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Quantitative Models for Causal Analysis in the Era of Genome Wide Association Studies 

Causal inference in health research is a complex endeavor partly because the biomedical enterprise involves researchers from many 
disciplines including clinical medicine, epidemiology, genetics, basic sciences such as pathology and cell biology, and the behavioral 
sciences. A multidisciplinary approach is often needed to study health concerns and interpret findings, drawing upon expertise from 
epidemiologists, statisticians, physicians, nurses, geneticists, psychologists, and other practicing clinicians and researchers. In addition to 
the diversity of scientific disciplines and professions that are represented in many study groups, the range of health topics that can be 
studied is large and can include physical injuries such as traumatic brain injury; pain syndromes and other neurological conditions; chronic 
health conditions such as obesity, cancer, respiratory illnesses, and cardiovascular disease, gastrointestinal illnesses such as irritable bowel 
syndrome, infectious diseases such as H1N1 influenza and hepatitis C, psychiatric conditions such as post traumatic stress syndrome, 
depression, and suicide, adverse reproductive outcomes, and other health problems and concerns. Another feature of health research is that 
a range of study designs are employed by researchers including surveillance systems, observational studies with a case-control or cohort 
design, cross-sectional surveys, and randomized controlled trials. In recent years, observational studies include the large platforms of cases 
and controls that are identified for genome-wide association studies [1, 2]. In addition to statistical geneticists, the researchers who analyze 
data from genome-wide association studies and proteomics research often include persons with expertise in bioinformatics or machine 
learning techniques. 

These three features of health research (diversity of scientific disciplines, wide variety of health topics of interest, and alternative study 
designs) create both challenges and opportunities for researchers attempting to identify causal associations with possible etiologic agents 
and new therapeutic targets, so that research findings can be translated into targeted clinical interventions and evidence-based therapies. For 
example, in studies with an observational design, where assignment of exposures is not under control of the investigators, assessments of 
causality can be more challenging than in randomized trials [3, 4]. 

Investigations into the distribution and determinants of health conditions attempt to gain new knowledge through observation and inductive 
logic. Causal criteria commonly cited in epidemiology include temporal order of exposure and disease, biologic gradient or dose-response 
curve, biologic plausibility, biologic coherence, and consistency of findings, although some authors have recommended subsets of the 
criteria or refined definitions [5-7]. The strength of the observed association is also important in some assessments of causality. Criteria for 
causal criteria are widely used as a heuristic aid for assessing whether associations observed in epidemiologic research are causal although 
criteria-based methods provide only general guidelines for assessing the causality of associations rather than a strict checklist for identifying 
a causal relationship [3, 4]. The model of sufficient component causes [8] is widely used in epidemiology as a framework for teaching and 
understanding multicausality. A sufficient component cause is made up of a number of components, no one of which is sufficient for the 
disease or adverse health condition on its own [4, 8]. Diseases and adverse health conditions can be caused by more than one causal 
mechanism and each causal mechanism involves the combined action of several component causes. For example, both genetic factors and 
environmental exposures may have a role in the development of neurologic conditions such as amyotrophic lateral sclerosis. Other 
examples of diseases caused by interactions between genes and environment include complex, common diseases such as cancer, coronary 
heart disease, and diabetes [1]. 

A large and growing literature has dealt with statistical modeling approaches for estimating causal parameters or identifying causal 
associations using data from observational studies [9-13]. However, much of this important literature has not dealt directly with the special 
challenges that arise in causal assessments of data from genome-wide association studies including information about environmental 
exposures. Recent advances in genetics have challenged traditional frameworks for causal inference in observational research [14]. 

The goal of this article is to consider challenges that arise in causal assessments of data from genome-wide association studies, which 
utilize high throughput genotyping technologies to analyze biological specimens collected from large numbers of cases and controls for up 
to one million single nucleotide polymorphisms (SNPs) [1, 2]. Before considering those challenges, I briefly discuss key developments in 
quantitative models for causal analysis: counterfactual analysis and graphical causal models and structural equations modeling. I then 
provide a summary of quantitative techniques for analyzing data from genome-wide association studies and related gene expression and 
proteomic data, and offer some recommendations for causal assessments of results from such studies. 

COUNTERFACTUAL MODELS 

Several authors have described how the counterfactual model for causal analysis or potential-outcomes model can be applied to 
observational data from health studies [11, 12, 15, 16]. Counterfactual models specify what would happen under alternative possible 
patterns of exposure and provide a basis for quantitative analyses of exposure effects [11]. Statistical approaches to causal analysis require 
that the exposure of interest (X) and the outcome Y be measurable quantities [16]. 

Suppose that i = 1… N represents a population of persons under study. As Greenland and Brumback [11] explained, the counterfactual 
model of causation assumes that: 1) each individual could have received any one of the exposure levels, and 2) for each individual i and 
exposure level Xj, at the time of exposure (or at random assignment of treatment), the outcome that individual i would have if the individual 
gets exposure level Xj exists, even if the individual does not actually get Xj. This value is referred to as the potential outcome of individual i 
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under exposure level Xj. The counterfactual model treats the potential outcome or outcomes as if they were baseline covariates or fixed 
from the start of follow-up [17]. 

The second assumption noted above can be restated in the following way: for each individual i and each exposure level Xj, a potential-
outcome variable Yij can also be defined that represents the outcome of the individual under that exposure [11]. A further assumption in 
many counterfactual modeling applications is that the potential outcomes of each individual are independent of the exposures (or treatment) 
and outcomes of other individuals. 

Yij is the indicator of the actual outcome for individual i if individual i has exposure level Xj. Otherwise, Yij may be quite different from 
the actual outcome [11]. This difference represents the effect of actual exposure level relative to exposure level Xj. The only Yij that can be 
observed is the one corresponding to the exposure actually received by individual i. The remaining Yij cannot be observed but they can be 
estimated from observed covariates and outcomes [11]. 

Multiple causal factors can be taken into account in counterfactual models since causal factors may be necessary but not sufficient [16]. By 
specifying what would happen under alternative possible patterns of exposure, counterfactual models provide useful effect measures for 
etiologic studies [15]. This allows for the effect measure of interest (the causal contrast) to be more precisely defined than is sometimes the 
case in epidemiologic studies. A causal contrast compares disease frequency (in a particular target population during a specified time 
period) under two exposure distributions. As Maldonado and Greenland [15] explained, “A parameter (such as a disease frequency) that 
describes events under actual conditions is said to be actual (or factual); in contrast, a parameter that describes events under a hypothetical 
alternative to actual conditions is said to be counterfactual.” Counterfactual parameters cannot be observed since they describe hypothetical 
events following alternatives to actual conditions [15]. Although critics have argued that the counterfactual model of causation depends on 
unobservable assumptions [17], the counterfactual approach has been increasingly utilized in epidemiology and other areas of medical and 
social research. 

Greenland and Robins [18] emphasized that the exposure X should be a potentially changeable condition in order to make sense of the 
unobserved potential outcomes. Although this requirement appears to rule out the application of counterfactual models to most genetic 
factors, this is not universally true. Counterfactual models could conceivably be applied to epi-genetics data such as patterns of DNA 
methylation. Other examples of genetics research where counterfactual models of causation have potential are randomized trials involving 
targeted molecular therapies. 

GRAPHICAL CAUSAL MODELS AND STRUCTURAL EQUATIONS MODELING 

Several authors have explained how graphical causal models or causal diagrams (including related concepts such as directed acyclic 
graphs) can be used to better understand causal relationships in health research, epidemiology, and social research [11, 19, 20]. For a recent 
example, see Hernan and Cole [21]. Although graphical causal models or causal diagrams have mostly been used to identify and explain 
causal relationships between environmental or social factors and disease outcomes, they also have potential applications in genetics 
research. For example, in studies of DNA adducts among Army personnel who were likely exposed to smoke from oil well fires during the 
1991 Persian Gulf War, graphical causal models could be used to describe the relationships between various environmental sources of 
polycyclic aromatic hydrocarbons (for example, smoke from oil well fires, cigarette smoking, and dietary sources such as charbroiling of 
meat) and potential adverse health outcomes such as lung cancer [22, 23]. Potential confounding factors or effect modifiers (for example, 
age at exposure, sex, time since exposure, and polymorphically expressed genes that code for DNA repair enzymes) might also be 
represented in the models. 

Graphical causal models can be related to structural equation models and to counterfactual models [11, 19]. Structural equations modeling 
is a multivariate statistical technique in which a web or network of causation is modeled by a system of equations and independence 
assumptions [11, 24, 25]. Each equation shows how an individual response variable (outcome variable) changes as its direct causal 
variables change. A variable may appear in no more than one equation as a response variable, but may appear in any other equation as a 
causal variable [11]. In contrast to ordinary regression equations which represent associations of actual outcomes with actual values of 
covariates across individuals, structural equations may have within-individual causal interpretations [11]. Several authors have explained 
the use of structural equations modeling in analyzing health data [11, 19, 24, 25]. Researchers do not always interpret results obtained from 
structural equations modeling as causal, however [19]. 

CAUSAL ASSESSMENTS OF RESULTS FROM GENOME-WIDE ASSOCIATION STUDIES 

Recent reviews have outlined the rationale and methods for genome-wide association studies [1, 2, 26]. These studies utilize automated, 
high throughput genotyping technologies to analyze biological specimens collected from cases and controls for up to one million single 
nucleotide polymorphisms (SNPs) and at relatively low cost. The genome-wide association approach allows interrogation of the entire 
human genome in large numbers of unrelated individuals [26]. In contrast to studies of candidate genes, there may be no a priori hypotheses 
about genetic associations with disease in genome-wide association studies. Nearby SNP alleles tend to be inherited together more often 
than expected by chance because of linkage disequilibrium [1]. Because of the strong associations among the SNPs in most chromosomal 
regions, only a few SNPs need to be typed to predict the likely variants at the rest of the SNPs in a particular region. As a result, it is not 
necessary to type all 10 million common SNPs in individuals with and without disease in order to identify sites that differ in frequency 
between the groups. Studies involving the typing of a few hundred thousand or up to one million of these SNPs can test the hypothesis that 
one or more common variants explain part of the genetic risk for a disease or trait. If a SNP increases the risk of a common disease, then 
there will be a statistical association in the population between disease and that SNP and several nearby SNPS due to linkage disequilibrium 
[2]. Quality control procedures and the replication of results obtained from genome-wide association studies are important considerations, 
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since genotyping errors can cause spurious false positive results or false negative results that obscure true associations [1]. Extensive data 
cleaning and quality control is required in genome-wide association studies to detect problems that can result in spurious results [2]. 

Genome-wide association scanning has so far identified variants or chromosomal regions associated with more than 40 complex, non-
Mendelian diseases or traits including type 1 and type 2 diabetes, breast, prostate, and colorectal cancer, coronary heart disease and other 
cardiovascular diseases, neuropsychiatric conditions, and autoimmune and infectious diseases, although the estimated odds ratios are 
mostly small [1]. In order to have sufficient statistical power to detect genotypic odds ratios on the order of 1.1 to 1.4, it is necessary to 
include large samples of cases and controls. Replication studies involving other genome-wide association platforms are needed to evaluate 
the consistency of associations. Studies of disease subtypes or cases with a younger age at onset or more rapidly progressive course are also 
likely to be informative [1]. The study of rare variants will require large-scale resequencing analyses [2]. 

Most deleterious variants are found in protein coding regions (exons) or in sequences that control gene expression (promoters). However, 
gene expression can be altered by SNPs found in noncoding gene segments (introns). Hindorff et al. [27] examined characteristics of 
reported trait and disease-associated SNPs and found that 45% of reported trait/disease-associated SNPs were intronic and 43% were 
intergenic. Moreover, the trait/disease-associated SNPs were significantly depleted in intergenic regions, which support the assertion that 
intergenic regions have the smallest ratio of functional to total DNA, even though they may contain important regulatory sequences [27]. 

Ioannidis et al. [14] recently argued that established guidelines for causal inference in epidemiology are inappropriate for assessing genetic 
associations such as those identified in genome-wide association studies where associations with hundreds of thousands of genetic variants 
may be examined. While it is true that temporality is not an important consideration for genetic factors fixed at birth, assessments of 
temporality can be important in studies of epi-genetic influences. Moreover, genetics is not the only subdiscipline within epidemiology 
where weak associations may be of interest [7]. Because of gene-environment interactions and other factors, the existence and strength of 
genetic associations may vary across populations and weak associations are frequently identified. In many epidemiologic studies, weak 
causal effects are often difficult to distinguish from non-causal associations that are due to methodological biases. To overcome such 
limitations of traditional causal criteria, Ioannidis et al. [14] proposed a semi-quantitative index that assigns three levels for the amount of 
evidence, extent of replication, and protection from bias. Following this approach, a composite assessment of strong, moderate, or weak 
epidemiologic credibility of a genetic association is obtained. In their account, the credibility of a genetic association is improved by 
consistent evidence obtained from many studies, or a smaller number of large studies. However, the consistency argument is weakened by 
the fact that gene-environment interactions are known to occur. A potential disadvantage of the use of semi-quantitative indices to assess 
genetic associations is that they do not assess the concordance of biological and epidemiological evidence. In addition, not all genome-wide 
association reports provide sufficient detail about epidemiologic study design (for example, complete descriptions of how cases and 
controls were selected) to evaluate potential biases [26]. 

Several authors have highlighted the need for replication of results obtained from genome-wide association studies because many initially 
reported associations were not replicated in subsequent studies [26, 28]. The consistency of observed associations has long been a criterion 
for causal assessments of results from epidemiologic studies [6]. Genome-wide association studies raise special challenges, however, due to 
the very large number of tests of disease-SNP associations and the potential for false-positive findings. Biological specimens may be 
examined to look for patterns of gene expression. The area around a trait/disease-associated SNP may be sequenced to identify rarer 
variants with more apparent functional significance [26]. Such efforts may be key to understanding the overall biologic coherence of 
research results. 

QUANTITATIVE ANALYSIS OF DATA FROM GENOME-WIDE ASSOCIATION STUDIES 

Quantitative methods for analyzing data from genome-wide association studies allow for the identification of statistical associations which 
may then be replicated in independent samples or validated through studies of gene expression and proteomics. Statistical tests are 
performed to identify associations between SNPs passing quality thresholds and the disease or trait of interest [29]. Stringent levels of 
statistical significance are required because of the vast number of tests performed [26]. Biostatistical analyses of data from genome-wide 
association study data have often been “agnostic” in the sense that they ignore prior knowledge about disease pathobiology [30]. In 
addition, analyses have often examined associations with one SNP at a time and ignored their genomic context and gene-gene and gene-
environment interactions. More recent approaches in bioinformatics strive to take into account non-linear relationships due to gene-gene 
and gene-environment interactions [30]. Genotypic effects may depend upon environmental exposures. Parametric statistical models which 
play an important role in contemporary genetic epidemiology have limited power for modeling high-order, non-linear interactions [30]. 
Efforts are being made to apply data mining techniques, machine learning, and advanced computational methods—for example, random 
forests, neural networks, and multifactor dimensionality reduction (MDR)—to the immense amounts of data obtained from genome-wide 
association studies [30, 31]. Such approaches make fewer assumptions about the functional form of the model. Artificial neural networks 
are discussed below as an example. Researchers are exploring ways to incorporate prior biological knowledge obtained from public 
databases into data analysis algorithms such as pathway analysis [31, 32]. The success of pathway analysis depends upon the completeness 
and quality of the information in the public databases. 

Although the initial successes of genome-wide association studies have focused attention on genomics, proteomic and transcriptome 
information are also important. Gene expression data obtained from cell lines and other human tissues (for example, blood, brain, liver) are 
often key to understanding physiological or regulatory pathways [33, 34]. Studies have shown that quantitative analyses of gene expression 
data and transcriptome information can help to clarify results obtained from genome-wide association studies [33, 35]. Using data from 
expression quantitative locus (eQTL) studies, Nicolae et al. [35] recently showed that SNPs associated with complex traits and diseases are 
more likely to be eQTLs than other SNPs chosen from genome-wide association studies (and matched on minor allele frequency). Their 
results indicate that annotating SNPs with a score reflecting the strength of the evidence that the SNP is an eQTL can enhance the ability to 
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discover true associations in genome-wide association studies and clarify the biological mechanism accounting for the associations [35]. 
These findings suggest ways to more accurately characterize SNP signals in genome-wide association studies with respect to target genes 
and biological function. In order to detect differences in gene expression across tissue types, disease, and time, computer algorithms and 
computational methods have been developed for analyzing data obtained using high-throughput techniques [36, 37]. In order to better 
understand physiological and pathological processes at the molecular level, pathway analysis and differential network analysis have been 
applied to detect and quantify signaling cascades and regulatory networks [37]. 

Artificial Neural Network Analysis 

One potential approach for exploring large datasets assembled as part of genome-wide association studies and gene expression and 
proteomics research include a class of computer intensive techniques known as artificial neural networks [38, 39]. Artificial neural 
networks are mathematical models that were originally patterned after the structure or functional aspects of biological neural networks [40]. 
Artificial neural networks are usually adaptive systems that change their structure based upon information that flows through the network 
during the “learning phase.” Functions are performed collaboratively and in parallel by the units or processing elements. In the physical 
sciences, artificial neural networks have been widely applied to the analysis of complex systems. Artificial neural networks and other 
“machine learning” techniques have been applied to a wide variety of classification tasks including the analysis of proteomics and gene 
expression data for cancer patients and cancer cell lines [41-43]. For a review of the advantages and limitations of artificial neural network 
techniques for the analysis of proteomic data, see Lancashire et al. [42]. 

Neural networks can be contrasted with other statistical techniques such as regression modeling. Such networks automatically allow for 
nonlinear relations between the independent and dependent variables and all possible interactions between the dependent variables [44]. 
Artificial neural networks do not require explicit distributional assumptions such as normality [44]. Another advantage of artificial neural 
network techniques is their ability to handle “noisy” or “fuzzy” information (for example, patterns of diagnostic signatures in proteomic 
data generated using high throughput mass spectrometry) and they can be used to analyze data with incomplete or missing values [43]. 

Artificial neural networks do have certain disadvantages. Like other machine learning techniques, artificial neural network approaches 
require substantial computational resources. In addition, their utility for identifying causal associations in data obtained from genome-wide 
association studies and proteomics research is still uncertain. They also have a certain “black box” quality [44]. By way of contrast, 
regression modeling techniques allow for hypothesis testing about the univariate and multivariate associations between each independent 
variable and the dependent variable of interest [44, 45]. In contrast to neural networks, regression techniques provide information about the 
relative importance of each explanatory variable [44]. 

To assess the true predictive performance of a model, an approach to assessing the fit on data that was not used in the model building 
process is needed. The available approaches include cross-validation, bootstrap validation, and splitting the data set into two samples. 
Open-source, neural network software is available to research, develop, and apply artificial neural networks and other machine learning 
techniques [46, 47]. 

SUMMARY AND CONCLUSIONS 

Efforts to identify and quantify causal associations with etiologic agents are a frequent focus of health research which is often 
multidisciplingary in nature and aimed at more than one disease or adverse health condition. Recent developments in genomics such as the 
advent of genome-wide association studies have challenged traditional frameworks for causal inference in observational research [14]. 
However, causal criteria such as the consistency of research findings (i.e., the ability to replicate disease-SNP associations in independent 
samples) and the overall biological plausibility and biological coherence of research findings are of continuing importance. Traditional 
epidemiologic approaches for minimizing study bias and for evaluating the potential impact of bias on research findings are important in 
genome-wide association studies. The temporality of associations identified in epi-genetic studies is also important. Advances in causal 
analysis such as the counterfactual model and causal diagrams (directed acyclic graphs) may be helpful for conceptualizing the role of epi-
genetic factors and gene-environment interactions in studies of disease etiology. In such fields as bioinformatics, the continued 
development of quantitative techniques for examining gene expression and proteomic data is likely be of considerable value for 
understanding biologic pathways of disease causation. Quantitative techniques for analyzing data from genome-wide association studies, 
combined with gene expression and environmental exposure data, may be enhanced by mathematical and statistical tools for exploring 
causal questions and identifying causal relationships in health data. In addition to replication of findings in independent samples, results 
obtained from genome-wide association studies may be bolstered by experimental studies that examine the functional implications of 
disease-SNP associations. 
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