Development and Application of High Performance Liquid Chromatography Map of Glucuronyl N-glycans

Hirokazu Yagi^{1,2}, Kenzo Yamada¹, Erina Ohno¹, Maho Utsumi^{1,2,3}, Yoshiki Yamaguchi^{1,2,4}, Eiji Kurimoto^{1,2}, Noriko Takahashi^{1,2,5,6}, Shogo Oka^{2,7}, Toshisuke Kawasaki⁸ and Koichi Kato^{*,1,2,3,5,6}

¹Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan

²CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan

³Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan

⁴*RIKEN*, Advanced Science Institute, Chemical Biology Department, Systems, Glycobiology Research Group, Structural Glycobiology Team, 2-1 Hirosawa Wako, Saitama 351-0198, Japan

⁵GLYENCE Co., Ltd., 2-22-8 Chikusa, Chikusa-ku, Nagoya 464-0858, Japan

⁶The Glycoscience Institute, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

⁷School of Health Sciences, Faculty of Medicine, Kyoto University, Kyoto 606-8507, Japan

⁸Research Center for Glycotechnology, Ritsumeikan University, Shiga 525-8577, Japan

Abstract: Although the multi-dimensional HPLC maps of neutral, sialyl, and sulfated *N*-glycans have been reported and widely used for glycosylation profiling, those of glucuronyl oligosaccharides have not yet been available. In the present study, by *in vitro* enzymatic reactions, we prepared 55 different glucuronyl PA-oligosaccharides that include 6 kinds of HNK-1-containing *N*-glycans, and established their HPLC map. Furthermore, we applied this map to the characterization of branch specificity in glucuronylation reaction catalyzed by human GlcAT-S, revealing that this enzyme transfers the glucuronyl residues preferentially onto the Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 4Man α 1 \rightarrow 3 and Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 2Man α 1 \rightarrow 3 branches of a galactose-terminated tri-antennary oligosaccharide. The HPLC map developed in the present study will be a useful glycomics tool for identification and profiling of glucuronyl *N*-glycans expressed in the neural and other biological systems.

Keywords: Glucuronyl oligosaccharides/N-glycans/HPLC map/GlcAT-S/branch specificity.

INTRODUCTION

Cell-cell recognition and adhesion are mediated by a variety of anionic oligosaccharides possessing sialyl, glucuronyl, and/or sulfated groups [1,2]. HNK-1 carbohydrate epitope [3], which is a trisacchatride containing sulfoglucuronyl residue, HSO₃-3GlcA\beta1-3Gal\beta1-4GlcNAc-, was originally reported as a specific antigenic determinant for human natural killer cells but is now known to be expressed predominantly in the neural system, where it plays roles in intercellular adhesion, cell migration and synaptic plasticity [4-6]. Based on the specific antibody binding and mass spectrometric (MS) analyses, this determinant has been identified on several glycoproteins such as neural cell adhesion molecule [7,8], myelin-associated glycoprotein [9], tenascin-C and -R [10], and tissue plasminogen activator [11]. However, there are only a few reports that describe detailed structures of HNK-1-containing glycans expressed on proteins [12] primarily due to the lack of a conventional method for identification of glucuronyl oligosaccharides.

We have been developing the multi-dimensional HPLC mapping method for quantitative *N*-glycosylation profiling at molecular, cellular, and tissue levels, distinguishing isomeric *N*-glycan structures [13-15]. In this method, identifications of individual *N*-glycans are based on their elution positions on the three kinds of HPLC columns. The accumulated HPLC data of approximately 500 different *N*-glycans are now available in the web application GALAXY (http://www.glycoanalysis.info/) [16], and the applicability of this method has been extended to sialyl [14] and sulfated oligosaccharides [15]. However, the widespread application of the HPLC map has been hampered by a lack of data concerning glucuronyl oligosaccharides.

In view of this situation, we attempted to develop an HPLC-based method for structural analysis of the glucuronyl *N*-glycans. On the basis of the previously established HPLC map, we successfully made a map for 55 different glucuronyl *N*-glycans including 6 kinds of HNK-1-containing oligosac-charides, which were prepared by *in vitro* enzymatic reactions using recombinant enzymes. By using this extended HPLC map, we characterized a branch specificity in glucuronylation catalyzed by human second β 1,3-glucuronyl-transferase (GlcAT-S).

^{*}Address correspondence to these authors at the Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan; Tel/Fax: +81-52-836-3447; E-mail: kkato@phar.nagoya-cu.ac.jp

Materials and Methodology

Materials

Glycoamidase A from sweet almond, β-galactosidase and β-*N*-acetylhexosaminidase from jack bean were purchased from Seikagaku Kogyo Co. α-Fucosidase from bovine kidney was from Boehringer-Mannheim. Trypsin and chymotrypsin were from Sigma. Pronase protease from *Streptomyces griseus* was from Calbiochem. The pyridylamino (PA) derivatives of isomalto-oligosaccharides 4-20 (indicating the degree of polymerization of glucose residues) and reference PA-oligosaccharides (Code Nos. 100.1, 100.2, 110.1, 110.2, 200.1, 200.2, 200.3, 200.4, 210.1, 210.2, 210.3, 210.4, 300.8, 310.2, 310.3, 310.4, 310.8 and 400.16) were purchased from GLYENCE Co. and Seikagaku Kogyo Co.

Protein Expression and Purification of GlcAT-S

The DNA fragment encoding the amino acids residues 79-323 of human GlcAT-S was amplified by the polymerase chain reaction from the cDNA template cloned in the previous study [17], and was cloned into the pET-28a(+) plasmid vector (Novagen). The expression and purification of GlcAT-S (79-323) were performed as described previously [18] with slight modifications. The protein was expressed in E. coli BL21 (DE3) pLysS strain (Stratagene) grown in an LB broth containing 0.4 % (w/v) glucose and 20 µg/ml kanamycin at 30 °C by vigorous aeration upon induction with 0.1 mM isopropyl β -D-thiogalactopyranoside (WAKO). The E. coli cells were harvested by centrifugation and sonicated in 20 mM Tris-HCl (pH 7.4) containing 5 mM dithiothreitol, 1 mM ethylenediaminetetraacetic acid, 0.15 M NaCl, and 3 % (v/v) protease inhibitor cocktail (Sigma). After centrifugation of the sonicated cell suspension, the cell lysate was applied onto an open column filled with a Hi-trap Heparin HP resin (Amersham Biosciences). After washing with 0.4 M NaCl, the fraction eluted by 0.75 M NaCl was collected, diluted with 20 mM Tris-HCl (pH 7.4) so as to adjust the NaCl concentration to 0.45 M, and then loaded onto the Hi-Trap Heparin HP column. The fractions containing GlcAT-S were collected by applying an NaCl gradient (0.45-0.75 M), pHadjusted to 8.0 with Tris-HCl, and then applied onto a Hi-Trap Chelating column (Amersham Biosciences), which had been equilibrated with 0.1 M CuSO₄ and subsequently with 20 mM Tris-HCl (pH 8.0) containing of 0.5 M NaCl. The GlcAT-S-containing fractions were collected by applying a gradient of glycine concentration (0-150 mM), diluted so as to adjust the NaCl concentration to 0.25 M, and then loaded onto the Hi-Trap Heparin HP column equilibrated with 20 mM Tris-HCl (pH 8.0) containing 0.25 M NaCl. After washing with 0.25 M NaCl and 50 mM 2-(N-morpholino) ethanesulfonic acid (MES) (pH 6.0), GlcAT-S was eluted with 0.7 M NaCl and 50 mM MES (pH 6.0) and then concentrated by ultrafiltration using Amicon Ultra YM-10 (Amicon). The yield of the GlcAT-S protein was 1 mg per 2 liters of culture.

Purification of HNK-1sulfotransferase Fused with Protein A

COS7 cells grown in a 10-cm-diameter tissue culture dish (Coring) were transfected with 4 μ g of the relevant plasmid, pEF-BOS-HNK-1sulfotransferase (ST) [19] using Lipofec-tAMINE PLUS (Invitrogen) according to manufacturer instructions. After 24 h of culture in Dulbecco's modified Ea-

gle's medium containing 10 % (v/v) fetal calf serum, the medium was replaced with Dulbecco's modified Eagle's medium containing 2 % (v/v) IgG-free fetal calf serum. The cells were cultured for an additional 96 h. Subsequently, the culture medium was collected and concentrated to 1 ml by Amicon Ultra-15 (Millipore Co.). The protein A-fused HNK-1ST recombinant protein expressed in the medium was adsorbed to IgG-Sepharose (20 μ l resin/1 ml of culture medium) at 4 °C for 3 h. The resin was collected by centrifugation and washed three times with 50 mM Tris-HCl (pH 7.5) containing 150 mM NaCl. Consequently, the resin was suspended in 20 μ l of 50 mM Tris-HCl (pH 7.5) containing 150 mM NaCl and used as the enzyme source.

Enzymatic Reactions

Glucuronylation of the PA-glycans were carried out in a reaction mixture containing 50 mM MES, pH 6.5, 1 mM MnCl₂, 0.12-1.0 μ M of PA-oligosaccharides, 1 mM uridine-5'-diphosphoglucuronic acid, 0.2 % (v/v) Nonidet P-40, and 0.04 mg/ml GlcAT-S in a final volume of 50 μ l. After incubation at 37 °C for 5-180 min, the reaction was terminated by heating at 100 °C for 10 min.

The resultant glucuronylated PA-glycans were used as acceptors in the sulfation reactions by protein A-fused HNK-1ST in solution containing 25 mM Tris-HCl (pH 7.5), 10 mM MnCl₂, 0.25 μ M PA-oligosaccharide, 7.5 μ M adenosine 3'-phosphate 5'-phosphosulfate, 0.1 % TritonX-100. After incubation at 37 °C overnight, aliquots of 5 μ l of the reaction mixture were subjected to HPLC analysis (*vide infra*).

Multi-Dimensional HPLC and MALDI-TOF-MS Analyses

All analytical procedures used in this work, including the chromatographic conditions, glycosidase treatments, and matrix-assisted laser desorption / ionization time of flight (MALDI-TOF)-MS analysis have been reported previously [14,15,20]. The reaction mixtures after the GlcAT treatments were applied onto a Shim-pack HRC-octadecyl silica (ODS) column (Shimadzu). The individual PA-oligosaccharide fractions were further separated on a TSK-gel Amide-80 column (Tosoh). The elution volumes of each glucuronyl PA-*N*-glycan both on the ODS and the amide columns were recorded and expressed as the glucose units values, GU(ODS) and GU(amide), respectively. Unit contribution values were calculated by a linear multiple regression analysis as described previously [21,22].

RESULTS AND DISCUSSION

Structural Identification and Characterization of Glucuronyl Oligosaccharides

Glucuronyl PA-oligosaccharides were prepared through the reaction catalyzed by human GlcAT-S using bi-, tri-, and tetra-antennary PA-oligosaccharides as starting materials. The products were separated by the HPLC methods. The procedure of structural analyses of the glucuronyl PAoligosaccharides would be exemplified by the determination of structures of oligosaccharides resulting from the glucuronylation reaction using a bi-antennary PA-glycan, Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 2Man α 1 \rightarrow 6(Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 2 Man α 1 \rightarrow 3)Man β 1 \rightarrow 4GlcNAc β 1 \rightarrow 4(Fuc α 1 \rightarrow 6)GlcNAc-PA (code no. 210.4 in GALAXY), as a precursor.

Figs. (1a and 1b) compare the elution profiles on the ODS column of the accepter glycan and reaction products, respectively, indicating that the reaction mixture contained the three expected products A, B, and C. MALDI-TOF-MS analysis revealed that product A was di-glucuronyl oligosaccharides while B and C were mono-glucuronyl products. According to substrate specificity of GlcAT-S, the diglucuronyl PA-oligosaccharide A was determined as $GlcA\beta1 \rightarrow 3Gal\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow 6(GlcA\beta1 \rightarrow 3)$ $Gal\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow 3)Man\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow$ 4(Fuc α 1 \rightarrow 6)GlcNAc-PA. Next, we attempted to identify the structures of the mono-glucuronyl PA-oligosaccharides B and C by comparison of the HPLC data of their degalactosyl derivatives with those of the glucuronylation products of the bi-antennary monogalactosyl PA-oligosaccharides as standard materials. Upon the galactosidase treatment, B and C were converted to D and E, which correspond to the products resulting from the GlcAT-S-catalyzed glucuronylation of $GlcNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow 6(Gal\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow$ 3)Man β 1 \rightarrow 4GlcNAc β 1 \rightarrow 4(Fuc α 1 \rightarrow 6)GlcNAc-PA $Gal\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow 6(GlcNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow$ 3)Man β 1 \rightarrow 4GlcNAc β 1 \rightarrow 4(Fuc α 1 \rightarrow 6)GlcNAc-PA., respectively (Fig. 1c). On the basis of these data, we concluded that the mono-glucuronyl PA-oligosaccharides B and C are $Gal\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow 6(GlcA\beta1 \rightarrow 3Gal\beta1 \rightarrow 4Gl$ $cNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow 3)Man\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow 4(Fuc\alpha1 \rightarrow$ 6)GlcNAc-PA $GlcA\beta1 \rightarrow 3Gal\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow$ and $2Man\alpha 1 \rightarrow 6(Gal\beta 1 \rightarrow 4GlcNAc\beta 1 \rightarrow 2Man\alpha 1 \rightarrow 3)Man\beta 1 \rightarrow 4$

GlcNAc β 1 \rightarrow 4(Fuc α 1 \rightarrow 6)GlcNAc-PA, respectively. In this way, we identified 49 kinds of glucuronyl PAoligosaccharides as products of enzymatic reactions of bi-, tri-, and tetra-antennary complex type glycans (Table 1). Furthermore, we carried out *in vitro* sulfation by recombinant HNK-1ST using some isolated glucuronyl PAoligosaccharides as substrates and thereby prepared 6 kinds of HNK-1-containing PA-oligosaccharides. The HPLC data of these oligosaccharides are summarized in Table **2**.

It has been shown that the elution position of a given PAglycan could be represented by the sum of the contributions of individual monosaccharides unit at specific positions, i.e. unit contribution (UC) [21,22]. By a linear multiple regression analysis using the HPLC data obtained in this study, the UC values of the four glucuronyl units were diagrammatically obtained for GU(ODS) (Fig. 2). These calculated UC values would be useful in predicting GU(ODS) values for putative glucuronyl PA-*N*-glycans.

Branch Specificity of GlcAT-S

The HPLC map thus established will facilitate structural identification of glucuronyl *N*-glycans distinguishing isomeric structures. Here we demonstrate the utility of this HPLC map by revealing branch specificity of human GlcAT-S. Although this enzyme has been reported to exhibit the highest activity toward triantennary *N*-glycan [23], its branch specificity remains to be addressed.

Fig. (1). Identification of the bi-antennary glucuronyl PA-oligosaccharides produced by the reaction catalyzed by GlcAT-S. Chromatograms of the precursor (**a**) and reaction mixture (**b**) on an ODS column. **c**: Schemes of identification of the mono-glucuronyl glycans by using enzymatic treatments. On this map, the horizontal and vertical axes correspond to GU(ODS) and GU(amide), respectively. Trajectories for galactosidase digestion and glucuronylation were indicated by arrows with solid and dashed lines, respectively. Symbol: gray circle, mannose; white circle, galactose; black square, *N*-acetylglucosamine; diamond, glucuronic acid.

~		G	iU	Molecular mass ^b
Code No."	PA-Oligosaccharides	ODS	Amide	(Da)
2H1-210.4	GlcAβ3Galβ4GlcNAcβ2Manα6 Fucα6 Manβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ2Manα3	12.2	8.6	2218
2H1-200.4	GlcAβ3Galβ4GlcNAcβ2Manα6 Manβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ2Manα3	9.2	8.7	2071
1H2-210.4	GlcAβ3Galβ4GlcNAcβ2Manα6 Fucα6 Manβ4GlcNAcβ4GlcNAc Galβ4GlcNAcβ2Manα3	13.8	7.9	2042
1H1-210.4	Galβ4GlcNAcβ2Manα6 Fucα6 Manβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ2Manα3	12.8	7.8	2042
1H2-200.4	GlcAβ3Galβ4GlcNAcβ2Manα6 Manβ4GlcNAcβ4GlcNAc Galβ4GlcNAcβ2Manα3	10.6	7.9	1896
1H1-200.4	Galβ4GlcNAcβ2Manα6 Manβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ2Manα3	9.6	8.0	1896
1H1-210.2	GlcAβ3Galβ4GlcNAcβ2Manα6 Fucα6 Manβ4GlcNAcβ4GlcNAc GlcNAcβ2Manα3	12.8	6.8	1880
1H1-210.3	GlcNAcβ2Manα6 Fucα6 Manβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ2Manα3	12.0	7.0	1880
1H1-200.2	GlcAβ3Galβ4GlcNAcβ2Manα6 Manβ4GlcNAcβ4GlcNAc GlcNAcβ2Manα3	10.0	6.5	1734
1H1-200.3	GlcNAcβ2Manα6 Manβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ2Manα3	9.0	6.7	1734
1H1-110.3	GlcAβ3Galβ4GlcNAcβ2Manα6 Fucα6 Manβ4GlcNAcβ4GlcNAc Manα3	12.9	6.3	1677
1H1-110.9	Manα6 Fucα6 GlcAβ3Galβ4GlcNAcβ4 Manα3	11.8	6.4	1677

Table 1. HPLC and MS Data of the Glucuronyl PA-Oligosaccharides

12 Open Glycoscience, 2008, Volume 1

⁽Table 1). Contd.....

		GU		Molecular mass b
Code No. ^{<i>a</i>}	PA-Oligosaccharides	ODS	Amide	(Da)
1H1-110.4	Manαζ Fucα6 Manβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ2Manα3	10.4	6.8	1677
1H1-100.3	GlcAβ3Galβ4GlcNAcβ2Manα6 Manβ4GlcNAcβ4GlcNAc Manα3	10.2	5.6	1530
1H1-100.9	Manα6 GlcAβ3Galβ4GlcNAcβ4 Manα3	8.9	7.7	1530
1H1-100.4	Manα6 Manβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ2Manα3	7.5	6.4	1530
3H1-310.8	GlcAβ3Galβ4GlcNAcβ2Manα6 Fuc6 GlcAβ3Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcAβ3Galβ4GlcNAcβ2	15.3	1.0	2759
3H1-300.8	GlcAβ3Galβ4GlcNAcβ2Manα6 GlcAβ3Galβ4GlcNAcβ4 Manα3 GlcAβ3Galβ4GlcNAcβ2	11.0	10.6	2613
2H2-310.8	GlcAβ3Galβ4GlcNAcβ2Manα6 Fuc6 GlcAβ3Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 Galβ4GlcNAcβ2	17.7	10.3	2583
2H3-310.8	Galβ4GlcNAcβ2Manα6 Fuc6 GlcAβ3Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcAβ3Galβ4GlcNAcβ2	15.8	10.0	1734
2H2-300.8	GlcAβ3Galβ4GlcNAcβ2Manα6 GlcAβ3Galβ4GlcNAcβ4 Manα3 Galβ4GlcNAcβ2	12.7	9.9	2437
2H1-300.8	GlcAβ3Galβ4GlcNAcβ2Manα6 Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcAβ3Galβ4GlcNAcβ2	8.9	7.7	2437
2H3-300.8	Galβ4GlcNAcβ2Manα6 GlcAβ3Galβ4GlcNAcβ4 Manα3 GlcAβ3Galβ4GlcNAcβ2	11.4	10.0	2437
2H1-310.6	GlcAβ3Galβ4GlcNAcβ2Manα6 Fuc6 GlcAβ3Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcNAcβ2	15.7	9.1	2421

HPLC Map of Glucuronyl N-Glycans

(Table 1). Contd.....

		GU		Molecular mass ^b
Code No. "	PA-Oligosaccharides	ODS	Amide	(Da)
2H1-310.5	GlcAβ3Galβ4GlcNAcβ2Manα6 Fuc6 GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcAβ3Galβ4GlcNAcβ2	13.9	9.1	2421
2H1-310.9	GlcNAcβ2Manα6 Fuc6 GlcAβ3Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα.3 GlcAβ3Galβ4GlcNAcβ2	15.5	9.4	2421
2H1-300.6	GlcAβ3Galβ4GlcNAcβ2Manα6 GlcAβ3Galβ4GlcNAcβ4 Manα3 GlcNAcβ2	12.9	8.7	2275
2H1-300.9	GlcNAcβ2Manα6 GlcAβ3Galβ4GlcNAcβ4 Manα3΄ GlcAβ3Galβ4GlcNAcβ2΄	12.3	8.9	2275
1H2-310.8	GlcAβ3Galβ4GlcNAcβ2Manα6 Fuc6 Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 Galβ4GlcNAcβ2	17.6	9.5	2407
1H3-310.8	Galβ4GlcNAcβ2Manα6 Fuc6 GlcAβ3Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 Galβ4GlcNAcβ2	18.2	9.6	2407
1H1-310.8	Galβ4GlcNAcβ2Manα6 Fuc6 Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcAβ3Galβ4GlcNAcβ2	16.3	9.6	2407
1H2-300.8	GlcAβ3Galβ4GlcNAcβ2Manα6 Galβ4GlcNAcβ4 Manα3 Galβ4GlcNAcβ2	12.6	9.2	2261
1H3-300.8	Galβ4GlcNAcβ2Manα6 GlcAβ3Galβ4GlcNAcβ4 Manα3 Galβ4GlcNAcβ2	13.0	9.2	2261
1H1-300.8	Galβ4GlcNAcβ2Manα6 Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcAβ3Galβ4GlcNAcβ2	11.7	9.2	2261
1H2-310.5	GlcAβ3Galβ4GlcNAcβ2Manα6 Fuc6 GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 Galβ4GlcNAcβ2	15.2	8.2	2245

14 Open Glycoscience, 2008, Volume 1

(Table 1). Contd.....

		GU		Molecular mass ¹
Code No. ^{<i>a</i>}	PA-Oligosaccharides	ODS	Amide	(Da)
1H1-310.6	Galβ4GlcNAcβ2Manα6 Fuc6 GlcAβ3Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcNAcβ2	16.5	8.3	2245
1H1-310.5	Galβ4GlcNAcβ2Manα6 Fuc6 GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcAβ3Galβ4GlcNAcβ2	14.7	8.3	2245
1H1-310.4	GlcNAcβ2Manα6 Fuc6 GlcAβ3Galβ4GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcNAcβ2	15.7	7.6	2083
1H1-310.3	GlcNAcβ2Manα6 Fuc6 GlcNAcβ4 Manβ4GlcNAcβ4GlcNAc Manα3 GlcAβ3Galβ4GlcNAcβ2	15.2	7.5	2083
4H1-410.16	GlcAβ3Galβ4GlcNAcβ6 Manα6 GlcAβ3Galβ4GlcNAcβ2 GlcAβ3Galβ4GlcNAcβ4 Manα3 GlcAβ3Galβ4GlcNAcβ4 Manα3	11.0	12.8	3301
4H1-400.16	GlcAβ3Galβ4GlcNAcβ6 Manα6 GlcAβ3Galβ4GlcNAcβ2 Manβ4GlcNAcβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ4 Manα3 GlcAβ3Galβ4GlcNAcβ2	7.5	12.2	3155
1H4-400.16	GlcAβ3Galβ4GlcNAcβ6 $Man\alpha 6$ Galβ4GlcNAcβ2' Manβ4GlcNAcβ4GlcNAcβ4GlcNAc $Galβ4GlcNAcβ4Man\alpha 3Galβ4GlcNAcβ2'$	10.7	10.4	2626
1H2-400.16	Gal β 4GlcNAc β 6 Man α 6 GlcA β 3Gal β 4GlcNAc β 2 Man β 4GlcNAc β 4 Man α 3 Gal β 4GlcNAc β 4 Man α 3 Gal β 4GlcNAc β 2	10.4	10.4	2626
1H3-400.16	Gal β 4GlcNAc β 6 Man α 6 Gal β 4GlcNAc β 2 Man β 4GlcNAc β 2	10.8	10.4	2626

HPLC Map of Glucuronyl N-Glycans

(Table 1). Contd.....

		(GU	Molecular mass ^b
Code No."	PA-Oligosaccharides	ODS	Amide	(Da)
1H1-400.16	Galβ4GlcNAcβ6 Manα6 Galβ4GlcNAcβ2 Manβ4GlcNAcβ4GlcNAcβ4GlcNAc Galβ4GlcNAcβ4 Manα3 GlcAβ3Galβ4GlcNAcβ2	10.0	10.4	2626
1H1-400.4	GlcAβ3Galβ4GlcNAcβ6 Manα6 GlcNAcβ2 Manβ4GlcNAcβ4GlcNAc GlcNAcβ4 Manα3 GlcNAcβ2	9.6	7.6	2140
1H1-400.2	GlcNAc β 6 Man α 6 GlcA β 3Gal β 4GlcNAc β 2 GlcNAc β 4 GlcNAc β 4 Man α 3 GlcNAc β 2	8.8	7.6	2140
1H1-400.3	GlcNAcβ6 Manα6 GlcNAcβ2 Manβ4GlcNAcβ4GlcNAc GlcAβ3Galβ4GlcNAcβ4 Manα3 GlcNAcβ2	9.6	7.7	2140
1H1-400.5	GlcNAcβ6 Manα6 GlcNAcβ2 Manβ4GlcNAcβ4GlcNAc GlcNAcβ4 Manα3 GlcAβ3Galβ4GlcNAcβ2	9.1	7.5	2140

^aThe PA-oligosaccharides are coded according to the literature [13,16].

^bAverage mass calculated from the *m/z* values of [M-H], [M+Na-2H], or [M+2Na-3H] ions for glucuronyl PA-oligosaccharides.

Fig (3a) shows time-dependent transition of HPLC elution profiles of products of the in vitro glucuronylation catalyzed by the recombinant GlcAT-S enzyme using a triantennary PA-glycan, $Gal\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow 6$ $(Gal\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow 4(Gal\beta1 \rightarrow 4GlcNAc\beta1 \rightarrow 2)Man\alpha1$ \rightarrow 3)Man β 1 \rightarrow 4GlcNAc β 1 \rightarrow 4GlcNAc-PA (code no. 300.8), as an acceptor. The HPLC map enabled us to identify the individual products and to monitor their appearance and disappearance in a quantitative manner during the reaction (Fig. 3b). This result clearly indicates that the GlcAT-S-catalyzed glucuronylation preferentially occurs at the Gal $\beta 1 \rightarrow$ 4GlcNAc β 1 \rightarrow 4Man α 1 \rightarrow 3 and Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 2Man α 1 \rightarrow 3 branches, while the intermediate products possessing the glucuronyl residue at the Gal $\beta 1 \rightarrow$ $4GlcNAc\beta1 \rightarrow 2Man\alpha1 \rightarrow 6$ branch were barely detected during the reaction.

The biosynthesis of the HNK-1 carbohydrate moieties of glycoprotein is mainly regulated by GlcAT-P as well as GlcAT-S. It has been reported that GlcAT-P preferentially transfers the glucronyl group to the terminal galactose residue at the Gal β 1 \rightarrow 4GlcNAc β 1 \rightarrow 4 Man α 1 \rightarrow 3 branch in tetra-antennary oligosaccharides [24]. The branch specificity of GlcAT-S revealed in the present study will provide an additional insight into the enzyme functions of the glucuronyltransferases.

In conclusion, the HPLC map developed in the present study will be a useful glycomics tool for identification and

Table 2. HPLC and MS Data of the HNK-1-Containing N-Glycans

			GU	Molecular mass ^b
Code No."	PA-Oligosaccharides	ODS	Amide	(Da)
2H1-1S1-200.4	GlcAβ3Galβ4GlcNAcβ2Manα6 Manβ4GlcNAcβ4GlcNAc HSO3-3GlcAβ3Galβ4GlcNAcβ2Manα3	9.0	6.6	2378
2H1-2S1-200.4	HSO ₃ -3GlcAβ3Galβ4GlcNAcβ2Manα6 Fucα6 Manβ4GlcNAcβ4GlcNAcβ4GlcNAc HSO ₃ -3GlcAβ3Galβ4GlcNAcβ2Manα3	11.0	5.2	2378
1H1-1S1-300.8	Galβ4GlcNAcβ2Manα6 Galβ4GlcNAcβ4 Manα3΄ HSO3-3GlcAβ3Galβ4GlcNAcβ2	10.9	8.6	2693
1H3-1S1-300.8	Galβ4GlcNAcβ2Manα6 HSO3-3GlcAβ3Galβ4GlcNAcβ Manα3 Galβ4GlcNAcβ2	11.4	8.7	2693
3H1-1S1-300.8	GlcAβ3Galβ4GlcNAcβ2Manα6 GlcAβ3Galβ4GlcNAcβ4 Manα3΄ HSO3-3GlcAβ3Galβ4GlcNAcβ2	11.6	7.1	2341
3H1-1S3-300.8	GlcAβ3Galβ4GlcNAcβ2Manα6 HSO3-3GlcAβ3Galβ4GlcNAcβ Manα3 GlcAβ3Galβ4GlcNAcβ2	13.4	7.2	2341

^aThe PA-oligosaccharides are coded according to the literature [13,16]. ^bAverage mass calculated from the *m/z* values of [M+Na-2H]⁻, or [M+2Na-3H]⁻ ions for HNK-1-containing PA-oligosaccharides.

Fig. (2). Diagram of the partial UC values of glucuronyl residues for GU(ODS).

Fig. (3). HPLC-based characterization of branch specify of GlcAT-S.

a: Time-dependent transition of the HPLC profiles on an ODS column of the products resulting from the galctose-terminated tri-antennary PA-oligosaccharide (indicated by arrow) during the glucuronylation reaction catalyzed by the recombinant human GlcAT-S enzyme. **b**: Time courses of the amounts of the starting material and resultant glycans. Data are presented as mean \pm S.D. of three independent experiments. Symbol: green circle, mannose; yellow circle, galactose; blue square, *N*-acetylglucosamine; diamond, glucuronic acid.

profiling of glucuronyl *N*-glycans expressed in the neuronal and other biological systems.

ABBREVIATIONS

Da	=	dalton
GlcAT	=	β 1,3-glucuronyltransferase
GU	=	glucose unit
GU(amide)	=	glucose unit value on the amide column
GU(ODS)	=	glucose unit value on the ODS column
HNK-1	=	human natural killer cell-1
HPLC	=	high performance liquid chromatogra- phy
MALDI-TOF-MS	=	matrix-assisted laser desorp- sion/ionization time-of-flight mass spectrometry
UC	=	unit contribution
Fuc	=	fucose
Gal	=	galactose
Man	=	mannose

= <i>N</i> -acetylglucosamine
= hexose
= <i>N</i> -acetylhexosamine
= deoxyhexose

ACKNOWLEDGEMENTS

This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

H.Y. is a recipient of Japan Society for the Promotion of Science Research Fellowships for Young Scientists. We thank Drs. Soichi Wakatsuki and Ryuichi Kato (High Energy Accelerator Research Organization) for useful discussion.

REFERENCES

- Kleene R, Schachner M. Glycans and neural cell interactions. Nat Rev Neurosci 2004; 5: 195-208.
- [2] Rosen SD. Endothelial ligands for L-selectin: from lymphocyte recirculation to allograft rejection. Am J Pathol 1999; 155: 1013-20.
- [3] Abo T, Balch CM. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 1981; 127: 1024-9.
- Bronner-Fraser M. Perturbation of cranial neural crest migration by the HNK-1 antibody. Dev Biol 1987; 123: 321-31.

- [5] Keilhauer G, Faissner A, Schachner M. Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature 1985; 316: 728-30.
- [6] Yamamoto S, Oka S, Inoue M, et al. Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. J Biol Chem 2002; 277: 27227-31.
- [7] Liedtke S, Geyer H, Wuhrer M, et al. Characterization of Nglycans from mouse brain neural cell adhesion molecule. Glycobiology 2001; 11: 373-84.
- [8] Ong E, Suzuki M, Belot F, et al. Biosynthesis of HNK-1 glycans on O-linked oligosaccharides attached to the neural cell adhesion molecule (NCAM): the requirement for core 2 beta 1,6-Nacetylglucosaminyltransferase and the muscle-specific domain in NCAM. J Biol Chem 2002; 277: 18182-90.
- [9] Kruse J, Mailhammer R, Wernecke H, et al. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 1984; 311: 153-5.
- [10] Kruse J, Keilhauer G, Faissner A, Timpl R, Schachner M. The J1 glycoprotein--a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature 1985; 316: 146-8.
- [11] Zamze S, Wing DR, Wormald MR, Hunter AP, Dwek RA, Harvey DJ. A family of novel, acidic N-glycans in Bowes melanoma tissue plasminogen activator have L2/HNK-1-bearing antennae, many with sulfation of the fucosylated chitobiose core. Eur J Biochem 2001; 268: 4063-78.
- [12] Voshol H, van Zuylen CW, Orberger G, Vliegenthart JF, Schachner M. Structure of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0. J Biol Chem 1996; 271: 22957-60.
- [13] Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N. Analyses of N-linked oligosaccharides using a two-dimensional mapping technique. Anal Biochem 1988; 171: 73-90.
- [14] Nakagawa H, Kawamura Y, Kato K, Shimada I, Arata Y, Takahashi N. Identification of neutral and sialyl N-linked oligosaccharide structures from human serum glycoproteins using three kinds of high-performance liquid chromatography. Anal Biochem 1995; 226: 130-8.

Received: March 31, 2008

[15] Yagi H, Takahashi N, Yamaguchi Y, et al. Development of structural analysis of sulfated N-glycans by multidimensional high performance liquid chromatography mapping methods. Glycobiology 2005; 15: 1051-60.

- [16] Takahashi N, Kato K. GALAXY(Glycoanalysis by the Three Axes of MS and Chromatography):a Web Application that Assists Structural Analyses of *N*-Glycans. Trends Glycosci Glycotechnol 2003; 15: 235-51.
- [17] Kakuda S, Oka S, Kawasaki T. Purification and characterization of two recombinant human glucuronyltransferases involved in the biosynthesis of HNK-1 carbohydrate in *Escherichia coli*. Protein Expr Purif 2004; 35: 111-9.
- [18] Shiba T, Kakuda S, Ishiguro M, et al. Crystal structure of GlcAT-S, a human glucuronyltransferase, involved in the biosynthesis of the HNK-1 carbohydrate epitope. Proteins 2006; 65: 499-508.
- [19] Kizuka Y, Matsui T, Takematsu H, Kozutsumi Y, Kawasaki T, Oka S. Physical and functional association of glucuronyltransferases and sulfotransferase involved in HNK-1 biosynthesis. J Biol Chem 2006; 281: 13644-51.
- [20] Takahashi N, Masuda K, Hiraki K, et al. N-Glycan structures of squid rhodopsin. Eur J Biochem 2003; 270: 2627-32.
- [21] Lee YC, Lee BI, Tomiya N, Takahashi N. Parameterization of contribution of sugar units to elution volumes in reverse-phase HPLC of 2-pyridylaminated oligosaccharides. Anal Biochem 1990; 188: 259-66.
- [22] Tomiya N, Takahashi N. Contribution of component monosaccharides to the coordinates of neutral and sialyl pyridylaminated Nglycans on a two-dimensional sugar map. Anal Biochem 1998; 264: 204-10.
- [23] Kakuda S, Sato Y, Tonoyama Y, Oka S, Kawasaki T. Different acceptor specificities of two glucuronyltransferases involved in the biosynthesis of HNK-1 carbohydrate. Glycobiology 2005; 15: 203-10.
- [24] Oka S, Terayama K, Imiya K, et al. The N-glycan acceptor specificity of a glucuronyltransferase, GlcAT-P, associated with biosynthesis of the HNK-1 epitope. Glycoconj J 2000; 17: 877-85.

Revised: April 09, 2008

Accepted: April 11, 2008

© Yagi et al.; Licensee Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/license/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.