
 The Open Genomics Journal, 2008, 1, 13-21 13 

 

 1875-693X/08 2008 Bentham Open 

Open Access 

Molecular Genetic Etiology of Prostate Cancer 

Vaijayanti V. Pethe
1,2

 and Bharati Bapat
*,1,2,3

 

1
Samuel Lunenfeld Research Institute and 

2
Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 

Toronto, Canada 

3
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada 

Abstract: Prostate Cancer (PCa) is the most frequently diagnosed non-skin cancer and second leading cause of cancer 

deaths after lung cancer in the western industrialized countries. It varies widely by geographic location and ethnicity. It is 

clinically heterogeneous, complex and indeed a multi-factorial disease. While the majority of PCa is sporadic, as much as 

up to 40% of the cases are associated with some form of genetic susceptibility. It is clear today that etiology of PCa in-

volves several genetic loci with no single major gene accounting for a large proportion of susceptibility to the disease. In 

particular, allelic variations in four genes, namely RNASEL (1q25), MSR1 (8p22), ELAC2 (17p11) and EphB2 (1p36) have 

been shown to be associated with increased susceptibility to PCa. Also, tumors harboring mutations in these genes present 

with more aggressive clinical features and poor outcome. Recently, novel genetic alterations in prostate cancer patients 

have been identified – these include gene fusions involving the prostate-specific gene transmembrane protease, serine 2 

(TMPRSS2) and members of the erythroblastosis virus E26 transforming sequence (ETS) family of transcription factors. 

This predominant molecular subtype is considered to be an early event in PCa, and emerging evidence demonstrates its 

potential in prostate cancer detection, stratification and treatment. In addition to gene fusions, there is compelling evi-

dence demonstrating 8q24 region as a prostate cancer susceptibility locus and markers at this locus are statistically signifi-

cantly associated with an increased PCa risk in different ethnic groups. Genotyping of SNPs / markers in a predefined 

8q24 region as well as genome-wide association studies have implicated several polymorphisms ( rs7008482, rs1447295, 

rs16901979, rs698367) in this region as risk factors for PCa. In additions to genetic alterations, frequent epigenetic aberra-

tions such as DNA hypermethylation of tumor suppressor genes has been observed in PCa affecting the expression and 

function of a battery of genes leading to tumorigenesis, tumor progression and metastasis. In this review, we highlight 

some of the recent advances in molecular genetic etiology of PCa including promising candidate hereditary PCa suscepti-

bility genes, novel gene fusions in acquired PCa, 8q24 susceptibility locus, as well as examine current literature regarding 

epigenetic changes leading to prostate cancer development and progression. 

INTRODUCTION 

 Prostate Cancer (PCa) is the most frequently diagnosed 
non-skin cancer and second leading cause of cancer deaths 
after lung cancer in the western industrialized countries [1, 
2]. It is predominantly a disease of elderly men, its incidence 
increasing steeply in the 7

th
 decade of life. An estimated 40% 

of men over 50 years of age have slow growing and well- 
differentiated prostate cancer that can be histologically diag-
nosed. The incidence of prostate cancer varies widely by 
geographic location, and race/ ethnic background. The high-
est rates are reported in the US, Canada, Sweden, Australia 
and France. Global incidence patterns indicate that European 
countries have intermediate rates and Asian countries have 
lowest rates [3]. When stratified by ethnicity, African-
Americans have higher incidence (40% of all PCa cases) and 
mortality rates compared to other ethnic groups in the US [4, 
5] The traditional and widespread use of Prostate Specific 
Antigen (PSA) and digital rectal exam for PCa screening has 
resulted in earlier disease detection in the last decade.  
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Treatment options including radical prostactomy, external 
beam radiation and brachytherapy are being increasingly 
used to control localized disease. Despite these attempts, 
PCa continues to be a significant health problem in most 
western countries. The treatment of PCa is difficult, in that 
only a small proportion of men diagnosed will have the ag-
gressive form of the disease. Prostate tumors can be very 
slow growing and as such many men die with and not be-
cause of their PCa [6]. Prostate cancer is a complex and mul-
tifactorial disease and factors such as lifestyle, environment, 
hormones, and occupation have long been recognized as 
contributors of the disease [7]. Risk factors for overall inci-
dence of PCa include increasing age, body-mass index 
(BMI), cigarette smoking, a lack of physical activity, ethnic 
background (e.g. African ancestry), and family history of 
PCa [8, 9]. Role of different dietary factors in PCa develop-
ment has been studied; these include -supplementation with 
minerals like Calcium, Selenium, Zinc, Vitamins such as A, 
D, E; intake of soy, green tea, tomato-rich products (lyco-
pene) and alpha-lenoleic acid, as well as dietary lipids [9-
13]. Diet that includes fruits, vegetables (tomatoes, leg-
umes), selenium, vitamin E and D have been suggested to 
decrease the risk of PCa. Moreover, there is emerging evi-
dence that low-grade infection may have a role in prostate 
cancer development [14]. Predisposition to prostate cancer is 
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most likely caused by altered expression of some known and 
novel genes, and different models of Mendelian inheritance 
of germline mutations in candidate susceptibility genes [15-
20]. The Androgen Receptor (AR) gene has also been impli-
cated as a dominant oncogene in a subset of PCa cases; 
phosphorylation, somatic alterations, polymorphisms, ampli-
fication and over expression of Androgen Receptor are de-
tected in PCa cases that progress despite hormonal treatment 
[21-25]. In addition to genetic mechanisms, epigenetic 
changes leading to transcriptional inactivation and loss of 
expression of tumor suppressor genes significantly contrib-
ute to PCa progression [26-28]. 

GENETIC SUSCEPTIBILITY TO PROSTATE CAN-
CER 

 It is estimated that one in six men will have PCa in their 
life time and the risk of death due to metastatic disease is 
estimated to be 3-4% [16]. The majority of PCa is sporadic 
and displays an age-related increase in prevalence. It has 
been estimated that as much as 40% of PCa cases are likely 
to be associated with some form of genetic susceptibility. 
The underlying genetic factors include contribution of rare 
highly penetrant alleles, more frequently occurring weakly 
penetrant alleles, and gene-gene interactions. The terms “fa-
milial” and “hereditary” imply increased risk due to genetic 
susceptibility but are not synonymous. A diagnosis of he-
reditary prostate cancer includes early age of onset (<55 
years of age) and having three or more family members di-
agnosed with PCa, consistent with the inheritance of a highly 
penetrant rare susceptibility gene. Familial PCa cases show 
evidence of aggregation of PCa, but not necessarily inherited 
in Mendelian fashion. 

Familial Prostate Cancer 

 Familial aggregation of PCa has been recognized since 
1958. Familial prostate cancer, which accounts for up to 
20% of all cases of the disease in general population, refers 
to the occurrence of multiple cases (clustering) of PCa 
within a family. It is commonly defined as a family in which 
there are two first-degree (father, brother, son) relatives or 
one first-degree and at least two second-degree (grandfather, 
uncle, nephew) relatives with PCa. This clustering may be 
due to shared environment or chance occurrence given high 
frequency of PCa in general population, or may be due to 
genetic susceptibility. Populations of different origins in-
cluding US Caucasian, Canadian, European, Asian, African-
Americans exhibit this type of clustering [29-34]. Evidence 
also indicates that the risk of PCa increases proportionally to 
the number of relatives affected, the degree of relationship to 
the proband and is inversely related to the age at diagnosis of 
PCa. Epidemiologic studies employing different study de-
signs and/or populations suggest that a family history of PCa 
that includes an affected father or brother is associated with 
at least a 2-fold increase in the disease risk among the rela-
tives [31]. Men with 3 or more first -degree relatives with 
PCa are at a 5 to 11-fold increased risk of disease, than men 
without family history [31, 35]. Hemminki et al. (2008) [36] 
recently studied a total of 34 cancer sites among 205, 638 
cases from the Swedish Cancer Registry, and reported that 
PCa showed the highest familial proportion (20.15%), fol-
lowed by breast (13.8%) and colon (12.8%) cancer. A recent 
study involving a cohort of 179 patients from Quebec, Can-

ada, reported familial clustering, defined as having at least 
one affected relative in the family, in 25% of cases [34]. 

Hereditary Prostate Cancer 

 Hereditary prostate cancer accounts for 5-10% of all PCa 
[37]. It is marked by a pattern consistent with passage of a 
rare highly penetrant susceptibility gene via Mendelian in-
heritance as an autosomal dominant susceptibility trait [20]. 
Hereditary PCa families are characterized by at least one of 
the following criteria, originally defined by Carter et al. 
1993 [37]. These include: 3 or more first-degree relatives 
with PCa, three successive generations with PCa (either 
through paternal or maternal lineage), and two siblings with 
prostate cancer diagnosed at a relatively young age (< 55 
y/o). Although inherited forms of PCa tend to develop at an 
earlier age compared to sporadic cases, the differences in 
terms of biological potential for PCa progression, biochemi-
cal recurrence, pathological characteristics of tumors be-
tween inherited and sporadic forms of the disease are less 
evident [37-39]. The genetics of hereditary prostate cancer is 
complex and several genes have been proposed as suscepti-
bility factors in this syndrome. In the following section, we 
briefly describe promising candidate hereditary PCa suscep-
tibility genes. We also summarize candidate genes that are 
known to alter overall PCa risk in different ethnic popula-
tions (Table 1). 

PROSTATE CANCER SUSCEPTIBILITY GENES 

 Over the past decade, there have been many published 
studies suggesting linkage of PCa susceptibility to different 
chromosomal regions including 3p,5q,8q,13q,15 and X [40]. 
Predisposition to PCa is probably polygenic, which can be 
explained by different models of Mendelian inheritance or 
incomplete penetrance. Segregation analyses also support 
autosomal recessive or X-linked, as well as multifactorial 
mode of inheritance. It is clear that PCa etiology involves 
several genetic loci with no major or a single gene account-
ing for a large proportion of susceptibility to the disease. 
However, germline mutations have been found in a few can-
didate genes for hereditary prostate cancer. These include 
RNASEL at 1q25, MSR1 at 8p22, ELAC2 at 17p11 and more 
recently EphB2 at 1p36. The frequency of nonsense and mis-
sense mutations within these candidate genes varies signifi-
cantly across different ethnic populations. The mutations 
within these genes, in addition to common polymorphisms, 
are also known to contribute to sporadic disease in different 
populations [41-44]. 

Hereditary Prostate Cancer 1 (HPC1) 

 To accelerate progress in the field of gene discovery, the 
International Consortium for Prostate Cancer Genetics 
(ICPCG) was formed in 1995, and this group reported link-
age to susceptibility locus on chromosomal region 1q24-q25 
to PCa, which they named Hereditary Prostate Cancer 1 
(HPC1). HPC1, was implicated in PCa susceptibility by gen-
erating the first genome-wide linkage scan using 772 fami-
lies affected by hereditary prostate cancer and this locus was 
found to account for about a third of highly penetrant early 
prostate cancer cases [45]. Importantly, the gene RNASEL is 
localized to HPC1 and several recent studies have linked 
RNASEL germline mutations to PCa susceptibility [42, 46-
48]. Functional studies revealed that RNASEL 1 regulates 
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cell proliferation and apoptosis through interferon-regulated 
2-5A pathway and is a candidate tumor suppressor gene [49]. 
In particular, Arg 462 Glu [R462Q], a common and well 
documented missense variant, with reduced enzymatic activ-
ity compared to wild type, has been implicated in prostate 
cancer risk from several epidemiologic and functional stud-
ies [42, 48]. A large, controlled sib-pair study (family-based 
case-control study) implicated the R462Q variant in up to 
13% of unselected prostate cancer cases [42]. One mutated 
copy of R462Q increased the risk of PCa by about 50%. In 
addition, rare mutations of RNASEL are associated with 
different ethnic groups. A founder and deleterious frame 
shift mutation 471delAAAG was identified in a single Ash-
kenazi Jewish cohort [50]. In another study, the 471del 
AAAG mutation was detected in a single male with Prostate 
cancer (1/294, 0.3%), in two ovarian cancer patients (2/141, 
1.4%) and in one of 242 healthy controls (0.41%) [51]. A 
truncating mutation, E265X, found in Finnish hereditary PCa 
families, showed an association with increased risk of pros-
tate cancer [48]. PCa patients carrying 471del AAAG and 
E265X mutations showed loss of heterozygosity of wild type 
allele in microdissected prostate tumor DNAs [46, 47]. De-
spite these reports supporting the involvement of RNASEL 
in PCa etiology [42, 46-48], others have reported no link of 
RNASEL to PCa [52-54]. This discrepancy may be attribut-
able to either population differences and/or distinct study 
designs directly or indirectly modulating the impact of 
RNASEL on prostate carcinogenesis. 

 Further intriguing is the role of RNASEL in viral defense 
as an important effector of antiviral action of interferons. 
Urisman et al. (2006) [14] explored a possible link between 

incidence of viral infection and RNASEL genotypes in pros-
tate cancer patients. Using DNA microarray-based strategy 
(DNA ViroChip) they identified the presence of novel gam-
maretroviral (XMRV) sequences in cDNA samples from 
seven of 11 (60%) R462Q homozygous (QQ) cases, and in 
one of eight (10%) heterozygous (RQ) and homozygous 
wild-type (RR) cases. 

HPC2 (ELAC2) – [tRNA Processing Endoribonuclease] 

 HPC2 located on chromosomal region 17p11, harbors 
ELAC2, which is the first candidate gene identified for hu-
man prostate cancer based on linkage analysis and positional 
cloning [55]. ELAC2 encodes a 3’processing endoribonucle-
ase, associated with gamma tubulin, which is a component of 
mitotic apparatus suggesting a possible role of ELAC2 in 
cell cycle control [56]. A number of germline variants in-
cluding mutations have been identified in this gene. Specifi-
cally, two common missense alterations Ser217Leu (S217L) 
and Ala541Thr (A541T), are associated with increased risk 
of PCa in men belonging to hereditary prostate cancer fami-
lies [43, 44, 55, 57]. A number of polymorphic variants have 
also been described linked to PCa risk in various populations 
[44, 58-63]. 

MSR1 [Macrophage Scavenger Receptor 1] 

 The chromosomal 8p22 region is one of the loci that are 
frequently deleted in PCa and also linked to hereditary pros-
tate cancer [64-66]. MSR1 is a candidate PCa susceptibility 
gene that was identified by a combination of family-based 
linkage and association studies and systematic evaluations of 
genes at 8p22-23 region by screening for mutations in 

Table 1. Genes Influencing Prostate Cancer Risk 

 

Gene/(Locus) Alterations Associated with PCa Risk Function [Citations] 

Annexin A7 (10q21) 
Reduced expression/ Loss of heterozygosity (LOH)  

Encodes for Ca- activated GTPase implicated in both exocy-
totic secretion in cells and control of growth [131] 

ATBF1 (16q22) Deletion of codon 3381 (3381 del)  Gene coding for cell cycle active protein [132, 133] 

CDKN1B (12p11-13) p27/Kip 
Reduced expression and SNP variant in codon 109 

Inhibits cyclin-dependent kinases and blocks cell prolifera-
tion [134, 135] 

CHEK2 (22q12.1) 
Truncating mutation 1100delC 

Important regulator of p53 in the DNA-damage-signaling 
pathway [136, 137] 

CYP17 (10q24.3) Polymorphic T (A1 allele) to C (A2 allele) in 5’ pro-
moter  region 

Encodes enzyme P-450c17  which functions  in androgen 
biosynthesis pathway [138] 

CYP1B1 (2p21-22) SNP at codon 119 (G T), Haplotype CGCCG of-
1001C/T, -263G/A, -13C/T+142C/G and +355G/ 

Involved  in androgen  metabolism [139] 

CYP3A4 (7q21.1) 
CYP3A4 A>G variant  in 5’ promoter  

Member of cytochrome P450 family involved  in oxidation of 
testosterone for deactivation of hormone [140, 141] 

GSTP1 (11q13.3) 
313 A>G variant 

Metabolism of carcinogens and defense against Reactive 
Oxygen Species (ROS) [142] 

KLF6 (10p15) Intronic  SNP -  IVS1 –27 G>A [IVS A allele] & re-
duced expression 

Zinc finger transcription factor with a role in cell prolifera-
tion and differentiation [143, 144] 

PTEN (10q23.3) Reduced expression  
Somatic mutations/deletion 

Hypermethylation 

Acts as tumor  suppressor and codes for protein that regulates 
cell cycle and prevents cell proliferation [145-147] 

NKX3.1 (8p21) Loss of heterozygosity (LOH), Reduced expression,  
T164A 

Homeodomain containing  transcription factor [148-152] 

Genetic alterations (SNPs*, deletions, LOH*, copy number aberrations) and/or altered gene expression patterns affecting prostate cancer risk in different ethnic populations. 
*SNP – Single Nucleotide Polymorphism *LOH- Loss of heterozygosity. 
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probands of 190 hereditary prostate cancer families [65]. The 
MSR gene encodes proteins that function with responses to 
infections, which may play a role in susceptibility to prostate 
cancer [16]. It can also bind to bacteria and modified lipo-
proteins [67] and functions in several processes relevant to 
prostate carcinogenesis [68]. Mutations in MSR1, including 
truncating mutations have been shown to be associated with 
PCa risk both in hereditary and sporadic cancers. Xu et al. 
[65, 66] carried out a comprehensive genetic study using a 
large number of subjects from multiple populations (men 
from hereditary prostate cancer families, non- hereditary 
prostate cancer men, and case-control studies conducted us-
ing African-American men) and screened for germline vari-
ants in MSR1 among probands in each group. Six rare mis-
sense mutations [Pro36Ala, Ser41Tyr, Val113Ala, Asp174 
Tyr, Pro275Ala, Gly369Ser] and one nonsense [Arg 293X] 
mutation within MSR1 were observed to co-segregate with 
the disease in hereditary prostate cancer (HPC) families, 
(p=0.0007) [65]. Furthermore, the prevalence of MSR1 mu-
tations in European and African American probands was 
substantially higher compared to unaffected men [65]. Arg 
293X and Ser 41 Tyr were the most common mutations de-
tected among PCa patients of European and African-
American descent, respectively [66]. Seppala et al. [69] 
screened the youngest affected member from each of 120 
hereditary prostate cancer families for MSR1 mutations by 
Single-strand conformational polymorphism analysis. Three 
MSR1 variants (R293X, P275A, -1473A>G) were identified 
and they reported no significantly elevated or lowered risks 
for PCa for the carriers of these variants. However, the mean 
age of diagnosis of R293X mutation carriers among the he-
rediatary prostate cancer probands was significantly lower 
compared with noncarriers (55.4 versus 65.4 years; t test, 
p=0.04). 

EphB2 [Eph Receptor B2] 

 The EphB2 gene encodes for a receptor tyrosine kinase. 
It was recently identified as a tumor-suppressor gene in 
DU145 PCa cell line and in primary prostate tumor speci-
mens using a combination of strategy of nonsense –mediated 
mRNA decay microarray profiling and array-based CGH 
[70]. EphB2 maps to chromosomal region 1p36 previously 
shown to be linked to hereditary prostate cancer among eth-
nically diverse sets of families [71-73]. Somatic mutations in 
EphB2 occur in ~10% of sporadic prostate tumors. Kittles  
et al. recently (2006) [74] evaluated the contribution of 
EphB2 to inherited PCa susceptibility in African Americans 
(AA) by screening for germline polymorphisms. Ten coding 
sequence variants were identified, including the K1019X 
(3055A to T), a germline nonsense mutation, which was pre-
sent in 15.3% of the African –American hereditary prostate 
cancer probands, but only 1.7% European American control 
samples. This mutation increased the risk for PCa over two-
fold [p = 0.003]. Although the functional significance of 
K1019X mutation is unknown, it suggests a pathogenic role 
for EphB2 in PCa, which warrants further investigation. 

BRCA1/BRCA2 

 Germline mutations of tumor suppressor genes BRCA1 
(17q21) and BRCA2 (13q12) are linked to hereditary breast 
cancers. While multiple studies have excluded a potential 
role for BRCA1 in prostate cancer, an association with pros-

tate cancer is reported in breast-ovarian cancer families with 
BRCA2 mutations accounting for about 2-5% of early-onset 
prostate cancers [75-77]. A common founder mutation 
(6174delT) has been identified in Ashkenazi Jewish popula-
tion and this allele showed a significant association with 
prostate cancer risk [78]. 

Androgen Receptor (AR) 

 Androgens, which exert their effect via Androgen Recep-
tor (AR), are essential for the prostate development and 
maintenance [[79]. The AR gene located on the X chromo-
some contains polymorphic trinucleotide repeats (CAG or 
GGC) in exon 1 and these encode for a variable length of 
glutamine and glycine tract, respectively, in the AR protein. 
There is an inverse relationship between repeat length and 
AR transcriptional activity [80]. Reduced repeat length is 
associated with prostate cancer recurrence and early-onset 
disease [39, 81]. The number of CAG repeats ranges from 8-
31 [82]. Decreased transactivation activity and binding affin-
ity for androgens is associated with increased number of 
repeats and it may confer a protective effect in terms of pros-
tate cancer risk. Whereas somatic alteration of the repeat 
length is very rare, a shorter CAG repeat has been shown to 
be associated with increased risk and more aggressive tumor 
features (high tumor stage and grade, metastasis, mortal-
ity)[83] The GGC repeat also appears to be associated with 
prostate cancer risk [84]. 

 The association between AR and PCa has been well es-
tablished and AR expression is sustained even at the most 
advanced phases of androgen-independent disease [85]. 
Therefore, androgen- ablation and antiandrogen therapy form 
important treatment regimen of the disease, though most 
patients go on to develop and will die of androgen-
independent prostate cancer. There is a plethora of literature 
available explaining the possible mechanisms of AR and 
AR-regulated gene expression in recurrent disease. Some of 
the mechanisms include: 1. AR plays a role as a potent on-
cogene; 2. AR activity is enhanced by genomic amplification 
in approximately one-third of tumors even in the relative 
absence of androgen [25] 3. In some prostate carcinomas, 
somatic AR mutations alter the specificity of the AR recep-
tor, enhancing its hormone sensitivity [21, 25, 86, 87]. 
Germline polymorphisms in the trinucleotide repeat of the 
AR gene, which probably affect AR activities, have been 
linked to increased prostate cancer risk. Others have reported 
that activation of AR in androgen-independent disease may 
also be accomplished by induction of co-activators such as 

-catenin and p160 family members [88-90]. -catenin is 
rarely mutated in PCa, but can activate AR cause its co-
localization to the nucleus and enhance hormone sensitivity 
[89, 90]. 

8q24 REGION AND PROSTATE CANCER RISK 

 To date multiple chromosomal aberrations [91] as well as 
certain chromosomal regions (1q, 17p, 8p) have been identi-
fied as likely harboring PCa susceptibility genes [40]. Muta-
tions and sequence variants in many candidate genes from 
these regions have been reported to be associated with PCa 
risk [46, 55, 65, 68]. Emerging evidence indicates linkage of 
both 8p and 8q regions to PCa and frequent genomic rear-
rangements are observed at 8p [53, 72, 92-95] as well as 8q 
[96, 97] regions in prostate tumors. 
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 It has been known for some time that amplification, or 
gain of chromosomal region 8q24 (including the c-MYC 
region) is a frequent event in PCa [98]. Genome-wide asso-
ciation [99, 100] studies and studies involving Single Nu-
cleotide Polymorphism(SNP) genotyping have identified 
several SNPs associated with PCa risk [101, 102]. Recently, 
Amundadottir et al. (2006) [103] localized a region at 8q24 
locus via linkage analysis and identified specific variants in a 
region spanning from 128.54 – 128.62 Mb that were associa-
ted with increased risk of prostate cancer in Icelandic fami-
lies. Further analysis of this region led to the identification of 
several common nucleotide variants associated with PCa in 
European and African populations. Two representative 
markers, a microsatellite repeat DG8S737 and a SNP 
rs1447295 showed the strongest association with PCa in 
three case-control series of European ancestry (Iceland & 
Sweden), as well as a cohort of US Caucasians [99, 103]. In 
an independent report, Freedman et al. (2006) [104] con-
firmed the association between rs 1447295 and PCa risk 
(overall p<4.2 x10

-9
) by using four case-control study popu-

lations including Japanese Americans, Native Hawaiians, 
Latino Americans, and European Americans. Among Afri-
can Americans, the association was statistically significant in 
men diagnosed with PCa at an early age [<55 years of age] 
(p = 0.011) and insignificant for those diagnosed at a later 
age (p= 0.924). More recently, studies by Gudmundsson  
et al. (2007) [101], Haiman et al. (2007) [105], and Yeager  
et al. (2007) [102] provided further evidence by demonstra-
ting an extraordinarily strong association (adjusted p value = 
4x10 

-29
) of rs1447295 SNP with PCa. Linkage scans and 

Genome- wide association studies have identified this ge-
nomic region also associated with risks of other cancers in-
cluding CRC and breast [106, 107]. The 8q24 region appears 
to be a “gene-poor” region and is a common location for 
somatic gains for PCa. These findings are intriguing and 
suggest that the vast proportion of the non-coding repetitive 
regions of the genome may contain novel regulatory ele-
ments or even genes that we have yet to identify and under-
stand. Finally, mechanism by which the nucleotide marker 
and the SNP contribute to an increased risk of prostate re-
mains to be elucidated. 

GENE FUSIONS AS NEW GENETIC MARKERS FOR 
PROSTATE CANCER 

 Gene rearrangements are associated with a number of 
cancers especially lymphomas, leukemias, and sarcomas. 
Recent studies have uncovered specific gene rearrangements 
implicated in a subset of prostate cancers. These novel rear-
rangements were discovered using “Oncomine”, a collective 
database of gene expression profiling generated from various 
cancer studies across the globe [108]. One such rearrange-
ment, identified using FISH and RTPCR, involves ETS tran-
scription factor family- either ERG(21q22.2) and 
ETV1(7p21.2) or ETV4 (17q21) with TMPRSS2 (21q22.3) 
[109-113]. ERG and ETV1/4 are ETS transcription factor 
genes and TMPRSS2 is an androgen-regulated gene. While 
TMPRSS2: ERG fusions are the most predominant subtype 
of ETS gene fusions (50% of PCa), those involving ETV1 or 
ETV4 occur in ~ 1-10% of PCa cases [111, 114-118]. Al-
though the fusion event seems to be cancer-specific (40-80% 
of cancers) and rare in BPH, it is detected in about 20% of 
preneoplasic (PIN) lesions [113,116]. These rearrangements 

occur via different processes involving either a deletion (due 
to loss of 3’ TMPRSS2 signal) or a translocation (split of 5’ 
and 3’ TMPRSS2 signals), or alternatively involving both 
mechanisms in different tumor foci [119]. 

 The TMPRSS2-ERG fusion is considered to be an early 
event in PCa development. The fusions were detected non-
invasively in urine sample of patients with clinically local-
ized PCa [120]. The test was developed using RNA amplifi-
cation and quantitative PCR [120]. When urine was collected 
from 19 patients with clinically localized prostate cancer, 
42% of the patients had the gene fusion detected, consistent 
with that found in tissue data analysis. The translocation of 
ERG and ETV1 may be redundant because only one or the 
other was found fused to the TMPRSS2 regulatory region in 
any given tumor. 

 Mosquera et al. (2007) [121] demonstrated a significant 
link between chromosomal fusion status in the prostate tu-
mors and the tumor phenotype. They studied 253 prostate 
cancers for the presence of characteristic histopathological 
features using an ERG break-apart FISH assay. Five out of 
eight morphological features were significantly associated 
with the presence of TMPRSS2-ERG fusions in cancers (p 
<0.05). These were as follows: blue-tinged mucin, cribiform 
growth pattern, macronucleoli, intraductal tumor spread, and 
signet cell features. Only 24% of tumors without any of 
these features displayed the TMPRSS2-ERG fusion. Mucin 
positive carcinomas more often harbor such gene fusions 
compared to mucin-negative tumors (p= 0.004) [119]. It is 
likely that TMPRSS2-ERG over expression may initiate spe-
cific molecular pathways that favor a typical phenotype for 
the tumors. The fusion-specific phenotype may have prog-
nostic implications, and merits further investigation using 
large series of prostate cancers with known fusion status. 
Emerging data suggest that gene fusion carrying prostate 
tumors exhibit a distinct clinical course and thus support it’s 
use as a potential prognostic biomarker. 

 More recently, Helgeson et al. 2008 [109] identified ad-
ditional 5’ partners in ETV1 fusions including TMPRSS2, 
SLC45A3, HERV-K_22q11.23, C150RF21, and HNRPA 
2B1. These 5’ partners are differentially regulated by andro-
gen (androgen-induced, androgen-repressed and androgen 
insensitive) and they define distinct classes of ETS gene re-
arrangements. To date, the partners have only been identified 
in ETV1 fusions, it is not known if they fuse with ERG or 
additional ETS family members. 

DNA METHYLATION AND PROSTATE CANCER 

 Hypermethylation of cytosine guanine dinucleotide is-
lands (CGI) at promoter regions of tumor suppressor genes 
has been recognized for a number of tumors as an important 
event in tumorigenesis, including prostate cancer. CpG is-
land hypermethylation causes gene silencing through tran-
scriptional inactivation and thereby contributes to prostate 
cancer development and progression. Hypermethylation of 
candidate genes has been studied contribution of panel of 
some genes has been evaluated for potential role as biomark-
ers for diagnosis and/or prognosis of prostate cancer [26, 
122-126]. GSTP1 is the most consistently hypermethylated 
marker in prostate cancer [127, 128]. GSTP1 hypermethyla-
tion was found to be highly tumor-specific, but also preva-
lent in HGPIN lesions, which makes it an attractive early 
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detection marker [127]. GSTP1 hypermethylation has been 
also studied in urine sediment as a non-interventional test for 
determining the need for prostate biopsies and as a bio-
marker for diagnosis [15, 129]. Emerging evidence suggests 
that a defined panel of methylated genes rather than a single 
gene is more likely responsible for prostate cancer progres-
sion. Candidate genes most commonly studied for methyla-
tion include APC, DAPK, ECDH1, GSTP1, MGMT, P14 
[ARF], P16, RAR 2, RASSF1a, and TIMP3 [28, 130]. Ho-
que et al. (2005) [130] compared urine sediment from 52 
prostate cancer patients undergoing radical prostatectomy 
with that of 91 age-matched controls. All 52 cancer patients 
had at least one hypermethylated gene, and 80% had 3 or 
more hypermethylated genes. The 4 most commonly methy-
lated genes were GSTP1, p16, ARF, and MGMT. None of 
the controls showed hypermethylation of any gene. Recently, 
Roupret et al. (2007) [28] analyzed methylation patterns in 
95 patients undergoing radical prostactomy and 38 age-
matched controls with negative prostate biopsies. Eight of 
the loci had increased methylation in cancer patients com-
pared to the controls (p <0.05). Again, the methylated panel 
of genes consisted of GSTP1, APC, RASSF1a, and RAR 2. 
The sensitivity for prostate cancer detection was 86% and 
diagnostic accuracy was reported to be 89%. The potential 
for DNA methylation in the clinical arena including it’s role 
as biomarker for early cancer detection, as prognostic indica-
tor for PCa, as well as it’s potential in designing novel thera-
peutic strategies for PCa has been reviewed [26]. 

CONCLUSION 

 The genetic basis of PCa is complex and includes both 
heritable and somatic genetic alterations. Traditional linkage 
studies and population-based genome-wide association stud-
ies have identified many candidate susceptibility loci, how-
ever the results from these studies have not been consistently 
replicated, possibly due to phenocopies in families and/or 
due to locus heterogeneity. Recent advances have provided 
significant insights into initiation and progression of prostate 
cancer, however much work is needed to elucidate how these 
alterations relate to each other. Future studies need to focus 
on these issues by building multifactorial inheritance models 
that account for interplay between genetic, epigenetic and 
environmental factors in prostate carcinogenesis. 
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