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Abstract: Chargaff ’s first parity rule for the contents of the four nucleotides in DNA is easily understood based on the 

double-stranded DNA structure. However, the second parity rule, based on similar nucleotide relationships in single-

stranded DNA, has been a puzzle in molecular biology, because it is impossible to imagine how pairs of G and C, and A 

and T are formed in the single DNA strand. In the present study, Chargaff’s second parity rule can be solved based on nu-

cleotide contents and the correlation between the two strands in double-stranded DNA. 

INTRODUCTION 

 The first parity rule for the contents of the four nucleo-
tides in DNA, G = C, A = T, and G + A = T + C, was dis-
covered experimentally by Chargaff in1950 [1]. This finding 
seems to have contributed to the discovery of the double 
helical structure of DNA by Watson and Crick in 1953 [2]. 
In addition, Chargaff and his colleagues also reported that 
similar nucleotide relationships were applicable to the single 
DNA strand and this became known as Chargaff’s second 
parity rule [3]. Despite being proposed in 1968 and although 
many complete genomes have been found to obey this rule, 
its basis remains unknown. 

 Recently, Mitchell and Bridge (2006) examined 1,495 
viral, 835 organelle, 231 bacterial and 20 archaeal genomes, 
and 164 sequences from 15 eukaryotes, to determine whether 
these DNAs fit Chargaff ’s second parity rule [4]. They repor-
ted that only single DNA strands that form cell genome dou-
ble-stranded DNA obeyed Chargaff's second parity rule [4] 
whereas some organelle genomes deviated from this rule 
[5,6]. 

 In general, molecular biology, including genome biology, 
has progressed based on an understanding of the relation-
ships between gene functions and nucleotide or amino acid 
sequences. Previously, we determined the ratio of nucleo-
tides to the total number of nucleotides in the coding region 
on the genome or that of amino acids to the total number of 
amino acid presumed to be encoded by the genome. This 
analysis showed that the genome is homogeneously con-
structed from putative small units consisting of various genes 
displaying almost the same codon usages [7] and amino acid 
compositions [8]. These units, each encoding 3,000 – 7,000 
amino acid residues, represent the characteristics of the com-
plete genome, even though each gene has a different nucleo-
tide sequence. In addition, symmetry is observed in long 
nucleotide sequences [9] and in complete genomes [10]. 
Based on these results, the genomes of both prokaryotes and 
eukaryotes are homogeneously constructed from certain 
units consisting of coding and non-coding DNA. 

 

 

*Address correspondence to this author at the Educational Support Center, 

Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan;  

E-mail: kenjis@dokkyomed.ac.jp 

RESULTS AND DISCUSSION 

 The present study was designed to solve the second par-
ity rule. To analyze the nucleotide contents in double-
stranded DNA of the complete genome, the strands were 
schematically drawn, as shown in Fig. (1). The size of open 
reading frame (ORF) 1, consisting of numerous genes on the 
forward strand, is almost equal to that of ORF2, consisting of 
numerous genes on the reverse strand. Indeed, the nucleotide 
contents in the coding region were almost the same between 
the forward and reverse strands, and no significant difference 
was also observed in the non-coding region between the two 
strands [11]. The non-coding region can be divided simply 
into two equal parts (non-open reading frame (NORF) 1 and 
NORF2). Thus, the nucleotide contents in ORF2 can be ex-
pressed as a function of the nucleotide contents in ORF1, 
because they belong to the same genome and have almost the 
same coding size: Gb  Ga, Cb  Ca, Tb  Ta, and Ab  Aa. 
Additionally, as b’ is complementary to b, the nucleotide 
contents in the complementary ORF2 can be expressed as a 
function of the nucleotide contents in ORF1 via those in 
ORF2, as follows: Gb’ = Cb  Ca, Cb’ = Gb  Ga, Tb’ = Ab 

 Aa and Ab’ = Tb  Ta. 

 In the non-coding region, consisting of two equal parts, 
the same relationships hold: 

Gd  Gc, Cd  Cc, Td  Tc, Ad  Ac, Gd’ = Cd  Cc, Cd’ = 
Gd  Gc, Td’ = Ad  Ac and Ad’ = Td  Tc. 

 The total contents of G and C in the single DNA strand 
consisting of four units are: 

Ga + Gb’ + Gc + Gd’  Ga + Ca + Gc +Cc 

Ca + Cb’ + Cc + Cd’  Ca + Ga + Cc + Gc 

 In these two equations, the right-hand sides of the equa-
tions are equal. 

 Therefore, 

Ga + Gb’ + Gc + Gd’  Ca + Cb’ + Cc + Cd’ 

 Finally, 

G  C in the single DNA strand. 

 Similarly, 

Ta + Tb’ + Tc + Td’  Aa + Ab’ + Ac + Ad’ 
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 Thus T  A in the single DNA strand. 

 These results lead us to the assumption that G + A  C + 
T. 

 Based on the present result, mitochondria consisting of H 
and L chains, with completely different gene numbers, ap-
pear not to be subject to the second parity rule [5,12]. When 
the complete genome is divided into two almost equal sized 
parts, the content of each nucleotide can be expressed as 
follows (Fig. 2): 

 

Fig. (2). More detailed schema of the double-stranded DNA of the 

simplified complete genome. The complete genome is divided into 

two equal parts. The forward strand consists of X and the comple-

ment Y’, and the reverse strand consists of X’ and Y. 

 X is almost equal to Y, and X’ and Y’ are the comple-
ments for X and Y, respectively. 

 Therefore, 

Gy  Gx, Cy  Cx, Gy’ = Cy  Cx and Cy’ = Gy  Gx 

 The G and C contents in the genome fragments X and Y’ 
are: 

Gx + Gy’  Gx + Cx 

Cx + Cy’  Cx + Gx 

 The right-hand sides of these equations are equal. 

 Thus, 

Gx + Gy’  Cx + Cy’ 

 Finally, 

G  C 

 Similarly, 

Ty  Tx, Ay  Ax, Ty’ = Ay  Ax and Ay’ = Ty  Tx 

 Therefore, 

Tx + Ty’  Tx + Ax 

Ax + Ay’  Ax + Tx 

 Thus, 

Tx + Ty’  Ax + Ay’ 

 Finally, 

T  A, and G + A  C + T 

 The double-helical structure of DNA is well known [2]. 
This double-helical structure is based on the physicochemi-
cal characteristics of each nucleotide: hydrogen bonding 
between G and C, and T and A. However, the significance of 
this structure has not yet been elucidated. It is well known 
that the replication of DNA and the transcription of mRNA 
occur based on a single DNA strand after unwinding of the 
double helix. Thus the function of the double-helical struc-
ture is unclear. Recently, we showed that codon evolution, in 
terms of codon usage, is governed by linear formulas ex-
pressing nucleotide contents, not only in prokaryotes, but 
also in eukaryotes [11]. The present study clearly reveals that 
the correlationship of nucleotide contents between the dou-
ble strands is extremely important to solve the second parity 
rule, and that the double-helical structure of DNA plays an 
important role in nucleotide substitutions. Thus I conclude 
that the formation of double-stranded DNA is involved in 
biological evolution. In addition, it seems that the double-
helical structure of DNA might have been formed synchro-
nously with genome establishment during the formation of 
primitive life [13,14]. 
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