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Abstract: The subject of this work is the modification and specification of an approach to detail the estimation of soil 

crack network characteristics. The modification aims at accounting for the corrected soil crack volume based on the cor-

rected shrinkage geometry factor compared to known estimates of crack volume and shrinkage geometry factor. The mode 

of the correction relies on recent results of the soil reference shrinkage curve. The main exposition follows the preliminary 

brief review of available approaches to dealing with the geometry of soil crack networks and gives a preliminary brief 

summary of the approach to be modified and specified. To validate and illustrate the modified approach the latter is used 

in the analysis of available data on soil cracking in a lysimeter. 

INTRODUCTION 

Predicting the geometry of shrinkage crack networks is 
obviously of crucial importance for modeling water flow and 
solute transport in soils. This work deals with the essential 
improvement of an approach [1-5] to detail predicting char-
acteristics of a three-dimensional soil crack network. The 
improvement is based on the recent results of estimating the 
corrected crack volume [6, 7] and effects of an intraaggre-
gate structure on the reference shrinkage curve [8-10] of the 
soil. Preliminarily, we briefly review available approaches to 
the issue of soil crack network characteristics. First, note that 
nowadays the problem is not solved by fracture mechanics 
methods (e.g., [11]) although one includes different criteri-
ons of crack development. In particular, for cracks in elastic-
plastic soils the Irwin-Orowan criterion (e.g., [5]) or the cri-
terion of the crack-tip opening angle (e.g., [12]) is used. At 
the present, however, fracture mechanics only operates with 
a separate crack, or several cracks, or a crack system of some 
special symmetry (e.g., [13, 14]), and irrespective of a con-
crete fracture criterion, is unable to regard real multiple 
cracking with crack network formation because of its essen-
tially statistical nature. 

There are a number of approaches which only deal with 
two-dimensional (2D) crack networks in a thin layer. First, 
we note 2D macroscopic approaches. Yoshida and Adachi 
[15] relied on Biot's consolidation theory [16]. These authors 
only predict the potential location of cracks in an early stage 
of desiccation. Karalis [17] applied a thermodynamic ap-
proach to estimate mean crack spacing only. Perrier et al. 
[18] suggested possible types of crack networks (including 
shrinkage-originated ones) based on a fractal model [19]. 
Moran and McBratney [20] simulated crack networks using 
a linked distribution of points. Horgan and Young [21] con-
sidered a model generating crack networks from crack 
growth development as a random walk. It is worth noting 
that the direction of generating a final crack network can also  
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be opposite to that in the three last mathematical approaches. 
Indeed, they first simulate a network of the largest cracks 
(macrocracks) and fragments. Then, these fragments are 
covered by a secondary crack network and so on. In natural 
materials such as soils and rocks, in natural processes lead-
ing to shrinkage such as drying and cooling, cracking and 
crack network formation can go in reverse direction starting 
from microcrack appearance to accumulation, coalescence, 
and development. 

There is also a 2D microscopic approach. It is presented 
by a number of physical models that simulate a 2D crack 
network starting of a microlevel (e.g., [22-26]). All these 
models are essentially very close each other and replace a 
thin shrinking continuous layer by a network of horizontal 
elastic springs that connect discrete nodes. Every node is 
linked by the springs with six neighbors. At the bottom the 
nodes either slip with friction [24, 26] or are attached by 
vertical springs. The accumulation of broken springs at 
shrinkage (according to a simple fracture criterion) leads to a 
crack origination and development up to a crack network 
formation. These models are obviously oversimplified com-
pared to reality even for the 2D case because at the deforma-
tion of cohesive soils they only keep the effects of elasticity 
and ignore the contributions of inertia (the motion of masses 
in nodes), viscosity, and plasticity. There is no clear indica-
tion what particles (masses) are implied in the nodes (clay 
particles, clay aggregates, silt-sand grains, or something 
else); that is, what is understood under a microscale which 
determines the size of primary cracks (microcracks). 

Thus, it is questionable that all three above mathematical 

2D macromodels and the noted physical 2D micromodels, 

can imitate a real process of 2D crack network formation in 

real natural materials. At the same time, all these different 

models show a qualitative resemblance between the simu-

lated and observed 2D crack networks, and this is a major 

argument of their feasibility. This contradiction between the 

obviously rough simulation (for all these different models) 

and qualitative similarity of simulated and observed net-

works in all the cases should be explained by some general 

reason. The above contradiction can be explained, at least in 

part, based on the intersecting surfaces approach (ISA) to 
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soil structure [27, 28]. The gist of the approach is as follows. 

The large number of intersecting surfaces (S-objects, e.g., 

cracks) in a volume divides the latter into sub-volumes (V-

objects, e.g., fragments). Then, a certain universal size dis-

tribution of the outlined V-objects originates from a number 

of simple geometrical conditions imposed on the S-objects. 

In the simplest case the elementary ISA distribution of V-

objects is a universal function of the relative V-object size, 

x/xm (xm is the maximum size of V-objects). This means that 

the view of the function does not depend on S- and V-object 

type (e.g., soil cracks and fragments or clay particles and 

clay matrix pores) and methods of their preparation or simu-

lation (e.g., from the above mathematical macromodels or 

physical micromodels). Materials and methods can only in-

fluence the values of the distribution parameters. In the sim-

plest case these are xm and a connectedness, C of S-objects 

(e.g., cracks), that is, a ratio of connected to the total number 

of cracks (or P being the volume fraction of V-objects of all 

initial volume; P is coupled with connectedness). The ISA 
approach is also applicable to the 2D case [29]. 

Thus, any simulated crack network (an intersecting sur-

faces system) and observed crack network (another intersect-

ing surfaces system) in any case introduce the same (univer-

sal) fragment size distribution. That is, simulated and ob-

served crack networks in any case can only differ (in the 

simplest case) by the scale parameter, xm and crack network 

connectedness. Outwardly, these networks can appear to be 

similar. For this reason a formal qualitative resemblance 

between a model simulated crack network and an observed 

one cannot serve as a criterion or proof that a model mimics 
a real process of crack network formation. 

There are also a number of three-dimensional approaches 

to soil volume cracking. The known macro-approach is 

based on a close link between variations of the matrix vol-

ume, crack volume, and thickness of a soil layer at shrinkage 

[30, 31]. This link is realized through the concept of the 

shrinkage geometry factor of a soil layer, rs, which is deter-

mined by the change of any pair of the above three values, 

e.g., the layer thickness and matrix volume. Conversely, 

known rs, together with one of the above three values, de-

termine two others. However, the approach has a number of 

drawbacks. The first is that the total crack volume in a layer 

is only estimated; the distributions of the crack network pa-

rameters are not. The second is connected with the determi-

nation of rs (that relates to a soil layer) from core sample 

measurements [31]. As recently shown, the rs value found in 

this way can contain an essential inaccuracy which grows 

with drying [6, 7]. The inaccuracy is connected with (i) the rs 

dependence on water content, (ii) possible crack develop-

ment inside the core sample, and (iii) presentation of a real 

layer by a set of disconnected samples. The third drawback is 

that the latter presentation of a real soil layer only implies the 

existence of sub-vertical cracks. At the same time the total 

crack volume includes both the sub-vertical and sub-

horizontal cracks. There is some development of Bronswijk's 

approach [32, 33]. This development suggests the additional 

calculation of the total vertical crack cross-section area in a 

layer (at a given depth or water content) using the shrinkage 

curve. Note that the calculation inherits all the drawbacks 
from Bronswijk's approach. 

A brief summary of the approach [1-5] that we intend to 

essentially improve is given in the following section. For this 

reason we only mention its most general points here. The 

approach combines micro- and macroscopic concepts. A 

concentration criterion of crack accumulation and merging, 

starting from microcracks [34], and the effective independ-

ence of cracks in the case of multiple cracking [35, 36] are a 

basis for the modeling of a crack network. This basis enables 

one to introduce a condition of fragment formation at crack 

connection and a number of relevant concepts (crack connec-

tion probability of the x dimension, fragment formation 

probability, average and maximum fragment sizes, and crack 

connectedness) as well as to suggest quantitative relations 

between the concepts. In the frame of an application the 

maximum fragment dimension and crack connectedness can 

depend on the spatial coordinates and parameters specific for 

the application [27, 28]. One of the applications relates to the 

shrinkage crack network geometry in swelling soils; the spa-

tial coordinate being the soil depth; the specific parameter 

being the ratio of an upper layer thickness of intensive crack-

ing to the maximum crack depth. It is assumed that after 

formation of the vertical crack network thin layers of drying 

soil along the vertical-crack walls tend to contract, but the 

moist soil matrix hinders this. This causes the development 

of horizontal cracks or close to them starting from the walls 

of vertical cracks [2, 3]. Unlike the above approaches, the 

probabilistic model under consideration is capable of giving 

a detailed estimate of crack network geometry at soil shrink-

age, namely, the distribution of any crack characteristic at a 

given soil depth (crack spacing, volume, cross-sectional area, 

width, depth, cross-sectional trace length) and evolution of 

the distribution with depth (at a given water content profile). 

Recently, the usefulness of the approach for applications in 

hydrology [37, 38] and soil structure [39] has been con-

firmed. However, the approach has the following major 

drawback. For the calculation of the distributions of the ver-

tical and horizontal crack characteristics in the frames of the 

approach, the total crack volume in a layer is needed (see the 

following section). This total crack volume was calculated 

using the rs concept from Bronswijk [30, 31] with all the 

above mentioned inaccuracies (see below in more detail). 

The major objective of this work is to remove this drawback 

based on the recent relevant results [6-9] and show a particu-

lar example of analysis of available experimental data using 

a modified approach. In addition, some approximations (see 

below) that were used in [1-3] in estimating the characteris-

tics of vertical and horizontal cracks should be specified. 

This is an additional objective of this work. Notation is 

summarized at the end of the paper. 

Two final remarks concerning the above brief review can 

be useful. First, instead of the division between the above 

approaches to the shrinkage crack network in soils as two-, 

three-dimensional or micro-, macroscopic ones, one can 

classify the approaches as geometrical [18, 20, 21], dynamic 

[15, 17, 22-26, 30-33], and mixed [1-5] ones. Second, in the 

dynamic and mixed approaches the dynamics is introduced 

in two different ways using either forces induced by hy-

pothetic elastic springs [22-26] or a really observed soil 
shrinkage curve in a different form [1-5, 15, 17, 30, 33]. 
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THEORY 

Brief Summary of the Approach under Consideration 

Three-Dimensional Crack Network with Negligible Crack 

Volume in Homogeneous Conditions 

The concepts of multiple cracking and fragmentation un-
derlying Chertkov and Ravina's model [1] include presenta-
tion of any macrocrack as the result of a number of random 
sequential coalescences of increasingly larger cracks across a 
range of spatial scales, beginning from microcracks. Then, 
the 3D crack network developing in a volume and leading to 
its fragmentation in statistically homogeneous conditions, is 
described by the probability f(x) of the connection of cracks 
of any orientation of dimension <x (or volume fraction of 
fragments of all the dimensions <x), and the volume fraction 
occupied by all the fragments, fm= f(xm), or the fragment 
formation probability [(1-fm) is the portion of non-
fractionated volume] as 

 

f(x)=1-exp[-I(x)],                                                                (1a) 

 

I(x)=ln(6) C (x/d)
4
 exp(-x/d),          0<x<xm                       (1b) 

 

and 

 

fm=1-exp(-8.4C)                                                                  (2) 

 
where for rocks and soils 0<C<1 is crack connectedness; d is 
average crack spacing; and xm=4d is the maximum dimen-
sion of fragments. The above concepts, as well as Eq. (1) and 
(2), allow one to find the network itself, that is, distributions 
of crack spacing and crack dimensions in horizontal or verti-
cal cross-section, but not distributions for crack width, cross-
section area, and volume, that are determined by other con-
siderations (see below). In this approximation we deal with 
the network with negligible crack volume. 

Three-Dimensional Crack Network with Negligible Crack 

Volume in Conditions of a Vertical Soil Water Content 
Profile 

In the indicated inhomogeneous conditions two charac-
teristic soil depths (zm and zo) are introduced to determine the 
crack network geometry in horizontal and vertical cross-
sections (this means, distribution of crack spacing and so on, 
but, again, not crack width and volume), that is, depth de-
pendencies, d(z), fm(z), and C(z) [1, 4]. zm is the maximum 
crack depth. zo is the thickness of an upper layer (a few tens 
of centimeters) of intensive cracking. By definition of zo, 
d(zo)=zo. At the initial transitional stage of drying the concept 
of intensive cracking is not feasible. That is, this condition 
cannot be satisfied and for some time the layer simply does 
not exist. After that when the condition has meaning zo varies 
in the range 0.1<zo/zm<0.2. Such a crack system is referred to 
as a quasi-steady one. In real soils one practically always 
deals with this stage of crack system development. The case 
of zo/zm 0.1 is of practical interest. Typically, a crack net-
work changes with time so slowly that one can consider the 
situation at a given moment as steady. That is, d(z) does not 
explicitly depend on time, but only through parameters zo 
and zm. zm can be estimated by the depth of the ground water 
level. Then, zo 0.1zm. Except for that zo can be estimated as 

zo s (then zm 10 zo) where s is the simply measurable mean 
crack spacing at the surface. Note, that at the soil surface the 
number of small cracks is very large (d(0) 0), and the meas-
urable mean crack spacing, s accounts for cracks only with 
width (at the surface) more than the diameter of a flexible 
wire ( 1.5 mm) for crack depth measurement. Finally, s can 
be estimated using a number of measurable fundamental soil 
properties [5]. 

Two characteristic depths (zm and zo) determine crack 

network evolution with soil depth in conditions of the verti-

cal soil water content profile, through network parameters d, 

fm, and C as 

 

d(z)=zo(z/zo) ,        =1-2ln2/ln(0.8zm/zo) ,                          (3) 

 

fm(z)={1+exp[(z-0.8zm)/zo]}
-1

 ,                                            (4) 

 

C(z)=ln{1+exp[-(z-0.8zm)/zo]}/8.4                                      (5) 

 
as well as the (total) specific length, L of vertical crack traces 
in a horizontal cross-section at depth z (per unit area) as 

 

L(z)={1-[1+zm/d(z)] exp[-zm/d(z)]}/d(z) .                            (6) 

 
These dependencies determine the distributions of crack 

spacing and crack dimensions in horizontal and vertical 
cross-sections for any z in the above conditions inhomoge-
neous along the soil depth axis. 

Three-Dimensional Crack Network with Finite Crack Vol-

ume in Conditions of a Vertical Soil Water Content Profile 

Distributions of crack width, cross-section area, and vol-
ume at a given depth and their evolution with soil depth are 
determined by shrinkage in different forms (in addition to 
characteristic soil depths, zm and zo that determine through 
Eq. (1)-(6) the crack network itself when cracks are consid-
ered to be mathematical surfaces without width and volume). 
First, we consider the vertical crack system [1] because hori-
zontal cracks originate from the verticals (see below). 

Denoting Ao and A(z) as the initial and current total area 
of a horizontal uncracked soil cross-section at a depth z, re-
spectively, and A(z)  Ao-A(z) as an increment of the un-
cracked area under shrinkage at a given depth z, one may 
introduce the specific horizontal surface shrinkage per initial 
unit area (or the total specific crack cross-section area at 
depth z), A(z) A(z)/Ao. Then, the mean width, R(z, h) at 
depth z of cracks with tips at depth h (z<h<zm) is 

 

 

R(z,h)= d
A

(z ) / L(z )
h

z
 .                                                    (7) 

 

Using for A(z) the approximation as 

 

  
A

(z)= R(z,h)dL(h)
zm

z
 ,                                                      (8) 

 

the term (z, h), 
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(z,h)= R(z,h)dL(h)

dh
/

A
(z)                                               (9) 

 
is the differential fraction (probability density) of the total 
specific crack volume (per unit volume of soil), or of the 
total specific crack cross-sectional area (per unit cross-
sectional area), at a depth z related to cracks with tips in a 
unit interval at depth h (z<h<zm). Furthermore, P(z, h), 

 

=
m

d),(),(
z

h
hhzhzP                                                     (10) 

 

is the cumulative fraction of the total specific volume of ver-
tical cracks, or of the total specific cross-sectional area of 
vertical cracks at a depth z, related to cracks with tips at 
depths >h (z<h<zm). Replacing in Eq. (10) h by h(z, R) where 
h(z, R) is a solution of the equation R= R(z, h) (see Eq. (7)), 
one obtains the cumulative fraction of the total specific crack 
volume or the total specific crack cross-sectional area at a 
depth z related to cracks with width >R (0 R R(z, zm)). 
Probability density, (z, h) (Eq. (9)) and cumulative prob-
ability, P(z, h) (Eq. (10)) determine contributions of the ver-
tical cracks of any type (according to their width or positions 
of their tips) to the crack volume of a soil layer z1 z z2 (per 
its unit area). Note that all the above distributions and contri-
butions are determined by the shrinkage characteristic in the 
form of the specific horizontal surface shrinkage, A(z) (Eq. 
(7) and (9)). 

Horizontal cracks, their width and volume appear after 
formation of the verticals due to the difference in water con-
tent between soil matrix and thin drying layers along the 
walls of the vertical cracks [2, 3]. The model also assumes 
that, on average, the distribution of the volume and width of 
horizontal cracks is similar for any vertical profile. Denoting 
To and T(z) as the initial and current thickness of a horizontal 
soil layer around a depth z, respectively, and T(z) To-T(z) 
as an increment of the layer thickness under shrinkage and 
cracking around a given depth z, one may introduce the spe-
cific linear vertical shrinkage of the soil (per initial unit layer 
thickness) at the depth z, T(z) T(z)/To. The linear vertical 
shrinkage, T(z) determines the subsidence, S(z) of the drying 
soil along a vertical elevation not containing a vertical crack 
as a function of soil depth, z as 

 

 

S(z)=
T

(z )
z

zm
dz  .                                                           (11) 

 

In particular, S(0) is the subsidence of the soil surface. 
Unlike the linear vertical shrinkage T(z), the linear vertical 
shrinkage at a point on the (additionally drying and shrink-
ing) wall of a vertical crack, cr(z, h) depends on the crack tip 
depth, h, and the depth of the point on the wall, z h. At the 
same depth z ( h) it is usually cr(z,h) T(z). Below the crack 
tip depth (when z>h) cr(z,h)= T(z). The value S(z, h) as 

 

 

S(z,h) =
[ cr(z ,h)

T
(z )]dz ,

z

h
z h zm

0, h < z zm

                  (12) 

is defined as the potential relative subsidence  at depth z of a 
vertical profile containing a vertical crack of depth h. For 

cr(z,h) the following approximation is used 

 

 

cr(z,h) =
T

(0), 0 z R(0,h)

T
h[z R(0,h)]
[h R(0,h)]

, R(0,h) z h
                    (13) 

 
(for R(0, h) see Eq. (7)). Using the probability density, (z, 
h) (Eq.(8)) to average the value S(z, h) at depth z on all 
depths h of vertical cracks, z h zm one can define the mean 
potential relative subsidence (MPRS), )(zS  as 

  

S(z) =
1

A
(z)

S(z,h)
z

zm
R(z,h)dL(h)  .                          (14) 

 
Considering all vertical profiles to be similar, the total 

specific width of the horizontal cracks (i.e., the horizontal 
ruptures on the walls of vertical cracks) per unit height of a 
vertical profile or the total specific volume of the horizontal 
cracks, vh cr(z) is 

 

 

v
hcr

(z)

=

d S(z)
dz

(1
A

(z)), if
d S(z)

dz
< 0

0, if
d S(z)

dz
0

                         (15) 

 
The multiplier (1- A(z)) excludes from the total specific 

volume vh cr(z) of the horizontal cracks at depth z a volume at 
their intersections with vertical cracks which is already in-
cluded in the volume of the latter. Replacement of (1- A(z)) 
with d(z) (Eq.(3)) in Eq.(15) gives an expression for the 
mean width of the horizontal cracks at depth z. Note that the 
horizontal crack system is determined by both the linear ver-
tical shrinkage, T(z) and horizontal surface shrinkage A(z). 

Relations between Different Characteristics of Soil Shrink-

age that Were Used in the Summarized Approach 

Denoting Vo and V(z) as the initial and current volume of 
a soil matrix (without cracks) in a horizontal soil layer 
around a depth z, respectively, and V(z) Vo-V(z) as an in-
crement of the soil matrix volume under shrinkage and 
cracking around a given depth z, one may introduce the spe-
cific volume shrinkage of a soil matrix, V(z) V(z)/Vo. Note 
that dependencies T(z), A(z), V(z), T(z), A(z), V(z), T(z), 

A(z), and V(z) can be written as T(W) and so on with 
W=W(z) where W is the gravimetric water content and W(z) 
is a current soil water content profile (i.e., for a given drying 
duration). 

The summarized approach used the known relation [30] 
as 

 

s
oo ]/)(1[]/)(1[

r
TWTVWV =                               (16) 

 
with rs=3 at any water content [31]. Then, accounting for the 
above definitions of T(W) and V(W) Eq. (16) gives 
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T(W)=1-[1- V(W)]
1/3

 .                                                       (17) 

 
According to definitions of T(W), A(W), and V(W) 

 

1- A(W)=A/Ao=(V/T)/(Vo/To)=(V/Vo)/(T/To) 

 

       =[1- V(W)]/[1- T(W)] .                                               (18) 

 
Then the replacement of T(W) in Eq. (18) from Eq. (17) 

gives 

 

A(W)=1-[1- V(W)]
2/3

                                                        (19) 

 

In this case A(W) and T(W) are connected as 

 

A(W)=1-[1- T(W)]
2
= T(W)[2- T(W)]  .                            (20) 

 
Thus, the summarized approach used the expressions 

from Eq. (17) and (19) to present the linear vertical shrink-
age, T(W) and horizontal surface shrinkage, A(W), respec-
tively, through volume shrinkage, V(W). In turn, V(W) was 
found from the usual soil shrinkage curve, V(W) (specific 
soil volume vs. gravimetric water content) ordinarily meas-
ured on core samples (e.g., [33]). Finally, validating the ap-
proach, Chertkov and Ravina [1] only compared the pre-
dicted volume of vertical cracks with measured crack vol-
ume. 

In general, the relations given by Eq. (17), (19), and (20) 
should be modified because the rs=3 value should be re-
placed with an rs(W) dependence. In addition, finding of the 
rs(W) dependence itself should be modified compared to 
Bronswijk [31]. Finally, a predicted crack volume should 
include the contributions of both the vertical and horizontal 
cracks. These modifications as well as some specifications of 
the approach under consideration and their consequences are 
discussed and illustrated in the following part of the work. 

Modification and Specification of the Approach to Soil 
Crack Network Geometry 

Calculation of the Corrected Shrinkage Geometry Factor 

and Corresponding Linear and Surface Shrinkage 

Recently, an analysis [6, 7] showed that Bronswijk's ap-
proach [30, 31] to estimating the total crack volume in a soil 
layer (field conditions) through the shrinkage geometry fac-
tor, rs relies on implicit assumptions that are violated in real 
conditions. First of all, the rs factor is experimentally esti-
mated by measurements of initial volume and volume as well 
as the subsidence of cylindrical soil samples after oven dry-
ing [31]. That is, the rs factor is assumed to not depend on 
water content (usually the rs=3 is accepted). However, in 
general, this case is unreal. Second, according to the physical 
meaning of exact Eq. (16) [30], the core sample volume un-
der drying, shrinkage, and measurement is assumed to only 
include the soil matrix; that is, cracks inside the sample are 
assumed not to develop. However, the crack development in 
cores strongly depends on measurement conditions (sample 
size, drying regime, and others), and is usually uncontrolled. 
For this reason, ignoring the possible crack volume inside 

the core at finding the rs(W) dependence (and the corre-
sponding total crack volume dependence), even from con-
tinuous measuring of the volume and subsidence of cylindri-
cal soil samples at the water content decrease, can, in gen-
eral, give rs(W) with essential inaccuracy. The third and final 
assumption is that the subsidence of a core sample is equal to 
the subsidence of a real cracked, but connected soil layer in 
field conditions [30, 31]. This case is obviously unreal and 
leads to the essential inaccuracy of the rs(W) dependence for 
a soil layer (and the corresponding total crack volume 
dependence). 

The above analysis [6, 7] also showed that for obtaining 

the correct rs values and correct crack volume estimates one 

also needs to know the shrinkage curve, )(WV  of the soil 

matrix without cracks, in addition to measurements with 

cores. The recent model of the reference shrinkage curve [8, 

9] permits one to predict the soil matrix shrinkage curve, 

)(WV  for an aggregated soil with any clay content. Then, 

using results from [6, 7] one can estimate two variants of the 

corrected rs(W) dependence through three shrinkage curves: 

the curve )(l WV  of a soil layer with cracks in Bronswijk's 

approximation (the initial layer is composed of contacting, 

but disconnected cubes); the curve )(l WV  of a real con-

nected soil layer with cracks; and the curve )(WV  of a soil 

matrix without cracks. Given )(l WV , )(l WV , and )(WV  

(as well as )( oo WVV = , Wo is the maximum swelling point 

before shrinkage starts), the corrected shrinkage geometry 

factor of a soil core, rsM is calculated as 

)/)(log(/)/)(log()( o
l

osM VWVVWVWr =  ;                   (21) 

and the corrected shrinkage geometry factor of a soil layer, rs 
is calculated as 

)/)(log(/)/)(log()( o
l

os VWVVWVWr =  .                       (22) 

For the case of a soil layer (i.e., with rs(W) from Eq. (22)) 
Eq. (17) and (19) are modified as 

 T
(W )=1 [1

V
(W )]1/rs(W )                                          (23) 

and 

 A
(W )=1 [1

V
(W )][1 1/rs(W )]

 ,                                 (24) 

respectively, where 

 V
(W )=1 V(W ) /Vo   .                                                   (25) 

In this case Eq. (20) is replaced with 

 

 A
(W )=1 [1

T
(W )][rs(W ) 1]

  .                                   (26) 
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For the case of a soil core one should use in Eq. (23), (24), 

and (26) rsM(W) from Eq.(21) instead of rs(W) from Eq. (22). 

The calculation of 
 
V

l
(W )  (i.e., for the case of soil layer) 

from the experimental data is illustrated in Materials and 

Methods. 
Thus, the modification flowing out of the works [6-9] is 

reduced to the calculation of the vertical and horizontal crack 
characteristics that are connected with shrinkage (Eq. (3)-
(15); see also [1-3]) using: (i) the reference shrinkage curve, 

)(WV  as soil matrix shrinkage curve in Eq. (25) instead of 
usual shrinkage curve; (ii) the rs factor calculated from Eq. 
(21) or (22) as a function of W instead of rs=3; and (iii) 
modified relations between T(W), A(W), and V(W) from 
Eq. (23), (24), and (26) instead of Eq.(17), (19), and (20), 
respectively. 

Specification of the Expression for Horizontal Surface 

Shrinkage 

The exact expression for A(z) is 

  
A

(z) = R(z,zm )L(zm )+ R(z,h)dL(h)
zm

z
 .                           (27) 

This expression is one from Eq. (8) with an additional 
term, R(z,zm)L(zm) which gives the contribution of the largest 
cracks of depth zm. Their opening at depth z is R(z,zm). Ac-
cording to Eq. (3) and (6) the specific length, L(zm) of the 
traces of such cracks at depth zm is 

 

L(z zm) 0.45/zo  ,                                                             (28) 

 
At usual zo 40-60 cm and R(z,zm) 1 cm (see [1]) the 

R(z,zm)L(zm) term, that is, the contribution of the largest 
cracks in Eq. (27) is negligible. However, at sufficiently 
small zo (see Materials and Methods) the R(z,zm)L(zm) term 
can be essential. 

Specification Connected with the Point of Reference on the 

Soil Depth Axis 

Usually soil subsidence is determined at any moment us-
ing the depth axis zI (Fig. 1) with zI=0 at the initial position 
of the soil surface. Cracks obviously are inside soil at any 
shrinkage. For this reason different crack characteristics (un-
like subsidence characteristics) are naturally determined at 
any time moment using the depth axis zC (Fig. 1) with zC=0 
at the current position of the soil surface. Correspondingly, 
by default, we imply that all the depth coordinates (zm, z, h, 
z', and h') in Eq. (7)-(10), and (15) relating to the crack char-
acteristics are of type zC and in Eq. (11)-(14) relating to the 
subsidence characteristics are of type zI. However, both the 
subsidence and crack characteristics can be expressed 
through either zC or zI depth because zC=zC(zI). This depend-
ence is determined by the following equation and initial con-
dition (see Fig. 1) as 

 

dzC/dzI=1- T(zI)  ,        0
0

I
C =

=z
z                                (29) 

 
that immediately flow out of the definition and physical 
meaning of zC, zI, and T (see above). 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Scheme of the possible soil depth coordinates: (1) zI coor-

dinate with the fixed point of reference at the initial position of the 

soil surface; and (2) zC coordinate with the movable point of refer-

ence at a current position of the soil surface at a moment t. S(zI=0, 

t) is a current subsidence of the soil surface at a moment t. 

Relations between Different Forms of Shrinkage 

Equation (29) and the volume balance at shrinkage with 
vertical crack development allows one to derive a useful 
relation between V, A, and T. The volume decrease Vm of 
the soil matrix layer between depths zmI and zI (per unit area), 
the subsidence S of the soil at depth zI, and the cumulative 
volume of vertical cracks, Vv cr upwards from depth zmC to zC 
(per unit area), are connected by the volume balance relation 
as 

 

Vm(zI)=S(zI)+Vv cr(zC) .                                                     (30) 

 
By definition of Vm, S, and Vv cr one can write them as 

 

  

Vm(z
I
)=

V
(z)

z
I

z
mI

dz  ;                                                     (31) 

 

S according to Eq. (11) with z zI and zm zmI, and (account-
ing for Eq. (29)) 

 

  

Vv cr(zC
)=

A
(z)

z
C

z
mC

dz

      =
A

(z)(1
T

(z))
z

I

z
mI

dz =Vv cr(zI
)

 .                             (32) 

 
Using Eq. (31), (11), and (32) the integral relation from 

Eq. (30) can be rewritten in differential form as 

 

V(zI)= T(zI)+ A(zI)(1- T(zI)) .                                       (33) 

 
Here zI can be changed by water content W(zI) (see the 

text before Eq. (16)). One can check that replacement T and 

A in Eq. (33) from Eq. (23) and (24) leads to an identity. 

S(zI=0, t) 

zC zI 

0 

0 
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This is natural because Eq. (23) and (24) were also obtained 
from the volume balance relation in the form of Eq. (16). 
Obtaining Eq.(33) in two different ways confirms Eq. (11) 
and (32) for S(zI) and Vv cr(zI), respectively, that will be 
needed below. 

An Additional Volume Shrinkage of the Soil Matrix due to 

Horizontal Cracks 

According to [2, 3] horizontal cracks develop after verti-
cal ones and without additional subsidence and change of the 
vertical-crack volume. For this reason the additional volume 
decrease 'Vm of the soil matrix layer between depths zmI and 
zI (per unit area) is equal to the cumulative volume of the 
horizontal cracks, Vh cr upwards from depth zmC to zC (per 
unit area) as 

 

'Vm(zI)=Vh cr(zC) .                                                              (34) 

 
Similar to Eq. (31) one can write 'Vm(zI) as 

 

  

Vm(z
I
)=

V
(z)

z
I

z
mI

dz                                                       (35) 

 

where 'V is an additional specific volume shrinkage of the 

soil matrix that leads to development of horizontal cracks. 

Note that V from Eq.(31) corresponds to a homogeneous 

drying and shrinkage over the soil volume. Unlike that 'V 

from Eq.(35) corresponds to averaging the inhomogeneous 

shrinkage (namely, an additional shrinkage of the thin drying 

soil layers along the walls of vertical cracks) over the total 

soil volume. Similar to Eq. (32) and using Eq. (15) one can 

write the cumulative volume of the horizontal cracks, Vh 

cr(zC) as 

 

  

V
h cr

(z
C

)= v
h cr

(z)
z
C

z
mC

dz

     = v
h cr

(z)(1
T

(z))
z

I

z
mI

dz

= -
d S(z)

dz
(1

A
(z))

z
I

z
mI

dz =V
h cr

(z
I
)

                             (36) 

 

Accounting for Eq.(35) and (36) the integral relation 
from Eq.(34) can be rewritten in differential form as 

 

  

V
(z

I
)= v

h cr
(z

I
)(1

T
(z

I
))

= -
d S(z

I
)

dz
I

(1
A

(z
I
))

  .                                            (37) 

 

Finally, the sum of Eq.(30) and (34) gives the total vol-

ume balance accounting for the total volume decrease DVm 

of the soil matrix layer between depths zmI and zI (per unit 

area), soil surface subsidence, S of the soil at depth zI, and 

cumulative volume of both the vertical (Vv cr) and horizontal 
(Vh cr) cracks upwards from depth zmC to zC (per unit area) as 

 

DVm(zI)= Vm(zI)+ 'Vm(zI) 

 

       =S(zI)+Vv cr(zC)+Vh cr(zC) .                                (38) 

 
Note that only the partial volume balance with vertical 

cracks (Eq.(30)) corresponds to Bronswijk's approximation 
[30] (Eq.(16)). 

MATERIALS AND METHODS 

Data Used 

Data that would permit one to totally illustrate the possi-
bilities of the modified approach to the geometry of soil 
crack networks are not available. The most suitable are data 
of the lysimeter experiment from [40]. These data have been 
considered from the viewpoint of a crack network volume 
[1]. We intend analyze these data anew, but in more detail 
and accounting for the above indicated modifications. Bron-
swijk [40] investigated a heavy clay soil from the central part 
of the Netherlands. The height of the undisturbed large soil 
core was 60 cm and the diameter 27.4 cm. Initially the large 
core was water saturated. Then, for 82 days the ground water 
level was kept constant at 55 cm below the initial position of 
the soil surface and water evaporated only from the bare soil 
surface. We used the following experimental data from this 
experiment: (i) the shrinkage curve of aggregates; (ii) gra-
vimetric water content vs. drying duration of the upper soil 
layer of 7.5 cm thickness; (iii) water content - soil depth pro-
files at drying durations of 33, 39, and 82 days; (iv) the sub-
sidence of the soil surface in the lysimeter vs. drying dura-
tion, in particular after 33, 39, and 82 days; and (v) the total 
crack volume (of vertical and horizontal ones) measured 
with a direct method after drying for 82 days. In the data 
analysis we also used values of a number of separate pa-
rameters from this experiment (Table 1). They will be dis-
cussed below. 

The following preliminary remarks are necessary. All 
crack and subsidence characteristics, that we are interested 
in, depend on soil water content, W. The latter depends on 
drying duration, t and soil depth, z. We use W(t) dependence 
at z=3 cm from Fig.4B of [40] to connect (numerically) the 
water content, W and drying duration, t, and W(z) depend-
ence at t=33, 39, and 52 days from Fig. (5) of [40] to connect 
W and soil depth, z. 

Data Analysis 

Using the modified model one can, in detail, estimate dif-
ferent distributions relating to vertical and horizontal crack 
networks (based on Eq.(9) and (10)). For comparison, how-
ever, there are only data on the subsidence of the soil surface 
after drying for 33, 39, and 82 days as well as cumulative 
(vertical and horizontal) crack volume per unit area after 
drying for 82 days [40]. For this reason we only estimated 
the model predicted values for the subsidence of the soil sur-
face as well as the total crack volume and contributions of 
the vertical and horizontal cracks for the above three drying 
durations.  
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To find the vertical and horizontal crack network charac-

teristics as well as the soil surface subsidence of the large 

core one should first estimate the specific volume shrinkage 

of the soil matrix (without cracks), V(W) (Eq.(25)), horizon-

tal surface shrinkage, A(W) (Eq.(24)), and vertical linear 

shrinkage, T(W) (Eq.(23)) for the soil. As stated above, 

V(W) is estimated by the reference shrinkage curve, )(WV  

(Eq.(25)). This reference shrinkage curve was not measured 

by Bronswijk [40]. The algorithm of its estimation is consid-

ered in the following subsection. To find A(W) and T(W) 

(with the known V(W) and accounting for above modifica-

tions) one needs the shrinkage geometry factor, rs(W) for a 

soil layer (Eq.(24) and (23)). In turn, to estimate rs(W) 

(Eq.(22)) one needs (in addition to the reference shrinkage 

curve of the soil, )(WV ) the relative shrinkage curve 

o
l

/)( VWV  of the soil layer with cracks. The estimation algo-

rithm of o
l

/)( VWV , rs(W), A(W), and T(W) is considered 

below in the corresponding subsection. Then numerical es-

timation of )(WV  and o
l

/)( VWV  based on available data, 

and of V(W), A(W) and T(W) are considered. 

Estimation of the Soil Reference Shrinkage Curve ( )(WV ) 

The soil reference shrinkage curve describes shrinkage of 

a soil matrix without cracks [8-10]. Sometimes, at high clay 

content, the shrinkage curve of a clayey paste, or separate 

soil aggregates, or small clods can be used as the reference 

shrinkage curve (see examples in [7]). In general, however, 

the reference shrinkage curve does not reduce to the shrink-

age curve of a clayey paste or soil aggregates even at high 

clay content. The clay content in the lysimeter experiment 

[40] was high (Table 1). In this case the reference shrinkage 

curve is determined by six physical soil parameters [8]: 

oven-dried specific volume (
 

V
z

), maximum swelling water 

content (Wo), mean solid density ( s), soil clay content (c); 

oven-dried structural porosity (Pz), and the ratio of an aggre-

gate solid mass to the solid mass of an intraaggregate matrix 

(K>1). 

All of the above parameters can be found using data from 
[40]. We took the c value (Table 1) as a mean for the 
Bruchen heavy clay from Bronswijk and Evers-Vermeer 

Table 1. The Values of Parameters that were Used in the Data Analysis
† 

K 
zm zo s c Wo azV  Pz 

Type 1 Type 2 

n To 

cm cm g cm
-3  kg kg

-1 dm
3
 kg

-1     cm 

50 5 2.676 0.55 0.43 0.522 0 1.107 1.068 0.99 7.5 

† zm, maximum crack depth; zo, thickness of an upper soil layer of intensive cracking; s, mean density of soil solids; c, soil clay content; Wo, maximum swel-

ling point of a soil before shrinkage start; azV , oven-dried specific volume of intraaggregate matrix per unit mass of the matrix itself; Pz, oven-dried structural 

porosity; K, ratio of aggregate solid mass to solid mass of intraaggregate matrix; n, coefficient in Eq.(41); To, initial thickness of the upper 7.5 cm horizontal 

layer of the lysimeter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The reference shrinkage curve, )(WV  of type 1 (with the inflection point in the structural shrinkage area) estimated for Bron-

swijk's soil [40] from the oven-dried specific volume ( azV ) of the intraaggregate matrix, maximum swelling water content of the soil, Wo as 

well as s, c, Pz, and K (see Table 1; K=1.107) based on the approach [8]. W is the soil gravimetric water content. )(a wV  is the experimental 

shrinkage curve of separate soil aggregates from [40]. The auxiliary shrinkage curve of the intraaggregate matrix is assumed to coincide with 

)(a wV . w is the gravimetric water content of the matrix. For the water content Wz, Wn, Ws, Wo, wz, wn, and wo [8] see Notation. 
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[41]. We took Pz=0 (Table 1) since, from Fig. (6) of [40], the 
crack volume including the interaggregate (structural) pores 
is negligible at maximum swelling, The maximum gravimet-
ric water content of the soil, Wo (Table 1) follows from 
Fig.4B of [40]. To estimate the s value the shrinkage curve 
of soil aggregates from Fig.2A of [40] was preliminarily 
recalculated from moisture ratio ( ) - void ratio (e) coordi-
nates to gravimetric water content (w) - specific volume 
( aV ) coordinates (Fig. 2 and 3), using relations w=( w/ s)  
and aV =(e+1)/ s where w is the water density. Then, s for 
the soil (Table 1) follows from the correspondence between 
the maximum moisture ratio of aggregates, 1.15 cm

3
 cm

-3
 

and their maximum gravimetric water content, wo. The latter 
is equal to the maximum gravimetric water content of the 
soil, wo=Wo (Table 1; Fig. 2 and 3) because according to Fig. 
6 of [40], the crack volume including interaggregate pores is 
negligible at maximum swelling. 

Accounting for the high soil clay content the aggregate 

shrinkage curve, aV (w) (indicated above; Fig. 2 and 3) can 

be considered as the shrinkage curve of the intraaggregate 

matrix of the soil (cf., [8]). Then the oven-dried specific vol-

ume of the intraaggregate matrix, azV  (Table 1; Fig. 2 and 3) 

follows from Fig. (2A) of [40] (after transformation to w and 

aV  coordinates). 

According to [8] zV  (Fig. 2 and 3) can be expressed 

through azV  (Fig. 2 and 3; Table 1) and K (Table 1; see be-

low) as 

 

zV = oV  (K-1)/K+ azV /K                                                     (39) 

where oV = aoV  (Fig. 2 and 3) is expressed through other 

known values [8] and, in addition, immediately follows from 

Fig. (2A) of [40]. 

Finally, note that there are two types of the reference 
shrinkage curve, )(WV  (Fig. 2 and 3) depending on its be-
havior in the structural shrinkage area [8, 9]. Each of these 
possibilities of )(WV  is characterized by its K value (esti-
mating the K ratio is discussed in one of the following sub-
sections). After estimation of the )(WV  curve the specific 
volume shrinkage, V(W) is found from Eq. (25). 

Estimation of the Relative Shrinkage Curve of a Soil Layer 

with Cracks ( o
l

/)( VWV ), the Shrinkage Geometry Factor 

(rs(W)), and Specific Shrinkage ( A(W) and T(W)) 

The following preliminary remarks are necessary. The 

o
l

/)( VWV  ratio is needed to estimate rs(W). However, esti-

mating rs(W) at a given water content of a soil layer, we can-

not use the shrinkage of the large core in the lysimeter at a 

given drying duration because of the essential change of the 

water content, and correspondingly rs, with depth in the large 

core. Note that Bronswijk [40] could use Eq.(16) for the 

lysimeter core as a whole since he accepted rs=const=3. In 

general, the initial layer thickness, To in Eq. (16) should be 

such that the rs(W) variation inside the layer (after a given 

drying duration) was relatively small compared to a mean rs 

value in the layer. Otherwise, the use of Eq.(16) is not cor-

rect with rs depending on W. For this reason the layer should 

be sufficiently thin compared with the large core. We con-

sider the upper soil layer of 7.5 cm thickness as such a layer 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). As in Fig. (2), but for the reference shrinkage curve, )(WV  of type 2 (without an inflection point in the structural 

shrinkage area) and K=1.068. 
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with sufficiently homogeneous water content over the layer 

volume at any given time moment. In addition, we use this 

relatively thin layer because the total range of the variation 

of the mean water content in the layer during drying (for 82 

days) essentially exceeds that in the deeper layers (see 

Fig.4B of [40]). Note also that the small layer thickness and 

coupling with lower layers of the large core allows one to 

consider its shrinkage as that of a layer, but not of a small 

core, and correspondingly to use Eq.(22), but not Eq.(21). 

Thus, the o
l

/)( VWV  ratio that is needed to estimate the 

shrinkage geometry factor for the soil layer, rs(W) (Eq.(22)) 

is 

 

oo
l

/)(/)( TWTVWV =                                                       (40) 

 
where T(W) `and To (Table 1) are as defined above, the cur-
rent and initial thickness of the upper lysimeter layer, respec-
tively. One can write T(W) as 

 

T(W)=To-nS(W) ,               0<W<Wo                                  (41) 

 
where S(W) is the experimental soil surface subsidence from 
Fig. (6) of [40] (that reaches 12.4 mm through 82 days) as a 
function of the mean water content, W of the upper lysimeter 
layer from Fig. 4B of [40]. We assume that n does not de-
pend on W (or drying duration). This will be checked. In Eq. 
(41) n<1 because of some subsidence of the bottom surface 
of the upper lysimeter layer during drying. At the same time 
n>0 because the bottom surface subsidence in any case is 
less than S(W). 

After estimating )(WV  (previous subsection) and 

o
l

/)( VWV  (at given n and K) rs(W), A(W), and T(W) are 
found from Eq.(22)-(24). Estimating the n and K values is 
discussed in the following subsection. 

Numerical Estimation of Introduced Parameters (n and K) 

from Available Data 

After estimation of V(W), A(W), and T(W) (at given n 
and K) one finds the soil surface subsidence and the crack 
network characteristics of the large core from Eq.(3)-(15) 
and modifications that are summarized (for the case of the 
lysimeter experiment) in Eq.(32) and (36). Together with 
that, we used the experimental dependencies from Fig. (4B), 
(5), and (6) of [40] to connect t, z, and W values. 

Using the above algorithms we estimated the n coeffi-
cient, equalizing the predicted soil surface subsidence in the 
lysimeter after drying for 82 days [see Eq.(11) at z=0 and 

T(z)= T(W(z, t=82d))] and the experimental subsidence after 
t=82d from Fig.6  of [40] (see Table 2). Then the n value 
found (Table 1) was used to find subsidence for t=33 and 
39d (Table 2). 

In general, the K value can be estimated from data on 

soil structure and texture [42]. However such data are lack-

ing in the case under consideration. The K ratio was esti-

mated (at the found n), equalizing the predicted total cumula-

tive crack volume (of vertical and horizontal those) per unit 

area of the lysimeter after drying for 82 days [see Eq.(32) 

and (36) at zI=0, T(z)= T(W(z, t=82d)), and A(z)= A(W(z, 

t=82d))], and the experimental total cumulative crack vol-

ume from Fig. (6) of [40] (see Table 3). The n and K values 

found (Table 1) were used to find the crack volume for 33 

and 39d (Table 3). 

RESULTS AND DISCUSSION 

Table 1 shows the n value that was estimated, as stated 
above, at 82 d drying duration. Table 2 shows the experi-
mental subsidence of the soil surface in the lysimeter at 33, 
39, and 82 d drying duration from Bronswijk [40] and the 
model prediction for these drying durations with the indi-
cated n value. It is worth noting, first, that the discrepancies 
between experimental and predicted soil surface subsidence 
values are within the limits of experimental errors (< 1 mm) 
for any drying duration (not only for 82 days) at the same n 
value. This means that the presentation of Eq.(41) is reason-
able. Second, the n value that is close to unity (Table 1) 
shows that the subsidence of the lower surface of the upper 
7.5 cm layer is small compared with that of the soil surface 
(i.e., (1-n)S(W)<< S(W)). This is in agreement with very 
weak water content variation at larger lysimeter depths [40]. 
Note, in addition, that n=1 leads to the predicted soil surface 
subsidence values (for different drying durations) that are not 
in agreement with observations. This means that the small 
deflection of n from unity is of principle importance. 

Table 1 shows the K values that were estimated, as stated 
above, at 82 d drying duration for two of the possible vari-
ants of the reference shrinkage curve of the soil, )(WV  (Fig. 
2 and 3). First, a small deflection of the estimated K values 
of unity for both types of the reference shrinkage curves 
(Fig. 2 and 3) should be noted. This corresponds to the mod-
eling of the reference shrinkage curve at sufficiently high 
soil clay content [8] and is in the agreement with the esti-
mated K values for a number of other real soils with high 
clay content [8]. Note, however, that K=1 (when the refer-
ence shrinkage curve, )(WV  in Fig. (2) and (3) are replaced 
with )(a WV ) leads to unsatisfactory results. The correspond-
ing total crack volume (per unit area), Vcr=Vv cr+Vh cr 34 mm 
turns out to be rather more than the observed value Vcr 23 
mm (Table 3). This means that the small deflection of K 
from unity is of principle importance. Second, in spite of the 
proximity of both the estimated K values (Table 1) to unity, 
their small variations with K=±0.025 leads to the essential 
change of the corresponding estimated total crack volume for 
82 d drying duration compared to the observed value, Vcr 23 
mm (Table 3). This change is out of the limits of experimen-
tal errors (>1 mm) and demonstrates the appreciable effect of 

Table 2. Soil Surface Subsidence: Data and Modeling Results 

Soil Surface Subsidence 

at Drying Duration Value Origin Source 

33 d 39 d 82 d 

  mm 

Experiment Bronswijk [40] 6.3 7.0 12.4 

Model This 

Work 

5.30 7.80 13.39 
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the intraaggregate soil structure (which is expressed by the K 
value) on the shrinkage crack characteristics. 

Fig. (4) shows the model predicted shrinkage geometry 
factor of the upper soil layer with the initial thickness of 7.5 
cm as a function of the (mean) water content in the layer 
from the lysimeter experiment [40] for the two possible types 
of reference shrinkage curve (see Fig. 2 and 3). Unlike 
rs=const=3, that was postulated in [40], rs demonstrates an 
initial sharp increase up to rs 35-45 with decrease in water 
content. This increase is stipulated by the absence of soil 
surface subsidence for approximately the first two-three days 
of drying (see Fig. 6 of [40]). In such conditions the volume 

shrinkage of the soil matrix in the layer can only be realized 
through a quick crack formation that corresponds to the 
sharp increase of rs with initial drying. Then with the appear-
ance and increase of soil surface subsidence, rs quickly de-
creases to approximately ten for the next two-three days (at 
W 0.35 kg kg

-1
 in Fig. (4), and in ten days of drying de-

creases to 1.5 (at W 0.3 kg kg
-1

 in Fig. (4). With the subse-
quent drying the rs decrease is relatively small (W 0.25 kg 
kg

-1
 in Fig. (4) corresponds to drying for 36 days). Qualita-

tively, such rs(W) behavior with a more or less sharp maximum 
and following approximate constancy at drying is similar to 
that from Fig. (8) of [7] for another soil of high clay content. 

Table 3. Cumulative Crack Volume (per unit area): Data and Modeling Results 

Cumulative Crack Volume 

(per unit area) at Drying Duration Value Origin Source Crack Type 

33 days 39 days 82 days 

   mm 

Experiment Bronswijk [40] Vertical and Horizontal -- -- 23.1 

Model Bronswijk [40] Vertical 11.7 13.2 21.7 

Model Chertkov and Ravina [1] Vertical 10.2 12.5 13.7 

Vertical 17.12 19.22 22.70 

Horizontal 0.15 0.28 0.37 Model 

This Work 

(RSC† from Fig.2; 

K=1.107) 
Vertical and Horizontal 17.27 19.50 23.07 

Vertical 16.48 18.90 22.61 

Horizontal 0.20 0.37 0.46 Model 

This Work 

(RSC† from Fig.3; 

K=1.068) 
Vertical and Horizontal 16.68 19.27 23.07 

†RSC, reference shrinkage curve 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The shrinkage geometry factor of the upper (sufficiently thin) soil layer, rs vs. soil water content (in the layer), estimated for Bron-

swijk's lysimeter experiment [40] using the modified approach under consideration. The solid line - case of the reference shrinkage curve 

from Fig. (2) (K=1.107). The dashed line - case of the reference shrinkage curve from Fig. (3) (K=1.068). 
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Fig. (5) illustrates the predicted depth dependence of the 
cumulative (upward from depth zm) vertical and horizontal 
crack volume as well as the total crack volume (per unit 
area) after 82d drying duration for the case of the reference 
shrinkage curve in Fig. (3). In addition, the predicted Vv cr, Vh 

cr, and Vcr=Vv cr+Vh cr volumes (per unit area) at the soil sur-
face, zC=0 for three drying durations are given in Table 3 for 
the two possible types of reference shrinkage curve (from 
Fig. 2 and 3). For comparison Table 3 also shows available 
data for the total crack volume from [40] as well as the pre-
diction from [40] and [1]. First, it should be noted that the 
relatively small (for this soil) estimated contribution of the 
horizontal cracks to the total crack volume (at zC=0 and at 
different drying duration in Table 3; or at different depths 
and after drying for 82d in Fig. 5), is, nevertheless, interest-
ing because of the possible contribution of the cracks to the 
soil hydraulic conductivity. Second, for the soil under con-
sideration the differences between Vv cr, Vh cr, and Vcr (Table 
3) predicted for the two possible variants of the reference 
shrinkage curve (Fig. 2 and 3) are within the limits of the 
experimental errors (< 1 mm) for any drying duration. 
Third, Table 3 shows that the estimates of this work for the 
vertical crack volume, Vv cr are essentially more accurate 
compared to similar estimates in [1]. The difference between 
the estimates of Vv cr in this work and [40] is also appreciable 
at 33 and 39 d drying duration. The reason for this is the use 
in [40] and [1] of the postulated value, rs=const=3. Unlike 
that, in this work the corrected rs(W) dependence was con-
sidered and used. 

Finally, it is worth reiterating that the modified approach 
permits one to obtain, in addition to the cumulative crack 
volume, not only the specific crack volume and separately 
the vertical and horizontal crack volume, but also the differ-

ent relevant distributions of crack characteristics. They were 
not estimated here because of the lack of corresponding ex-
perimental data. 

CONCLUSION 

Predicting soil crack network geometry is important for 
different applications of soil hydrology. There are a number 
of approaches that deal with the soil crack network. The ap-
proach from [1-4] seems to be the most physically substanti-
ated and to give the most detailed information about the soil 
crack network characteristics. The main drawback of this 
approach is connected with the use of a non-accurate shrink-
age geometry factor from Bronswijk [30, 31] in the estima-
tion of the soil crack volume. Recent works [6, 7] showed 
that some implicit assumptions of [30, 31] are violated in 
real conditions, and suggested ways to calculate the correct 
shrinkage geometry factor. In such calculations one also 
needs the shrinkage curve of the soil matrix without cracks. 
For such a shrinkage curve one can use the so-called refer-
ence shrinkage curve [8-10]. In this work we modify the 
approach to the prediction of soil crack network geometry 
from [1-4], accounting for the results from [6-10] and a 
number of specifications. Then, we validate and illustrate the 
modified approach analyzing available data from Bronswijk 
[40]. The obtained results permit one to estimate different 
crack network characteristics of shrinking soils with essen-
tially higher accuracy. 

NOTATION 

Ao initial total area of a horizontal uncracked soil 
cross-section at a depth z, m

2
 

A(z) current total area of a horizontal uncracked soil 
cross-section at a depth z, m

2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). The cumulative volume of cracks in the large lysimeter core from depth zm=50 cm to a current z value (per unit area) estimated us-

ing the modified approach under consideration at 82 d drying duration and the reference shrinkage curve from Fig. (3) (K=1.068). 1 - contri-
bution of horizontal cracks. 2 - contribution of vertical cracks. 3 - total crack volume. 
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C crack connectedness, dimensionless 

c clay content, dimensionless 

DVm  total volume decrease of the soil matrix layer 
between depths zm and z (per unit area), m

3
 m

-2
 

d average crack spacing, m 

e void ratio, m
3
 m

-3
 

f(x) probability of connection of cracks of any ori-
entation of dimension <x (or volume fraction 
of fragments of all the dimensions <x), dimen-
sionless 

fm=f(xm) volume fraction occupied by all the fragments, 
or the fragment formation probability, dimen-
sionless 

h crack tip depth, m 

h' integration variable, m 

K ratio of an aggregate solid mass to the solid 
mass of an intraaggregate matrix, dimension-
less 

L total length of vertical-crack traces on a hori-
zontal cross-section at depth z, m

-1
 

n coefficient in Eq.(41), dimensionless 

P(z, h) cumulative fraction of the total specific crack 
volume, or of the total specific crack cross-
sectional area at a depth z, related to cracks 
with tips at depths >h, dimensionless 

Pz oven-dried structural porosity, dimensionless 

R(z, h) mean width at depth z of cracks with tips at 
depth h, m 

rs shrinkage geometry factor of a soil layer, di-
mensionless 

rsM corrected shrinkage geometry factor of a soil 
core, dimensionless 

S(z) subsidence of the drying soil along a vertical 
elevation not containing a vertical crack as a 
function of soil depth, z; S(z)  S(W(z)), m 

s measurable mean crack spacing at the soil sur-
face, m 

T(z) current thickness of a horizontal soil layer 
around a depth z, m 

To initial thickness of a horizontal soil layer 
around a depth z and, in particular, of the up-
per 7.5 cm layer of the lysimeter, m 

t drying duration, day 

V(z) current volume of a soil matrix (without 
cracks) in a horizontal soil layer around a 
depth z, m

3
 

Vo initial volume of a soil matrix (without cracks) 
in a horizontal soil layer around a depth z, m

3
 

Vcr cumulative crack volume in the lysimeter (per 
unit area), m

3
 m

-2
 

Vh cr cumulative horizontal crack volume in the 
lysimeter (per unit area), m

3
 m

-2
 

Vv cr cumulative vertical crack volume in the 
lysimeter (per unit area), m

3
 m

-2
 

)(WV  shrinkage curve of the soil matrix (without 
cracks) or the soil reference shrinkage curve, 
dm

3
 kg

-1
 

)(a wV  shrinkage curve of an intraaggregate matrix, 

dm
3
 kg

-1
 

azV  oven-dried specific volume of an intraaggre-

gate matrix ( )( za wV ) per unit mass of the 

matrix itself, dm
3
 kg

-1
 

aoV  )( oa wV  value, dm
3
 kg

-1
 

oV  )( oWV  value, dm
3
 kg

-1
 

)(l WV  shrinkage curve of a real connected soil layer 
with cracks, dm

3
 kg

-1
 

zV  )( zWV  value, dm
3
 kg

-1
 

)(l WV  shrinkage curve of a soil layer with cracks in 
Bronswijk's approximation, dm

3
 kg

-1
 

vh cr(z) specific width of the horizontal cracks per unit 
height of a vertical profile or the specific vol-
ume of the horizontal cracks (per unit volume 
of soil), dimensionless 

W(z) current soil water content profile (i.e., for a 
given drying duration), kg kg

-1
 

W total gravimetric water content (per unit mass 
of oven-dried soil), kg kg

-1
 

Wn total gravimetric water content at the endpoint 
of the basic shrinkage area of a soil, kg kg

-1
 

Ws total gravimetric water content at the endpoint 
of the structural shrinkage area of a soil, kg kg

-

1
 

Wz total gravimetric water content at the shrinkage 
limit of a soil, kg kg

-1
 

Wo maximum swelling point of a soil before the 
start of shrinkage, kg kg

-1
 

w water content of an intraaggregate matrix (per 
unit mass of oven-dried intraaggregate matrix 
itself), kg kg

-1
 

wn gravimetric water content of an intraaggregate 
matrix at the endpoint of the basic shrinkage of 
the intraaggregate matrix, kg kg

-1
 

wz gravimetric water content of an intraaggregate 
matrix at the shrinkage limit of the intraaggre-
gate matrix, kg kg

-1
 

wo gravimetric water content of an intraaggregate 
matrix at the maximum swelling point of the 
intraaggregate matrix; wo=Wo, kg kg

-1
 

xm=4d maximum dimension of fragments, m 
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z soil depth, m 

zC coordinate of soil depth at shrinkage with 
movable point of reference at a current posi-
tion of the soil surface, m 

zI coordinate of soil depth at shrinkage with 
fixed point of reference at the initial position 
of the soil surface, m 

zo thickness of an upper soil layer (a few tens of 
centimeters) of intensive cracking, m 

zm maximum crack depth, m 

z1, z2 depths of the upper and lower boundaries of a 
soil layer, m 

z' integration variable, m 

A(z) Ao-A(z)  increment of the uncracked area under shrink-
age at a given depth z, m

2
 

S(z, h) potential relative subsidence at depth z of a 
vertical profile containing a vertical crack of 
depth h, m 

)(zS  mean potential relative subsidence (MPRS), m 

T(z) To-T(z)   increment of the layer thickness under shrink-
age and cracking around a given depth z, m 

V(z) Vo-V(z)  increment of the soil matrix volume under 
shrinkage and cracking around a given depth z, 
m

3
 

Vm volume decrease of the soil matrix layer be-
tween depths zm and z (per unit area) due to 
soil subsidence and cumulative volume of ver-
tical cracks, m

3
 

'Vm additional volume decrease of the soil matrix 
layer between depths zm and z (per unit area) 
due to cumulative volume of horizontal cracks, 
m

3
 

A(z) A(z)/Ao specific horizontal surface shrinkage per initial 
unit area (or the total specific crack cross-
section area at depth z), dimensionless 

cr(z, h) linear vertical shrinkage at a point on the wall 
of a vertical crack as a function of the crack tip 
depth, h, and the depth of the point on the 
wall, z h, dimensionless 

T(z) T(z)/To  specific linear vertical shrinkage of the soil 
(per initial unit layer thickness) at depth z, di-
mensionless 

V(z) V(z)/Vo specific volume shrinkage of a soil matrix, 
dimensionless 

'V additional specific volume shrinkage of a soil 
matrix that leads to the development of hori-
zontal cracks, dimensionless 

 moisture ratio, m
3
 m

-3
 

(z, h) differential fraction (probability density) of the 
total specific crack volume (per unit volume of 
soil), or of the total specific crack cross-
sectional area (per unit cross-sectional area), at 

a depth z related to cracks with tips in a unit 
interval at depth h, dimensionless 

w water density, g cm
-3

 

s mean density of soil solids, g cm
-3

 

 degree index in Eq.[3], dimensionless 
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