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Abstract: The natural diamine putrescine and polyamines spermidine and spermine belong to a family of low-molecular-

weight organic polycations that are classically known to be important mediators of cell growth, proliferation and division. 

Several studies are nowadays available about the involvement of polyamines in various aspects - such as growth, differen-

tiation and death - of cardiac cells, under physiological and pathological conditions. Polyamine metabolism and effects, 

and their relation with a number of extracellular signals and intracellular transductional cascades, have been investigated 

in cellular and animal models - comprising cultures of embryo, neonatal and adult primary cardiomyocytes, heart-derived 

cell lines, and stem cells, as well as wild-type and transgenic animals. Significant evidence for their critical role in 

(mal)adaptive cardiac (patho)physiology emerges from this extensive literature suggesting that, in principle, polyamine 

metabolism may constitute a target for treatment of cardiovascular diseases. In the present paper we have reviewed these 

studies. 
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INTRODUCTION 

 Putrescine, spermidine and spermine, are natural poly-
amines, aliphatic polycations occurring in all living cells. 
Putrescine is synthesized from the non protein amino acid 
ornithine by the enzyme ornithine decarboxylase (ODC, EC 
4.1.1.17), rapidly induced upon several growth and differen-
tiation stimuli. The product of ODC, is then converted to 
spermidine and spermine, by the sequential intervention of 
two constitutive, specific aminopropyl-transferases: sper-
midine synthase (EC 2.5.1.16) and spermine synthase (EC 
2.5.1.22). S-adenosylmethionine is the aminopropyl donor 
for spermidine and spermine biosynthesis. It is provided by 
another inducible decarboxylase: S-adenosylmethionine de-
carboxylase (AdoMetDC, SAMDC, EC 4.1.1.50) [1]. Poly-
amine catabolism requires two enzymes. Sper-
midine/spermine N1-acetyltransferase (SSAT, EC 2.3.1.57) 
is rapidly induced by high polyamine levels as well as stress 
and inflammatory stimuli. N1-acetyl polyamine oxidase 
(PAO, EC 1.5.3.11) is constitutively expressed. More re-
cently, the inducible enzyme spermine oxidase (SMO, EC 
1.5.3.3) was identified as responsible for direct oxidation of 
spermine to spermidine. Polyamine catabolism not only con-
tributes to the fine regulation of polyamine levels, but can 
also result in the production of potentially cytotoxic H2O2 
and aldehydes as by-products of either PAO or SMO activity 
[2]. Although their synthesis and catabolism are a major 
route for balancing polyamine concentrations in mammalian 
cells, transport into and out of the cell also contributes to 
their homeostasis [3], which is relevant as everyday we take 
in a significant amount of polyamines from the diet [4].  
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Polyamines can specifically bind to nucleic acids, proteins 
and phospholipids in vitro thus affecting gene expression, 
signaling pathways and ionic transport in the cell [5, 6]. Al-
though it has been well established that polyamines are es-
sential factors for the proliferation of eukaryotic cells, in-
creasing evidence indicates a role for polyamines or their 
metabolites in other cell responses, including differentiation 
and apoptosis [7, 8]. Indeed, increasing evidence indicates 
that polyamines, cell proliferation and apoptosis are tightly 
connected in a quite complex interplay. It appears that poly-
amines are Janus-faced regulators of cellular fate, promoting 
either cell proliferation or cell death, depending on the cell 
type, as well as on the environmental signals [9]. Polyamine 
metabolism is deregulated in cancer cells. Conversely ele-
vated levels of polyamines can favour tumour promotion and 
progression [5]. The higher requirement of polyamines for 
tumour growth has made polyamine metabolism an attractive 
target in experimental cancer therapy and chemoprevention. 
However, -difluoromethylornithine (DFMO), a specific 
ODC inhibitor, has so far been approved by the American 
FDA only for the treatment of African trypanosomiasis [1]. 
The role that ODC and polyamines play in cardiac biology 
and physiology is witnessed by the number of papers pub-
lished in this field. In fact polyamine-mediated signaling is 
part of several transduction pathways, such as adrenergic- 
[10, 11] or androgen-activated [12-15] cardiac cellular re-
sponses. Moreover, a number of cardiac cellular functions 
are proven to be affected by polyamines, such as histone 
acetylation and ribonucleic acid synthesis [16] and Ca

2+
 ho-

meostasis [17-19]. In particular, studies from this and other 
laboratories have extensively explored the relationship be-
tween polyamines and heart hypertrophy, that is a major pre-
dictor of progressive cardiac disease, as pointed out in the 
classic Framingham Heart Study [20]. Pathological hyper-
trophy is often associated to stimulation by neurohormonal, 
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stress and inflammatory signals, such as angiotensin II, tu-
mor necrosis factor (TNF)  and catecholamines [21], involv-
ing the activation of complex intracellular pathways [22] – 
including polyamines – and promoting cardiac fibrosis and 
apoptosis, that may in turn contribute to the transition to 
overt heart failure.  

 We here aim to briefly outline the significant role for 
polyamines in triggering and/or modulating several aspects 
in cardiac biology, physiology and pathology. 

POLYAMINES AND CELL GROWTH 

 Polyamines are essential for cell proliferation as they 
affect the normal cell-cycle progression [23]. ODC activity 
and polyamine levels are increased in the heart of intact ani-
mals, or in isolated cardiac tissue and cells, by a large variety 
of stimuli [reviewed in 24], particularly those leading to car-
diac hypertrophy, as previously mentioned. Although the 
adult mammalian myocardium has a limited ability of spon-
taneous and effective regeneration, recent studies have de-
scribed cardiac stem or progenitor cells and reported that 
cardiomyocytes can still divide in response to specific ex-
tracellular stimuli [25]. DNA synthesis occurs in cardiomyo-
cyte progenitors during embryonic and neonatal develop-
ment [26] and possibly in the adult heart, at least in specific 
conditions [27]. Identification of extracellular stimuli and 
intracellular pathways leading to DNA replication in these 
cells may result in obvious therapeutic potential. In this light, 
the relation between polyamines and important mediators of 
inflammation such as TNF , bacterial lipopolysaccharides 
(LPS) and NO, all of them able to affect cardiovascular func-
tions and relevant for cardiovascular pathophysiology [12], 
was evaluated. In particular, we explored the effects of 
TNF  and LPS on polyamine metabolism and examined the 
interplay between NO and polyamines in heart cell cultures. 
Treatment of confluent chick embryo cardiomyocytes with 
TNF  plus LPS induces ODC and the inducible isoform of 
nitric oxide synthase (iNOS, NOS2, EC 1.14.13.39) as well 
as DNA synthesis. This mitogenic effect is strongly reduced 
inhibiting either NOS or ODC [28]. Two key signaling pro-
teins mediate the activation of polyamine and NO biosynthe-
sis by TNF  and LPS. The transcription factor NF- B and 
the MAP kinase family member extracellular-signal-
regulated-kinase (ERK, EC 2.7.1.37) are separately activated 
by TNF  plus LPS, but converge to favour proliferation of 
chick embryo cardiomyocytes. More in detail, nuclear 
translocation of NF- B appears to be involved in both ODC 
and NOS induction, while ERK activation is required only 
for the induction of ODC [29]. NK- B and ERK also 
cooperate to reduce caspase activity, thus favoring cell 
survival. TNF  plus LPS treatment enhance cGMP levels in 
chick embryo cardiomyocytes and polyamine biosynthesis 
appeared to be required for this effect. Putrescine and NO 
donors additively activated soluble guanylate cyclase (sGC) 
in cell-free extracts, and, accordingly, addition of exogenous 
polyamines to untreated cells raise the cGMP level in a NO-
dependent fashion. Moreover, treatment of quiescent cells 
with NO donors, polyamines, cGMP analogues or sGC 
activators promote DNA synthesis. Pharmacological inhi-
bition of sGC and cGMP-dependent protein kinase (PKG), 
show that cGMP-dependent pathways are required for the 
mitogenic action of TNF  plus LPS or polyamine treatment 
[30]. All together, these results outline a picture where the 
mitogenic effect of TNF  and LPS in chick embryo 

effect of TNF  and LPS in chick embryo cardiomyocytes 
involves the activation of ERK- and NF- B-dependent 
pathways, leading to the induction of both ODC and NOS 
enzymes. In turn, downstream polyamines and NO cooperate 
to enhance cGMP levels, resulting in the stimulation of DNA 
synthesis [25, 30]. This evidence sustains the importance of 
polyamine biosynthesis, and of their interrelations with other 
key intracellular mediators and messengers, as a signaling 
pathway operating in the mitogenic response of the cardiac 
cell. 

POLYAMINES AND DIFFERENTIATION 

 Polyamines are involved in the regulation of cellular dif-
ferentiation. In recent studies, ODC activity and putrescine 
levels were correlated with mieloid cell differentiation in-
duced by retinoic acid treatment [31] and polyamine deple-
tion caused by -difluoromethylornithine (DFMO), an irre-
versible inhibitor of ODC, was shown to prevent adipocyte 
differentiation [32]. Inasmuch as muscle cell differentiation 
is concerned, a recent paper demonstrated that the impaired 
skeletal muscle function in male mice with genomic andro-
gen receptor knockout, was consistent with a reduced ex-
pression of genes encoding polyamine biosynthetic enzymes. 
This suggests that androgen-driven muscle development also 
involves the regulation of polyamine biosynthesis [33]. This 
work corroborates early results showing that polyamine de-
pletion inhibits the differentiation of L6 myoblast cells [34]. 
We recently studied the effect of insulin on the activity of 
ODC while inducing H9c2 embryonal rat cardiomyoblasts to 
differentiate into myotubes. ODC activity increased in H9c2 
cells upon insulin treatment, consistently with their differen-
tiation in myotubes. DFMO, while reducing ODC activity 
induced by insulin in H9c2 cells, also delayed the increase in 
myogenin expression driven by insulin treatment. H9c2 cells 
overexpressing ODC (ODC

+
) showed a significant increase 

in polyamine synthesis and differentiated into myotubes 
without the need for any external stimulus and faster than the 
wild type cells treated with insulin. Treatment with DFMO 
slowed down ODC

+ 
cell differentiation, showing the specific 

role played by polyamines [35]. These results confirm and 
extend the evidence of a pivotal role of polyamines in myo-
genic process and address a prospect suggestion of protocols 
for muscle regeneration.  

 In this respect, high expectations for regenerative medi-
cine of cardiac muscle rely on the potential offered by mes-
enchymal stem cells (MSCs), a self-renewing cell population 
able to differentiate into several cell lineages [36]. Their use 
to regenerate the damaged tissue is however hindered by the 
fact that most of them, once transplanted in the infarcted 
heart, die because of apoptosis upon 24 hours [37]. In the 
search for new approaches to limit MSCs death, we investi-
gated how polyamine may affect apoptosis in MSCs. Apop-
tosis was induced in rat bone marrow-derived MSCs with 
TNF  administered together with MG132, able to blunt the 
prosurvival pathway mediated by TNF , which results in a 
prompt activation of the executioner caspases. Pre-treatment 
of MSCs with DFMO determined a four-fold reduction in 
the activation of caspase-3 and the occurrence of other mark-
ers of apoptosis (annexin V, TUNEL). On the other hand, 
addition of putrescine or spermidine to MSCs restored 
caspase activity induced by TNF  stimulation. Therefore, 
polyamines seem to be closely involved in the regulation of 
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basal and cytokine-stimulated caspase activity in rat MSCs. 
Thus the depletion of these natural polycations may be use-
ful to counteract the apoptotic process [38]. MSC pre-
treatment with DFMO significantly affected also their differ-
entiation towards a cardiac lineage. MSCs grown in culture 
in presence of adult cardiomyocytes show a faint immu-
nostaining for cardiac troponin I and cardiac myosin light 
chain. Pre-treatment of MSCs with DFMO enhances the ex-
pression of these cardiac markers. Sarcomeric protein ex-
pression significantly increases when MSCs are cultured 
with cardiomyocytes subjected to an ischemic-like insult. 
Under this condition, intended to stimulate in vitro an infarct 
damage, pre-treatment of MSCs with DFMO further en-
hanced production of cardiac specific sarcomeric proteins. 
These effects on cardiac differentiation were partially sup-
pressed by treating MSCs with anacardic acid, an inhibitor of 
histone acetylation, indicating a potential mechanism in-
volved in the DFMO-mediated cardiac commitment [39]. 
Differentiation of MSCs to an early cardiac phenotype seems 
therefore to be improved by pre-treating MSCs with DFMO, 
especially when they establish contacts with post-ischemic 
cardiomyocytes. These findings indicate that the ex-vivo pre-
treatment of MSCs with DFMO could represent a useful 
strategy to improve regeneration of the damaged cardiac 
tissue. The potential of this treatment is also emphasized by 
the absence of DFMO toxicity in vivo and by the observation 
that polyamine depletion is maintained in MSCs for some 
days after DFMO removal, a time which coincides with the 
early phase of MSCs transplantation in the heart. The two 
above-mentioned described examples of the involvement of 
polyamines in cell differentiation may sound puzzling: in-
creasing their cellular concentrations [35] may lead to differ-
entiation as well their depletion [39] does. To reconcile these 
opposite evidences one can consider that different cell types 
may integrate polyamine-mediated signaling within their 
peculiar intracellular transductional network, with the final 
emergence of defined properties resulting from the role ex-
erted by other (possibly hidden) players [40]. This is not 
unusual for cellular functions where a clear implication of 
polyamine is described, such as e.g. apoptosis [41]. 

POLYAMINES AND APOPTOSIS 

 Apoptosis is a regulated form of cell death under genic 
control. Deregulated apoptosis is involved in several fields 
of medicine, including cardiovascular medicine [42]. It is 
now evident that apoptosis is deeply involved in the patho-
physiology of almost all kinds of heart disease. Apoptosis of 
cardiac myocytes has been recognized as a cellular mecha-
nism of injury in cardiac ischemia/reperfusion, hypertrophy 
and failure [43, 44]. Several studies showed that polyamines 
are involved in pathways leading to either cell death or sur-
vival in a number of cell types [for reviews on polyamines 
and apoptosis see refs. 1, 7, 8]. Based on growing experi-
mental work, it may be concluded that polyamines can 
doubtless affect the apoptotic process. However the relation-
ship appears to be complex and dependent on the cell type 
and death stimulus, as well as on the actual levels and acti-
vated polyamine pathways. Both up-regulation and down-
regulation of polyamine levels have been reported during 
apoptosis [41]. Whereas excessive intracellular polyamines 
in overproducing cells or following exogenous addition gen-
erally induce apoptosis [45-47], polyamine depletion caused 

by a specific polyamine biosynthesis inhibitor like DFMO 
can reduce or enhance the susceptibility to apoptosis even in 
the same cell type, depending on the specific death stimulus 
[48, 49]. Two main phases of apoptosis have been described: 
an initiation phase during which specific signal transduction 
pathways are activated and a mitochondrial phase, modu-
lated by Bcl-2 family members and involving the release of 
cytochrome c and the activation of caspase cascade. Today 
we know that polyamines can interfere with both these 
phases [for review see ref. 8] and recent studies focused on 
cardiac cells suffering ischemic stress [50-53]. In particular, 
activity of ODC is rapidly and transiently induced, causing 
increased polyamine levels [50] in H9c2 cardiomyoblasts 
exposed to a condition of simulated ischemia that leads to 
apoptosis [54]. In this same model, intracellular DFMO-
driven polyamine depletion protects against apoptosis, inhib-
iting several molecular events at the level of the mitochon-
drial phase of apoptosis following simulated ischemia, such 
as release of cytochrome c from mitochondria, caspase acti-
vation, down-regulation of Bcl-xL and consequent DNA 
fragmentation. However, DFMO was also shown to prevent 
apoptosis at the level of the pre-mitochondrial phase, by af-
fecting key signaling proteins such as ERK, JNK and AKT, 
in different cell types [reviewed in refs. 8 and 55]. In addi-
tion, cardiomyocytes isolated from transgenic mice overex-
pressing cardiac ODC, resulting in a 4-fold increased putre-
scine intracellular level, show a higher caspase activation 
with respect to cells from control mice, in accordance with 
the view of these amines as apoptosis-facilitating factors 
[50]. The complexity of the actions of polyamines in apopto-
sis is indicated by a recent report on simulated ische-
mia/reperfusion injury where the addition of putrescine to 
cultured neonatal rat cardiomyocytes was shown to enhance 
the rate of apoptosis, whereas the treatment with spermine or 
spermidine resulted to decrease it [51]. Again, involvement 
of the anti-apoptotic protein Bcl-2 and a modulation of cyto-
chrome c release from mitochondria was described in this 
setting. Perturbation of polyamine metabolism was also ob-
served in isolated, perfused rat heart subjected to ischemia 
and reperfusion [52]. Increased ODC and SSAT activities 
and putrescine accumulation were detected after acute heart 
ischemia; however, a loss of spermine was observed after 
reperfusion, attributed to an increase of NO content and as-
sociated with reduced myocardial cell viability. In fact a 
negative correlation was found between NO and spermine 
levels; moreover, treatment with the exogenous NO donor 
sodium nitroprusside (SNP) decreased cardiac ODC activity, 
and increased SSAT activity, resulting in spermine reduc-
tion. Indeed, it was reported that SNP inhibits ODC induc-
tion in cardiomyocytes, being also able to provoke cytotoxic-
ity, which was prevented by antioxidants, suggesting the 
involvement of toxic radical derivatives [33]. Actually NO 
may act in pathways leading to either cell survival or cell 
death [56, 57] and a complex cross-talk between NO and 
polyamine metabolism occurs as discussed in various parts 
of this article. Very recently, upregulated expression of 
SSAT, a key enzyme in polyamine catabolism, was found in 
the ischemic myocardium upon coronary ligation in rats 
[58]. SSAT appeared induced under conditions of ATP de-
pletion via AMPK signaling, but resulted to exert a cardio-
protective action in this context, which was not related to 
changes in polyamine content. As a final thought, despite a 
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variety of results, partially related to different experimental 
models and protocols, all these studies underline the impor-
tance of polyamines and polyamine-related enzymes in af-
fecting survival and death of cardiomyocytes. 

POLYAMINES AND HEART HYPERTROPHY 

 Heart muscle hypertrophy is an adaptive response to both 
physiological (chronic exercise) and pathological (chronic 
hypertension, cardiac valve stenosis) stimuli, aiming to in-
crease ventricular pump function and to decrease cardiac 
wall tension. Individual myocyte growth sustains the hyper-
trophic phenotype at the cellular level, where activation of 
gene expression and protein synthesis are typical features. A 
role for ODC and polyamine metabolism in cardiac hyper-
trophy was described since long ago [59-61]. More specifi-
cally, an increase in polyamine concentrations was reported 
in cardiac tissue or cells after ascending aortic stenosis [62], 
stress [63], physical exercise [64, 65], administration of 
adrenoceptor agonists [66-68] - all inducers of cardiac hyper-
trophy. This increase in cellular polyamine content was con-
sistent with histone hyperacetylation [69], and elevated RNA 
[64, 69] and protein [70] synthesis. On the other hand, ad-
ministration of DFMO, reduced polyamine content and at-
tenuated isoproterenol (ISO)- and clenbuterol-induced car-
diac effects [71, 72]. Today a number of transgenic and 
knockout mouse models, with altered levels of polyamine 
metabolizing enzyme is available, as reviewed in [73]. Re-
cently, the targeted overexpression ODC to the heart has 
been shown to produce a moderate baseline cardiac hyper-
trophy. -adrenergic stimulation with ISO increases the left 
ventricular hypertrophy in these transgenic mice [74]. Inter-
estingly, we found that ISO also dramatically induces ar-
ginase activity in these transgenic hearts [75]. Arginase cata-
lyzes the conversion of arginine to ornithine, the ODC sub-
strate. On the other hand, arginine is also the substrate for 
nitric oxide synthases (NOS), which lead to the synthesis of 
NO (Fig. 1) [76]. Reduced levels of NO are consistent with 
development of cardiac hypertrophy [77, 78], and overex-

pression of the endothelial isoform of NOS has been shown 
to attenuate the hypertrophic effect of ISO [79]. Moreover, 
NO can inhibit ODC activity [80] and reduce polyamine 
content [81], and polyamines can inhibit NOS [82]. The ac-
tivity of arginase is thus likely to play a regulatory role in the 
biosynthesis of both NO and polyamines and these metabolic 
pathways may therefore crosstalk in regulating a variety of 
cardiovascular functions [32, 33, 83, 84]. 

CONCLUDING REMARKS 

 Natural polyamines have been credited of several specific 
roles within cardiac cells and tissue, in a large variety of ex-
perimental models ranging from cell cultures to whole ani-
mals. Accumulating evidence indicates that polyamines are 
involved in various cellular aspects of cardiac development 
and remodeling, including proliferation, differentiation and 
apoptosis of cardiac cells. Ongoing investigations will test 
out if they may represent a potential target for the treatment 
of cardiovascular diseases.  
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