0,3115   5,272   5,0000   12,00  

 1, 3 -- Pentadiene   0,9612  0,6000  3,1808   8,3981   4,6154  18,7692  0,4366   0,3336   5,240   0,6900   530,00  

 n -- Hexane   0,8813  0,0000  2,4464   7,4547   5,5000  33,8000  0,4125   0,3041   4,309   0,1600   162,00  

Methylcyclopentane   0,9183  0,0000  2,7947   7,7379   6,0000  24,9444  0,4167   0,2084   4,676   0,0420   147,00  

 Heptanal   1,1433  0,2636  3,7888  10,0792   5,4545  40,0909  0,4179   0,2834   5,190   1,2500   0,86  

 Benzaldehyde   1,2958  1,2958  3,2359  13,6649   5,0000  19,1429  0,4553   0,2044   7,580   3,3000   1,30  

 n -- Decane   0,8960  0,0000  3,2028   9,0423   5,6875  76,4375  0,4141   0,2186   4,446   0,00005   1,00  

 3 -- Octanone   1,1239  0,2399  3,8635  10,1408   5,4167  49,3333  0,4194   0,2495   5,128   4,5000   2,00  

 1 -- Octen -- 3 -- ol   1,1239  0,2399  4,0537  10,4005   5,3600  50,1600  0,4266   0,2588   5,128   0,0000   1,00  

 Octanal   1,1239  0,2399  3,9737  10,2971   5,5200  49,9200  0,4177   0,2600   5,128   0,5600   1,00  

 Nonanal   1,1078  0,2204  4,1375  10,4996   5,5714  60,7500  0,4176   0,2401   5,080   0,0960   0,35  

 2 -- Nonanone   1,1078  0,2204  4,0391  10,3601   5,5714  61,5000  0,4162   0,2370   5,080   0,3700   0,83  
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Table S2. Molecular Structure of the Substances Analyzed in the Combined Cluster Analysis and Subsequent Two-step Principal 
Component Analysis 

 Name   Structure  

 Cluster 1  

 Acetone  

CH3

CH3

O

  

Name   Structure  

 Ethanol   CH 3 CH 2 OH  

 Piperidine  

N
H  

 Pyrrolidine  
N
H

  

 Cluster 2  

 n-heptane  CH3 CH3  

 n-hexane  
CH3

CH3

  

 Methylcyclopentane  

 

CH3

 

 Triethylamine  

N CH3

CH3

CH3
  

 1,3-pentadien  

CH3
CH2

 

 Cluster 3  

 Cadaverine  NH2

NH2   

 2-heptanon  

CH3 CH3

O

  

 Heptanal  
CH3

O

H   

 Hexanal  CH3 O

H   
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 4-isopropenyl-1-methylcyclohexene  CH3

CH3 CH2  

 3-octanone  
CH3

CH3

O   

Octanal  O

HCH3   

 1-octen-3-ol  

CH3

OH

CH2

  

 Nonanal  O

H

CH3

  

 2-nonanon  CH3CH3

O   

 n-decane  CH3
CH3

  

 Cluster 4  

 Dimethyldisulfide  
CH3

S
S

CH3

  

 Cluster 5  

 Acetic acid  

CH3

OH

O

  

 Propionic acid  

CH3

OH

O

  

 Cluster 6  

 Skatole  

N
H

CH3

  

 Benzaldehyde  
HO
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 2,5-dimethylpirazine  CH3

N

N

CH3  

 Pyridine  

N   

 Toluene  CH3

  

 Benzol  

  

 Cluster 7  

 Water  
H

O

H  

 
S 3.3.1. Descriptive Minimal Mathematical Example 

 Here we present our procedure first on a constructed data set. The set is minimal as we need at least three indices for being 
able to apply our two-step procedure without getting trivial intermediate results for our Principal Components. Furthermore, we 
need at least 3 different clusters which should ideally be represented by only two Principal Components. Of course, those 
clusters should not all contain only one substance. Thus, we set up with a minimum of four substances spread over three 
clusters. The three index values for each substance s (index number indicates cluster) can be mathematically expressed via the 
following vectors:  
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The three main foci of the clusters result in:  
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 In order to achieve an equal weight and subsequently an equal contribution to the further data processing, a ``z-score'' 
transformation is applied. First, this includes a shift among the arithmetic mean  
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and as a second step, data are scaled regarding the standard deviation in each component. As the standard deviation is already 
equal in each component of our minimal example, we passed on without the scaling step as it would not influence our result at 
all but facilitate further calculations. The calculated index values for the transformed data resulted in the shifted vectors for the 
substances:  
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and the main foci:  
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The correlation matrix of the main foci is given by  
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and the corresponding eigenpairs are calculated to the following eigenvalues and eigenvectors:  
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Each eigenvector is a Principal Component with its eigenvalue representing its weight in terms of original information it 
contains. So the first Principal Component in our minimal descriptive example is as follows:  
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With the first Principal Component all transformed data of the substances can be expressed as:  
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 It is clear, that as1
~  and 2

~s  are not discriminable as they both have the same value of ``5'' for their first index entry. The matrix 
decomposition did not lead to the identification of any further Principal Components. Hence, it is sensible to repeat the whole 
process on the remaining data basis taking into account the complete variance of the data and not only the main foci, as it was 
carried out in the first round of PCA. The remaining data basis is given as  
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with its correlation matrix  
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and the corresponding eigenpairs (containing again an eigenvector and its eigenvalue):  
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 From the first eigenpair of this second round of PCA the next Principal Component (second in the total process) can be 
calculated as follows:  
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 The transformed data are now applied to this new basis given by the Principal Components (supplemented with the 
orthogonal complement) and calculated as follows:  
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 As in this minimal descriptive example the last row of the matrix only shows entries of ``0'', the four substances can be 
correctly displayed by the two Principal Components, as they already cover 100 % of the original information. 
 
 
 
 
 

REFERENCES 

[1]  Mayer H. Air pollution in cities. Atmos Environ 1999; 33(24-25): 
4029-37. 

[2]  Wolterbeek B. Biomonitoring of trace element air pollution:  prin-
ciples, possibilities and perspectives. Environ Pollut 2002; 120(1): 
11-21. 

[3]  Chaichanawong J, Tanthapanichakoon W, Charinpanitkul T, Eiad-
ua A, Sano N, Tamon H. High-temperature simultaneous removal 
of acetaldehyde and ammonia gases using corona discharge. Sci 
Technol Adv Mater 2005; 6(3-4): 319. 

[4]  Qu GZ, Li J, Li GF, Wu Y, Lu N. DBD regeneration of GAC 
loaded with acid orange 7. Asia-Pacific J Chem Eng 2009; 4(5): 
649-53. 

[5]  Robers A, Figura M, Thiesen PH, Niemeyer B. Desorption of odor-
active compounds by microwaves, ultrasound, and water. AI ChE J 
2005; 51(2): 502-10. 

[6]  Konrad G, Eigenberger G. Rotary adsorbers for waste air purifica-
tion and solvent recovery. Chemie Ingenieur Technik 1994; 66(3): 
321-31. 

[7]  Salden A, Eigenberger G. Multifunctional adsorber/reactor concept 
for waste-air purification. Chem Eng Sci 2001; 56(4): 1605-11. 

[8]  Munoz R, Sivret EC, Parcsi G, et al. Monitoring techniques for 
odour abatement assessment. Water Res 2010; 44(18): 5129-49. 

[9]  Zvinavashe E, Murk AJ, Rietjens IMCM. On the number of 
EINECS compounds that can be covered by (Q)SAR models for 
acute toxicity. Toxicol Lett 2009 10; 184(1): 67-72. 

[10]  Gardner JW. Detection of vapours and odours from a multisensor 
array using pattern recognition Part 1. Principal component and 
cluster analysis. Sensors Actuators B: Chem 1991; 4(1-2): 109-15. 

[11]  Yau SS, Chang SC. A direct method for cluster analysis. Pattern 
Recognition 1975; 7(4): 215-24. 

[12]  Wold S. Pattern recognition by means of disjoint principal compo-
nents models. Pattern Recognit 1976; 8(3): 127-39. 

[13]  Rannar S, Andersson PL. A Novel Approach Using Hierarchical 
Clustering To Select Industrial Chemicals for Environmental Im-
pact Assessment. J Chem Inf Model 2010; 50(1): 30-6. 

[14]  Willett P. Clustering tendency in chemical classifications. J Chem 
Inf Comput Sci 1985; 25(2): 78-80. 

[15]  Abdi H, Williams LJ. Principal component analysis. WIREs Com-
put Stat 2010; 2(4): 433-59. 

[16]  Balaban AT. Applications of graph theory in chemistry. J Chem Inf 
Comput Sci 1985; 25(3): 334-43. 

[17]  Basak SC, Magnuson VR, Niemi GJ, Regal RR, Veith GD. Topo-
logical indices:  their nature, mutual relatedness, and applications. 
Math Model 1987; 8(0): 300-5. 

[18]  Basak SC, Magnuson VR, Niemi GJ, Regal RR. Determining struc-
tural similarity of chemicals using graph-theoretic indices. Dis 
Appl Math 1988; 19(1-3): 17-44. 

[19]  Balaban AT, Bonchev D, Scitz WA. Topological/chemical dis-
tances and graph centers in molecular graphs with multiple bonds. J 
Mol Struct 1993; 280(2-3): 253-60. 

[20]  Basak SC, Niemi GJ, Veith GD. A graph-theoretic approach to 
predicting molecular properties. Math Comput Model 1990; 14: 
511-6. 

[21]  El-Sonbaty Y, Ismail MA. On-line hierarchical clustering. Pattern 
Recognit Lett 1998; 19(14): 1285-91. 

[22]  Questier F, Walczak B, Massart DL, Boucon C, de Jong S. Feature 
selection for hierarchical clustering. Anal Chim Acta 2002; 466(2): 
311-24. 

[23]  Likas A, Vlassis N, Verbeek J. The global k-means clustering 
algorithm. Pattern Recognit 2003; 36(2): 451-61. 

[24]  Barnard JM, Downs GM. Clustering of chemical structures on the 
basis of two-dimensional similarity measures. J Chem Inf Comput 
Sci 1992; 32(6): 644-9. 

[25]  Pollard D. Strong Consistency of K-Means Clustering. Ann Stat 
1981; 9(1): 135-40. 

[26]  Massart B, Guo Q, Questier F, et al. Data structures and data trans-
formations for clustering chemical data. TrAC Trends Anal Chem 
2001; 20(1): 35-41. 

[27]  Turk M, Pentland A. Eigenfaces for Recognition. J Cogn Neurosci 
1991; 3(1): 71-86. 

[28]  Forgács E, Cserháti T. Use of cluster and principal component 
analysis in quantitative structure-retention relationship study. Anal 
Chim Acta 1997; 348(1-3): 481-7. 

[29]  Mahlke IT, Thiesen PH, Niemeyer B. Chemical Indices and Meth-
ods of Multivariate Statistics as a Tool for Odor Classification. En-
viron Sci Technol 2007; 41(7): 2414-21. 

[30]  Gutman I, Trinajstic N. Graph theory and molecular orbitals. Total 
f-electron energy of alternant hydrocarbons. Chem Phy Lett1972; 
17(4): 535-8. 

[31]  Dubes R, Jain AK. Clustering techniques:  The user's dilemma. 
Pattern Recognit 1976; 8(4): 247-60. 

[32]  Jain A, Nandakumar K, Ross A. Score Normalization in Multimo-
dal Biometric Systems. Pattern Recognit 2005; 38: 2270-85. 

[33]  Tu IP, Chen H, Chen X. An Eigenvector Variability Plot. Stat 
Sinica 2009; 19(4): 1741-54. 

[34]  Linusson A, Wold S, Nordén B. Fuzzy Clustering of 627 Alcohols, 
Guided by a Strategy for Cluster Analysis of Chemical Compounds 
for Combinatorial Chemistry. Chemometr Intell Lab Syst 1998; 44: 
213-27. 

[35]  Tipping ME, Bishop CM. Probabilistic Principal Component 
Analysis. J R Stat Soc Series B Stat Methodol 1999; 61(3): 611-22. 

 
 
Received: March 22, 2013 Revised: May 28, 2013 Accepted: June 10, 2013 
 
 

© Ebeling  et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ 
by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 
 


