1

Analysis of β-Amyloid Peptide -Binding Proteins in Microglial Cells

Sachiko Ito, Naomi Nishio and Ken-Ichi Isobe*

Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8520, Japan

Abstract: Alzheimer's disease is the most common form of dementia in the elderly. Although β -amyloid peptide (A β) has been considered major cause of Alzheimer pathology, molecular and cellular mechanisms of the disease development of Alzheimer have not been clarified yet. Presently A β has been considered to induce neural cell death by direct penetration of aggregated form or indirect cell death by inflammatory responses induced by A β -activated microglia. In order to understand A β induced microglial activation, we searched the proteins which bind to A β in activated microglial cell line. We stimulated Ra2 microglial cell line with A β . Activated Ra2 cells were immunoprecipitated with anti- A β and run the gel. Membrane was silver stained and bands were cut and digested with enzyme. They were analyzed by LC/MS/MS. We found that several proteins including myosin 9 and actin bound to A β . By the addition of A β , actin binding was enhanced and other proteins including IQGAP1, Plectin strongly bound to A β . These results indicate that A β binds to the proteins belonging to cellular cytoskeletal system.

Keywords: Alzheimer, Abeta, LC/MS/MS, microglia, IQGAP1, actin.

INTRODUCTION

Alzheimer's disease is the most common form of dementia. More than 35 million people have Alzheimer's disease worldwide. The principal risk factor for Alzheimer's disease is age [1]. Cerebral plaques laden with β -amyloid peptide (A β) have been considered major cause of Alzheimer pathology [2]. A β outside the cell spontaneously self-aggregates. A β can also grow into fibrils, which arrange themselves into β -pleated sheets to form the insoluble fibers of advanced amyloid plaques. A β damages neurons by two ways. One is direct toxic effect of A β to neurons. Another is indirect damages to neurons by microglial activation.

A β binds to CD36 and other scavenger receptors on microglia, which may induce microglial activation and produce inflammatory cytokines and chemokines, reactive oxygen species (ROS) and reactive nitrogen species (RNS) and other neurotoxins [3,4]. CD36 has established roles in the endocytic uptake of altered self components, including oxidized phospholipids, apoptotic cells and amyloid proteins [5] Recently it has been shown that CD36-TLR4-TLR6 activation as a common molecular mechanism by which atherogenic lipids and A β stimulate sterile inflammation [6]. We have shown that A β 25-35 induces Akt and IkBaphosphorylation within 15 min after addition to culture medium [7]. Further AB 1-42 induces Akt and PI3/Akt phosphorylation within 5 min [8]. These results indicate that monomer or soluble oligomer A β but not aggregated A β bind to cell membrane and induces immflamatory responses. In these cases $A\beta$ may stay in cell membrane or enter cells by endocytosis. It has been postulated that in neuronal cells AB works inside cells and may dampen excitatory

transmission and prevent neuronal hyperactivity [9]. In order to understand the A β -induced microglial activation, we tried to find out A β binding proteins inside microglia by LC/MS/MS methods.

MATERIALS AND METHODS

Materials

Synthetic human A β 1-42 was obtained from Peptide Institute Inc (Osaka, Japan). A β 1-42 was dissolved in 0.1% NH₃ according to the manufacturer's instructions. Mouse monoclonal anti-A β antibody (Millipore, MAB1561) was used for Immunoprecipitation. This monoclonal antibody (IgG2b) binds to human and mouse A β . The epitope lies between amino acids 18-22 of A β .

Cell Culture

Microglial cell line Ra2 was cultured in MGI medium [Eagle's MEM supplemented with 0.2% glucose, 5 μ g/ml bovine Insulin (Sigma-Aldrich), and 10% fetal bovine serum (FBS, Invitrogen)] and 0.8 ng/ml mrGM-CSF (Pharmingen) [10].

Immunoprecipitation

The cells were lysed with RIPA buffer (25 mM Tris-HCl, pH8.0, 150 mM NaCl, 10% glycerol, 2mM EDTA, 5 mM MgCl₂, 0.3% NP40 1 mM PMSF). 5 mg of affinity-purified monoclonal antibodies was covalently coupled to 50 mL Protein G beads (GE healthcare) by using 20mM DMP. Cell lysates were pre-incubated with protein G beads for 2 hour at 4 °C and then centrifuged. The supernatant was incubated with antibody-cross-linked protein G beads overnight at 4 °C. The beads were washed five times with RIPA buffer and then suspended in 0.1M glycine (pH 1.7) at 4 °C for 1 hr. The eluted sample was neutralized by the addition of 1M Tris-HCl (pH 9.0). The eluted proteins were mixed with sample buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 10%

^{*}Address correspondence to this author at the Department of Immunology, Nagoya University Graduate School of Medicine, 65 Turumai-cho, Showaku, Nagoya, Aichi, 466-8520, Japan; Tel: +81-52-744-2135; Fax: +81-52-744-2972; E-mail: kisobe@med.nagoya-u.ac.jp

glycerol, 5% 2-mercaptoethanol, and 5% bromophenol blue). A fraction of the eluate was monitored by SDS-PAGE and silver stained.

Identification of Proteins

For LC-MS/MS ion search analysis, protein spots were excised from the gel. The gel pieces were destained and dried by vacuum centrifugation. For carbamidomethyl modification, the dried gel pieces were rehydrated in 100 mM ammonium bicarbonate containing 10 mM DTT. After removal of the solution, the gel pieces were alkylated and then rehydrated in a trypsin digest solution (Trypsin Gold, Mass Spectrometry Grade (Promega Co., Madison, WI)). LC-MS/MS ion search analysis was performed using an LCQ Advantage nanospray ionization iontrap mass spectrometer (Thermo Fisher Scientific, Inc., Waltham, MA) combined with a MAGIC2002TM HPLC System (Michrom BioResources, Inc., Auburn, CA) that was equipped with a MonoCapR column of 0.1 mm diameter and 50 mm in length (AMR Inc., Tokyo Japan). The MS/MS spectrum data collected repeatedly were submitted to the program Mascot (Matrix Science Inc., Boston, MA).

RESULTS

Several Proteins Bind to Aß 1-42 in Microglial Cells

We used affinity separation techniques using anti- $A\beta$ bound to beads to fractionate extracts from Ra2 cells (Fig. 1). In this procedure, we added $A\beta$ 1-42 in lysis of Ra2 cells. The bound proteins were run in SDS PAGE and stained with silver. Several bands were detected. Without $A\beta$ 1-42 we could detect several bands (Fig. 2 midle lane). By the addition of $A\beta$ 1-42, many new bands appeared (Fig. 2, right). Among them we took four bands. Band No1 and No3 appeared only in the lane of $A\beta$ 1-42 addition. Band No2 and No4 appeared both in the lane with $A\beta$ 1-42 and without $A\beta$ 1-42. However, No4 band is stronger in the lane with $A\beta$ 1-42 than in the lane without $A\beta$ 1-42 (Fig. 2).

IQGAP1 and Plectin Bind to A_β 1-42 in Microglial Cells

Gel bands were cut out and purified. Extracted trypsindigested proteins of the samples were analyzed by LC-MS/MS Band. No2 and No4, which were found both in Ra2 microglia with or without A β 1-42, were myosin 9 (No2) (Fig. **3A**) and actin (No4) (Fig. **3B**).

No3, which was strongly expressed in Ra2 microglia with A β 1-42, was IQGAP1 (Fig. **3**C). No1, which expressed in Ra2 microglia with A β 1-42, was Plectin (Fig. **3D**).

DISCUSSION

Aβ binds to Several Proteins in Microglial Cells

By immunoprecipitation using anti-A β antibody, we found four strong bands without addition of A β 1-42. Among them No2 was analyzed by LC/MS/MS and found to be myosin 9. This band was not enhanced by the addition of A β . However, No4 protein was greatly enhanced by the addition of A β . No4 protein was found to be actin. These results indicate that the addition of A β enhances actin expression. We speculate that A β 1-42 induces cellular migration, which induces F-actin in activated cells. Addition of A β 1-42 induces many new proteins in microglial cells. By the addition of A β 1-42, we detected several new bands.

Among them we determined most strong band (No3). By the analysis of LC/MS/MS, we found that it was IQGAP1.

Fig. (1). Flow diagram for proteomic isolation of $A\beta$ binding proteins. Ra2 cells were lysed in RIPA buffer, which were immunoprecipitated with anti-Ab and run the gel. Stained gel bands were cut and digested for LC/MS/MS.

Fig. (2). Several proteins bind to $A\beta$ by immunoprecipitation. Ra2 extracts were treated with anti $A\beta$ antibody cross-linked protein G beads. The bound proteins were stripped from the beads and run on SDS-PAGE gels and stained with silver.

(A)				
Myosin-9 s	equence			
MAQQAADKYL	YVDK nfinnp	LAQADWAAKK	LVWVPSSKNG	FEPASLKEEV
GEEAIVELVE	NGKKVKVNKD	DIQKMNPPKF	SK VEDMAELT	CLNEASVLHN
LK ERYYSGLI	YTYSGLFCVV	INPYK nlpiy	SEEIVEMYKG	KKRHEMPPHI
YAITDTAYRS	MMQDREDQSI	LCTGESGAGK	TENTKKVIQY	LAHVASSHKS
KKDQGELER <mark>Q</mark>	LLQANPILEA	FGNAK TVKND	NSSRFGKFIR	INFDVNGYIV
GANIETYLLE	KSRAIRQAKE	ERTFHIFYYL	LSGAGEHLKT	DLLLEPYNKY
RFLSNGHVTI	PGQQDKDMFQ	ETMEAMR IMG	IPEDEQMGLL	R VISGVLQLG
NIAFKKER <mark>NT</mark>	DQASMPDNTA	AQKVSHLLGI	NVTDFTR GIL	TPRIKVGRDY
VQKAQTK EQA	DFAIEALAKA	TYERMFRWLV	LRINKALDKT	KRQGASFIGI
LDIAGFEIFD	LNSFEQLCIN	YTNEKLQQLF	NHTMFILEQE	EYQREGIEWN
FIDFGLDLQP	CIDLIEKPAG	PPGILALLDE	ECWFPKATDK	SFVEK VVQEQ
GTHPK FQKPK	QLKDK ADFCI	IHYAGK VDYK	ADEWLMKNMD	PLNDNIATLL
HQSSDKFVSE	LWKDVDR <mark>IIG</mark>	LDQVAGMSET	ALPGAFK TRK	GMFRTVGQLY
KEQLAKLMAT	LR NTNPNFVR	CIIPNHEKKA	GK LDPHLVLD	QLR CNGVLEG
IRICRQGFPN	R VVFQEFR QR	YEILTPNSIP	KGFMDGKQAC	VLMIK aleld
SNLYR IGQSK	VFFRAGVLAH	LEEERDLK it	DVIIGFQACC	R GYLARKAFA
KRQQQLTAMK	VLQRNCAAYL	RLRNWQWWRL	FTK VKPLLNS	IR HEDELLAK
EAELTKVR <mark>ek</mark>	HLAAENR LTE	METMQSQLMA	EKLQLQEQLQ	AETELCAEAE
ELRARLTAKK	QELEEICHDL	EARVEEEEER	CQYLQAEKKK	MQQNIQELEE
QLEEEESAR Q	KLQLEKVTTE	AKLK kleedq	IIMEDQNCKL	AKEKKLLEDR
VAEFTTNLME	EEEKSK SLAK	LKNKHEAMIT	DLEERLRREE	KQRQELEKTR
RKLEGDSTDL	SDQIAELQAQ	IAELKMQLAK	KEEELQAALA	R VEEEAAQK N
MALKK irele	TQISELQEDL	ESER ASRNKA	EKQKRDLGEE	LEALKTELED
TLDSTAAQQE	LRSKREQEVS	ILKKTLEDEA	KTHEAQIQEM	RQK HSQAVEE
LADQLEQTKR	VKATLEKAK <mark>Q</mark>	TLENERGELA	NEVKALLQGK	GDSEHKRKKV
EAQLQELQVK	FSEGER VRTE	LADKVTKLQV	ELDSVTGLLS	QSDSK SSKLT
KDFSALESQL	QDTQELLQEE	NR QKLSLSTK	LKQMEDEKNS	FREQLEEEEE
AKRNLEKQIA	TLHAQVTDMK	K KMEDGVGCL	ETAEEAKRRL	QK DLEGLSQR
LEEK VAAYDK	LEK TKTR LQQ	ELDDLLVDLD	HQRQSVSNLE	K KQK kfdqll
AEEKTISAKY	AEER DRAEAE	AR EKETKALS	LAR aleeame	QK AELERLNK
QFRTEMEDLM	SSKDDVGK <mark>SV</mark>	HELEKSKRAL	EQQVEEMK TQ	LEELEDELQA
TEDAK LRLEV	NLOAMKAOFE	RDLOGRDEOS	EEKKKOLVRO	VR EMEAELED

(B)

Actin sequence

MEEEIAALVIDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMQQKDSYVGDEAQSKRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSYELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEYDESGPSIVHRKCFIGAIGA

		(\mathbf{C})		
IQGAP1 sequence				
MSAAEEVDGL	GVVRPHYGSV	LDNERLTAEE	MDER RRQNVA	YEYLCHLEEA
KRWMEACLGE	DLPPTTELEE	GLRNGVYLAK	LGNFFSPKVV	SLKKIYDREQ
TRYKATGLHF	RHTDNVIQWL	NAMDEIGLPK	IFYPETTDIY	DRKNMPRCIY
CIHALSLYLF	KLGLAPQIQD	LYGKVDFTEE	EINNMKIELE	KYGIQMPAFS
K IGGILANEL	SVDEAALHAA	VIAINEAIDR	RVAADTFTAL	KNPNAMLVNL
EEGLAPTYQD	VLYQAKQDKM	TNAKNRTENS	DRERDVYEEL	LTQAEIQGNV
NKVNTSSALA	NISLALEQGC	AVTLLKALQS	LALGLRGLQT	QNSDWYMK <mark>QL</mark>
QSDLQQKRQS	GQTDPLQKEE	VQAGVDAANS	AAQQYQRRLA	AVAAINAAIQ
KGIAEKTVLE	LMNPEAQLPQ	VYPFAADLYQ	KELATLQQQS	PEHSLTHPEL
TVAVEMLSSV	ALINRALESG	DMTTVWKQLS	SSVTGLTNIE	EENCQRYLDE
LMKLKAQAHA	ENNAFITWND	IQACVDHVNL	VVHEEHERIL	AIGLINEALD
EGDAQKTLQA	LQIPAAK <mark>LEG</mark>	VLAEVAQHYQ	DTLIRAKREK	AQETQDESAV
LWLDEIQGGI	WQSNKDTQEA	QRFALGISAI	NEAVDSGDVG	RTLSALRSPD
VGLYGVIPEC	GETYQSDLAE	AKKKRLAAGD	NNSKWVKHWV	KGGYHYYHNL
ETQAGGWAEP	PDFVQNSVQL	SREEIQSSIS	GVTAAYNR <mark>EQ</mark>	LWLANEGLIT
KLQACCRGYL	VRQEFRSRMN	FLKKQIPAIT	CIQSQWRGYK	QKKAYQDRLA
YLHSHKDEVV	KIQSLARMHQ	ARKRYRDRLQ	YFRDHINDII	KIQAFIRANK
ARDDYKTLIN	AEDPPMIVVR	KFVHLLDQSD	QDFQEELDLM	KMREEVITLI
RSNQQLENDL	NLMDIKIGLL	VKNKITLQDV	VSHSKKLTKK	NKEQLSDMMM
<mark>INK</mark> QKGGLKA	LSKEKREKLE	AYQHLFYLLQ	TNPTYLAKLI	FQMPQNKSTK
FMDSVIFTLY	NYASNQREEY	LLLRLFQTAL	QEEIKSKVDQ	IQEIVTGNPT
VIK MVVSFNR	GARGQNALRQ	ILAPVVKEIM	DDKSLNIKTD	PVDIYKSWVN
QMESQTGEAS	KLPYDVTPEQ	ALSHEEVKTR	LDNSIRNMRA	VTDKFLSAIV
SSVDKIPYGM	RFIAKVLKDS	LHEKFPDAGE	DELLKIIGNL	LYYRYMNPAI
VAPDAFDIID	LSAGGQLTTD	QRRNLGSIAK	MLQHAASNKM	FLGDNAHLSI
INEYLSQSYQ	KFRRFFQLAC	DVPELQDKFN	VDEYSDLVTL	TKPVIYISIG
EIINTHTLLL	DHQDAIAPEH	NDPIHELLDD	LGEVPTIESL	IGESCGNSND
PNKEALAKTE	VSLTLTNKFD	VPGDENAEMD	ARTILLNTKR	LIVDVIR <mark>FQP</mark>
GETLTEILET	PATNEQEAEH	QRAMQRRAIR	DAKTPDKMKK	SKPMKEDNNL
SLQEKKEKIQ	TGLKKLTELG	TVDPKNRYQE	LINDIAKDIR	NQRRYRQRRK
AELVKLQQTY	SALNSKATFY	GEQVDYYKSY	IKTCLDNLAS	KGKVSKKPRE
MKGKKSKKIS	LKYTAARLHE	KGVLLEIEDL	QANQFKNVIF	EIGPTEEVGD
FEVKAKFMGV	QMETFMLHYQ	DLLQLQYEGV	AVMKLFDRAK	VNVNLLIFLL
NKKFYGK				

(**C**)

Plectin sequence

(**D**)

MVAGMLMPLD	RLRAIYEVLF	REGVMVAKKD	RRPRSLHPHV	PGVTNLQVMR
AMASLKARGL	VRETFAWCHF	YWYLTNEGID	HLRQYLHLPP	EIVPASLQRV
RRPVAMVIPA	RRRSPHVQTM	QGPLGCPPKR	GPLPAEDPAR	EERQVYRRKE
REEGAPETPV	VSATTVGTLA	RPGPEPAPAT	DERDRVQKKT	FTKWVNKHLI
KHWRAEAQRH	ISDLYEDLRD	GHNLISLLEV	LSGDSLPREK	GRMRFHKLQN
VQIALDYLRH	RQVKLVNIRN	DDIADGNPKL	TLGLIWTIIL	HFQISDIQVS
GQSEDMTAKE	KLLLWSQRMV	EGYQGLRCDN	FTTSWRDGRL	FNAIIHRHKP
MLIDMNKVYR	QTNLENLDQA	FSVAERDLGV	TR LLDPEDVD	VPQPDEK SII
TYVSSLYDAM	PRVPGAQDGV	RANELQLRWQ	EYRELVLLLL	QWIRHHTAAF
EERKFPSSFE	EIEILWCQFL	KFKETELPAK	EADKNRSKVI	YQSLEGAVQA
GQLKIPPGYH	PLDVEKEWGK	LHVAILEREK	QLRSEFERLE	CLQRIVSKLQ
MEAGLCEEQL	NQADALLQSD	IRLLASGKVA	QRAGEVERDL	DKADGMIRLL
FNDVQTLK DG	RHPQGEQMYR	RVYRLHERLV	AIRTEYNLRL	KAGVGAPVTQ
VTLQSTQRRP	ELEDSTLRYL	QDLLAWVEEN	QRRIDSAEWG	VDLPSVEAQL
GSHRGMHQSI	EEFRAKIERA	RNDESQLSPA	TRGAYRDCLG	RLDLQYAKLL
NSSKARLR <mark>SL</mark>	ESLHGFVAAA	TK ELMWLNEK	EEEEVGFDWS	DRNTNMAAKK
ESYSALMREL	EMKEKKIKEI	QNTGDRLLRE	DHPARPTVES	FQAALQTQWS
WMLQLCCCIE	AHLKENTAYF	QFFSDVREAE	EQLQKLQETL	RRKYSCDRTI
TVTRLEDLLQ	DAQDEKEQLN	EYKGHLSGLA	KRAKAIVQLK	PRNPAHPVRG
HVPLIAVCDY	KQVEVTVHK <mark>G</mark>	DQCQLVGPAQ	PSHWK VLSGS	SSEAAVPSVC
FLVPPPNQEA	QEAVARLEAQ	HQALVTLWHQ	LHVDMKSLLA	WQSLSRDIQL
IRSWSLVTFR	TLKPEEQRQA	LRNLELHYQA	FLRDSQDAGG	FGPEDRLVAE
REYGSCSRHY	QQLLQSLEQG	EQEESRCQRC	ISELKDIRLQ	LEACETRTVH
RLRLPLDKDP	ARECAQRIAE	QQK AQAEVEG	LGK GVARLSA	EAEK VLALPE
PSPAAPTLRS	ELELTLGKLE	QVRSLSAIYL	EKLKTISLVI	RSTQGAEEVL
KTHEEQLKEA	QAVPATLQEL	EATKASLKKL	RAQAEAQQPV	FNTLRDELRG
AQEVGERLQQ	RHGERDVEVE	RWRERVTQLL	ERWQAVLAQT	DVRQRELEQL
GRQLRYYRES	ADPLSAWLQD	AKRRQEQIQA	VPIANCQAAR	EQLRQEKALL
EEIERHGEKV	EECQKFAKQY	INAIKDYELQ	LITYK AQLEP	VASPAK KPKV
QSGSESVIQE	YVDLRTRYSE	LTTLTSQYIK	FISETLRRME	EEERLAEQQR
AEERERLAEV	EAALEKQRQL	AEAHAQAKAQ	AELEAQELQR	RMQEEVARRE

Fig. 3) contd.....

EAAVDAQQQK	RSIQEELQHL	RQSSEAEIQA	KAQQVEAAER	SRMRIEEEIR
VVRLQLETTE	RQRGGAEGEL	QALRARAEEA	EAQKRQAQEE	AERLRRQVQD
ESQRKRQAEA	ELALR VKAEA	EAAREK <mark>QRAL</mark>	QALDELR LQA	EEAERRLRQA
EAERAROVOV	ALETAORSAE	VELOSKRASF	AEKTAOLERT	LOEEHVTVAO
LREEAERRAO	OOAEAERARE	EAERELERWO	LKANEALRLR	LOAEEVAOOK
SLAOADAEKO	~~ KEEAEREARR	RGKAEEOAVR	ORELAEOELE	KOROLAEGTA
OORLAAEOEL	TRURAETEOG	EOOROLLEEE	LARLOHEATA	ATOKROELEA
ELAKVRAEME	VIJASKARAE	EESRSTSEKS	KORLEAEAGR	FRELAEEAAR
L.RALAFEAKR	OROLAEEDAA	RORAEAERVI	TEKLAAISEA	TRLKTEAETA
LKEKEAENER	LERIAEDEAE	ORRELEEOAA	LHKADTEERI.	AOLEKASESE
LEBOKGLVED	TLEORROVEE	EIMALKVSEE	RAAAGKAELE	LELGRIRSNA
EDTMRGKEOA	FLEARDOROL	AAFFFORDE	AFFRUORSLA	AFFFAARORK
VALEEVERLK	AKVEEAPPLP	FRAFOESARO	LOLAOFAAOK	RLOAFEKAHA
FUTOODEEEI		IDDIDCEAR	ADDAAFFAFF	ADEOAEDEAA
OCDVOVEELE	DUKOGAEEOA	DRIKSEAEA	FKI BKENEOE	AREQAEREAA
QSKKQVELAL	RERQSAEEQA	QAQAQAQAAA	ERLEREALQE	AARRAQAEQA
	LMERARREAL	VIERQKAQVE	QELIILR LQL	DIDADAT
LEDKDIWODE	VIEAARQKSQ	VEEELFSVRV	QMEELGKLKA	KIEAENKALI
LRDKDNTQRF	LEEEAEKMKQ	VALLAARLSV	AAQEAARLRQ	LAEEDLAQQR
ALAEKMLKEK	MQAVQEATRL	KAEAELLQQQ	KELAQEQARR	LQEDREQMAQ
QLVEETQGFQ	KTLEAERQRQ	LEMSAEAERL	KLRMVEMSRA	QARAEEDAQR
FREQAEEIGE	AKI LOL KORR	EKVILVQILE	IQRQQSDHDA	ERLREATAEL
EREKEKLKQE	AKLLQLKSEE	MÕLAÕÕEÕTT	QETQALQKSF	LSEKDSLLQR
ERFIEQEKAK	LEQLFQDEVA	KAKQLREEQQ	RQQQQMEQEK	QELMASMEEA
RRQREAEEG	VRRKQEELQH	LEQQRQQQEK	LLAEENQRLR	ERLQRLEEEH
RAALAHSEIA	TTQAASTKAL	PNGRDAPDGP	SVEAEPEYTF	EGLRQKVPAQ
QLQEAGILSQ	EELQRLAQGH	TIVAELIQRE	DVIRILKGRS	SIAGLLLKPT
NEKLSVYTAL	QRQLLSPGTA	LILLEAQAAS	GFLLDPVRNR	RLTVNEAVKE
GVVGPELHHK	LLSAERAVIG	YKDPYTGEQI	SLFQAMKKDL	IVRDHGVRLL
EAQIATGGII	DPVHSHRVPV	DVAYKRGYFD	EEMNRILSDP	SDDTKGFFDP
KARUGADROV	LLERCVEDPE	TGLRLLPLTD	CARCGELVY	TDTEARDVFE
KATVSAPFGK	FQGRIVIIWE	IINSEYFTAE	URRDLLQUFR	TGHITVERII
KIVI.I.AAEEH	ERKGQLCFEG	LRALVPAAEL	LDSGVISHEL	YQQLQRGERS
VREVAEADSV	RQALRGINVI	AGVWLEEAGQ	KLSIYEALKK	DLLQPEVAVA
LLEAQAGTGH	IIDPATSARL	TVDEAVRAGL	VGPELHEKLL	SAEKAVTGYR
DPYSGQSVSL	FQALKKGLIP	REQGLR LLDA	QLSTGGIVDP	SKSHRVPLDV
AYARGYLDKE	TNRALTSPRD	DARVYHDPST	QEPVTYSQLQ	QRCRSDQLTG
LSLLPLSEKA	VRARQEEVYS	ELQARETLEQ	AKVEVPVGSF	KGRAMTVWEL
ISSEYFTEEQ	RQELLRQFRT	GKVTVEKVIK	IVITIVEEVE	TRRQERLSFS
GLRAPVPASE	LLDAKILSRA	QFDQLKDGKT	SVKELSEVGS	VRTLLQGSGC
LAGIYLEDSK	EKVTIYEAMR	RGLLRPSTAT	LLLEAQAATG	FLVDPVRNQR
LYVHEAVKAG	VVGPELHEKL	LSAEKAVTGY	KDPYSGNTIS	LFQAMKKGLV
LRDHAIRLLE	AQVATGGIID	PVHSHRLPVD	VAYQRGYFDE	EMNRVLADPS
DDTKGFFDPN	THENLTYLQL	LERCVEDPET	GLRLLPLKGA	EKTEVVETTQ
VYTEEETRRA	FEETQIDIPG	GGSHGGSSMS	LWEVMQSNMI	PEDQRARLMA
DFQAGRVTKE	RMIIIIEII	EKTEIIRQQN	LASYDYVRRR	LTAEDLYEAR
IISLETYNLF	REGTKNLREV	LEMESAWRYL	YGTGAVAGVY	LPGSRQTLTI
YQALKKGLLS	AEVAR LLLEA	QAATGFLLDP	VKGERLTVDE	AVRKGLVGPE
LHDRLLSAER	AVTGYRDPYT	EQTISLFQAM	KKELIPAEEA	LRLLDAQLAT
GGIVDPRLGF	HLPLEVAYQR	GYLNKDTHDQ	LSEPSEVRSY	VDPSTDERLS
YTQLLKRCRR	DDPSGQMLLL	LSDARKLTFR	GLRKQITVEE	LVR SQVMDEA
TALQLQEGLT	SIEEVTKNLQ	KFLEGTSCIA	GVFVDATK ER	LSVYQAMKKG
IIRPGTAFEL	LEAQAATGYV	IDPIKGLKLT	VEEAVRMGIV	GPEFKDKLLS
AERAVTGYKD	PYSGKLISLF	QAMKKGLILK	DHGIRLLEAQ	IATGGIIDPE
ESHRLPVEVA	YKRGLFDEEM	NEILTDPSDD	TKGFFDPNTE	ENLTYLQLME
RCITDPQTGL	CLLPLKEKKR	ERKTSSKSSV	RKRRVVIVDP	ETGKEMSVYE
AYRKGLIDHQ	TYLELSEQEC	EWEEITISSS	DGVVKSMIID	RRSGRQYDID
DAITKNLIDR	SALDQYRAGT	LSITEFADML	SGNAGGFRSR	SSSVGSSSSY
PISSAGPRTQ	LASWSDPTEE	TGPVAGILDT	ETLEKVSITE	AMHRNLVDNI
TGQRLLEAQA	CTGGIIDPST	GERFPVTEAV	NKGLVDKIMV	DRINLAQKAF
CGFEDPRTKT	KMSAAQALKK	GWLYYEAGQR	FLEVQYLTGG	LIEPDTPGRV
SLDEALQRGT	VDARTAQKLR	DVSAYSKYLT	CPKTKLKISY	KDALDR SMVE
EGTGLRLLEA	AAQSSKGYYS	PYSVSGSGST	AGSRTGSRTG	SRAGSRRGSF
DATGSGFSMT	FSSSSYSSSG	YGRRYASGPS	ASLGGPESAV	A

Fig. (3). LC/MS/MS analysis revealed the binding of IQGAP1 and Plectin to $A\beta$. The stained bands were extracted and digested by trypsin. The samples were run on LC/MS/MS. Red color showed the detected amino acid sequence. A. myosin-9, B. actin, C. IQGAP1, D. Plectin.

(D)

Possible Biological and Pathological Meaning of the Binding of IQGAP1 and $A\beta$

We have shown in this paper that A β binds to IQGAP1, an effector of the Rho-family small GTPases Rac1 and Cdc42 [11,12]. A β 1-42 originally penetrates cell membrane or ER membrane as a part of amyloid precursor protein (APP). A β is produced by the sequential enzymatic actions of beta-site amyloid precursor protein-cleaving enzyme 1 (BACE-1), a β -secretase, and γ -secretase and exist inside cells and outside cells.

What the meaning of AB and IQGAP1 binding in microglia? Aß could induce a local inflammatory reaction associated with regenerative changes in the surrounding neurons. Microglia produce multiple pro-inflammatory factors, including cytokines (tumor necrosis factor- α (TNF α), interleukin (IL)-1, and IL-6), chemokines, reactive oxygen species [8,13] Aß also produces M-CSF and induces proliferation of microglia [8]. These results indicate that AB induces microglial migration by chemokines and proliferation by M-CSF. The Rho-like GTPase, Rac1, induces cytoskeletal rearrangements required for cell migration and proliferation [14]. Vasiliev showed that an intact microtubule cytoskeleton was required to maintain the polarized distribution of actin-dependent protrusions at the leading edge of a migrating fibroblast [15]. RhoA mediates formation of contractile actin structures, such as stress fibres [16], and at the same time promotes stabilization of a sub-population of microtubules [17]. Rac kinase, which exists downstream of Rho kinase promotes contractility by increasing phosphorylation of the regulatory light chain of myosin-2 [18]. IQGAP1 binds to many proteins related to Rho kinase- microtubule cytoskeleton pathway including Rac1 and Cdc42 [19], myosin essential light chain [20]. Taken together, AB binds to IQGAP1 and activates Rho kinase- microtubule cytoskeleton pathway to induce cellular migration and proliferation.

Plectin is the most versatile cytoskeletal linker protein known, which was first isolated nealy 30 years ago [21]. Plectin plays important roles in a number of cell functions including migration and wound healing [22]. Plectin has been shown to activate RhoA GTPase [23].

We have shown in this paper that $A\beta$ binds to several proteins inside cells. $A\beta$ may exist inside cells. Already it has been shown that monomeric synaptic $A\beta$, which stays at inside and outside cells may dampen excitatory transmission and prevent neuronal hyperactivity [23]. Early activation of signaling [7,8] indicates that $A\beta$ may work as a monomer or soluble oligomer, which may be inserted into cell membrane and endocytosed into cytoplasm. $A\beta$, which enter cells may bind to IQGAP1, Plectin and actin and work to migrate microglia by Rho-Rac1 signaling.

ACKNOWLEDGEMENT

We thank for manuscript preparation of N. Oiwa. This work was supported by the Ministry of Education, Science, Technology, Sports and Culture, Japan and the Global Centers of Excellence Program of Nagoya Unversity. None declared.

REFERENCES

- Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med 2010; 362: 329-44.
- [2] Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. Neurobiol Aging 2000; 21: 383-421.
- [3] Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 1989; 24: 173-82.
- [4] El Khoury JB, Moore KJ, Means TK, et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med 2003; 197: 1657-66.
- [5] Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 2006; 26: 1702-11.
- [6] Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010; 11: 155-61.
- [7] Ito S, Sawada M, Haneda M, et al. Amyloid-beta peptides induce cell proliferation and macrophage colony-stimulating factor expression via the PI3-kinase/Akt pathway in cultured Ra2 microglial cells. FEBS Lett 2005; 579: 1995-2000.
- [8] Ito S, Sawada M, Haneda M, Ishida Y, Isobe K. Amyloid-beta peptides induce several chemokine mRNA expressions in the primary microglia and Ra2 cell line *via* the PI3K/Akt and/or ERK pathway. Neurosci Res 2006; 56: 294-9.
- [9] Walsh DM, Selkoe DJ. A beta oligomers a decade of discovery. J Neurochem 2007; 101: 1172-84.
- [10] Sawada M, Imai F, Suzuki H, Hayakawa M, Kanno T, Nagatsu T. Brainspecific gene expression by immortalized microglial cell-mediated gene transfer in the mammalian brain. FEBS Lett 1998; 433: 37-40.
- Fukata M, Kuroda S, Fujii K, *et al.* Regulation of cross-linking of actin filament by IQGAP1, a target for Cdc42. J Biol Chem 1997; 272: 29579-83.
- [12] Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K. IQGAP1: a key regulator of adhesion and migration. J Cell Sci 2005; 118: 2085-92.
- [13] Heneka MT, O'Banion MK. Inflammatory processes in Alzheimer's disease. J Neuroimmunol 2007; 184: 69-91.
- [14] Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 2003; 5: 599-609.
- [15] Vasiliev JM, Gelfand IM, Domnina LV, Ivanova OY, Komm SG, Olshevskaja LV. Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol 1970; 24: 625-40.
- [16] Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420: 629-35.
- [17] Cook TA, Nagasaki T, Gundersen GG. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol 1998; 141: 175-85.
- [18] Ridley AJ. Rho GTPases and cell migration. J Cell Sci 2001; 114: 2713-22.
- [19] Kuroda S, Fukata M, Kobayashi K, et al. Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1. J Biol Chem 1996; 271: 23363-7.
- [20] Weissbach L, Bernards A, Herion DW. Binding of myosin essential light chain to the cytoskeleton-associated protein IQGAP1. Biochem Biophys Res Commun 1998; 251: 269-76.
- [21] Pytela R, Wiche G. High molecular weight polypeptides (270,000-340,000) from cultured cells are related to hog brain microtubuleassociated proteins but copurify with intermediate filaments. Proc Natl Acad Sci USA 1980; 77: 4808-12.
- [22] Andrä K, Nikolic B, Stöcher M, Drenckhahn D, Wiche G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev 1998; 12: 3442-51.
- [23] Na S, Chowdhury F, Tay B, et al. Plectin contributes to mechanical properties of living cells. Am J Physiol Cell Physiol 2009; 296: C868-77.

Revised: November 21, 2011

© Ito et al.; Licensee Bentham Open.

Received: November 1, 2011

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.