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Abstract: The alarming loss of water storage capacity to sedimentation in reservoirs worldwide is prompting a paradigm 

shift toward sustainable management. Previous research has investigated the physical capability of various technologies to 

control reservoir sediment, and formulated economic rules governing their optimal sustainable use. We ask the next rele-

vant questions: Is sustainable reservoir management structurally stable for particular technologies, or do thresholds exist 

such that small perturbations in key management parameters abruptly unleash dynamics driving the reservoir toward ex-

tinction? What are the dynamic properties of reservoirs in transition? We uncover a saddle-node bifurcation for the par-

ticular case of a multi-purpose public reservoir manager who adopts the environmentally friendly ‘hydrosuction-dredging’ 

sediment removal technology. Beyond the bifurcation threshold, sustainable management abruptly gives way to eventual 

loss of storage capacity to sedimentation.  
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INTRODUCTION 

Dams obstruct rivers to store water in adjacent reservoirs 
and to increase hydraulic head (the difference in surface ele-
vation between the upstream reservoir and the downstream 
river). This produces essential social services including hy-
dropower generation; agricultural, domestic, and industrial 
water supplies; flood control; improved river navigation; and 
recreational opportunities. Dams also unintentionally ob-
struct the flow of sediment through river systems. Sediment 
entrapped in reservoirs reduces water storage capacity and 
hydraulic head [1].  

Reservoirs throughout the world suffer from sedimenta-
tion. Examples include estimated annual storage capacity 
losses of 2.3% in China [2], 0.5% in India [2], and 1% 
worldwide [3]. Specific examples are catalogued by Batuca 
and Jordaan [4]. These include the Cir-lurtsk Reservoir on 
the Sulak River (Russia) which was 95% sedimented in 7 
years; the Gumati Reservoir on the Vakhs River (Georgia) 
which was 90% sedimented in 11 years; and the Zemo Af-
char Reservoir at the confluence of the Kura and Aragi Riv-
ers (Russia) which lost 44% of its initial storage capacity in 
the first 2 years, 32% in the next 8 years, and 3.5% up to 
1967. Other examples include the Tarbela Dam on the Indus 
River—the most important facility of its kind in Pakistan—
which lost 20% of its storage capacity after 23 years of op-
eration [5]; and the Matilija Dam in California whose storage 
capacity decreased from 7,000 acre feet in 1947 to less than 
500 acre feet by 2005 [6]. 
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The large environmental and economic costs of restoring 
reservoir storage capacity by constructing new projects is 
prompting a paradigm shift toward preserving current capac-
ity by managing existing projects in a sustainable manner [5, 
7]. Sustainable reservoir management requires control tech-
nologies to remove sediment at its average annual rate of 
inflow [8].  

Sediment control technologies are broadly categorized 
along two lines: (1) whether they employ hydraulic or me-
chanical technologies [4]; and (2) whether they seek to 
minimize sediment loads entering the reservoir, minimize the 
deposition of sediment in reservoirs, or extract sediments 
accumulated in the reservoir [1, 2]. Strategies seeking to 
minimize incoming sediment include controlling erosion in 
the catchment area, employing ‘check dams’ to trap sedi-
ments upstream of the reservoir, and ‘bypassing’ high river 
flows with large sediment concentrations. Hydraulic tech-
nologies controlling the deposition of sediments in reservoirs 
include ‘sluicing’ (incoming sediment-laden flood waters are 
run through the dam before sediment can settle in the reser-
voir), and ‘density current venting’ (incoming sediment-
laden flow is routed under the stored water and through the 
dam’s bottom outlets). Hydraulic technologies removing 
accumulated sediment include ‘flushing’ (sediment is 
flushed from the reservoir through the dam’s bottom outlets 
during a flood event), and ‘siphoning’ (sediment is trans-
ported over or through the dam in a flexible pipeline sub-
merged in the reservoir). Mechanical technologies used to 
evacuate accumulated sediment include excavation and 
dredging.  

The literature on reservoir sedimentation management 
has evolved along two branches. The first branch is defined 
by numerous engineering studies formulating the physical 
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capacity of sediment control technologies. This work is 
summarized in several books [1, 2, 4]. The second branch is 
defined by a relatively few economic studies investigating 
the economic optimality of sustainable reservoir management.  

Palmieri et al. [5] studied the economic dynamics of the 
sluicing sediment-routing technology. Sluicing releases a 
portion of annual water inflow (that might otherwise refill 
the reservoir for future consumption) to drive suspended 
sediment beyond the reservoir before it settles. They cap-
tured the essence of sluicing dynamics with a continuous-
time single-state (water storage capacity) reservoir model. 
They embedded this into an optimal control formulation to 
determine the optimal volume of sediment to remove annu-
ally, and demonstrated the optimality of sustainable reservoir 
management for parameters characterizing a representative 
reservoir. The World Bank adopted this single-state specifi-
cation to design a practical decision tool (RESCON) for se-
lecting the optimal sediment control technology from alter-
natives including flushing, hydrosuction dredging, traditional 
dredging, trucking and no removal [9, 10].  

Huffaker and Hotchkiss [11] investigated the economic 
dynamics associated with the newly emerging ‘hydrosuction-
dredging’ (HD) siphoning technology [12]. HD employs the 
potential energy stored by the hydraulic head at the dam to 
draw sediment-entrained water into a submerged removal 
pipeline for transport downstream (Fig. 1). The removal 
pipe—which goes through the dam—extends from the sedi-
mented reservoir bottom to a discharge point downstream. 
HD is engineered to be environmentally friendly. It does not 
require diesel power pumps to transport sediment, thereby 
conserving fossil fuels and preventing oil spills in drinking-
water reservoirs. Since HD relies on a chain of multidimen-
sional hydraulic linkages suppressed in previous single-state 
modeling, Huffaker and Hotchkiss [11] formulated an inter-
dependent two-state system including both reservoir water 
storage capacity and the volume of impounded water. They 
embedded these reservoir dynamics into a continuous-time 
optimal control formulation to determine the optimal volume 
of water to consume in non-hydrosuction uses (e.g., hydro-

power production and irrigation). Similar to Palmieri et al. 
[5], their results showed sustainable reservoir management to 
be optimal for representative parameters.  

To our knowledge, past work has not investigated the 
threat to sustainable reservoir management posed by ‘bifur-
cation thresholds’ resulting from small perturbations in key 
sediment management parameters in the neighborhood of 
equilibria. On one side of such thresholds, sustainable re-
source management is a feasible option for at least some 
range of initial reservoir storage capacities. Once such 
thresholds are crossed, sustainable management is no longer 
a feasible option for any initial capacities. The only feasible 
option is for the reservoir to eventually become chocked off 
by sediment. It is time to ask two further questions: Do bi-
furcation thresholds exist for sediment control technologies 
recommended in the literature? What are the dynamic prop-
erties of reservoirs in transition?  

METHODS 

We posit the following realistic reservoir management 
scenario: A manager has contractual obligations to provide 
impounded water for consumptive activities including hy-
dropower production, irrigation, municipal/industrial water 
supplies, and so on. The manager is authorized to modify 
contractual obligations to protect public interests, including 
the long-term storage capacity of the dam/reservoir project. 
Reservoirs under this general type of management system 
include multi-purpose public projects. For example, the U.S. 
Army Corps of Engineers is authorized by federal statute (33 
U.S.C. § 403) to grant permits contracting irrigation of a 
fixed number of acres with water pumped from approved 
reservoirs. The Corps retains the authority to modify permits 
“if it is determined that, under existing circumstances, modi-
fication is in the public interest” [13]. We focus on the par-
ticular case in which stored water is required to protect water 
storage capacity by removing impounded sediment through 
the HD pipeline. 

Following past analytical studies [5, 11], we formulate a 
continuous-time model of reservoir management. We ap-

 

Fig. (1). Hydrosuction-dredging sediment removal technology. 
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proximate real-world management by formulating a feed-
back policy that reduces contractual obligations when im-
pounded water is required for a public purpose; in this case, 
to provide potential energy for HD sediment removal. In 
particular, management sets a maximum allowable consump-
tion rate ( C

m
) of impounded water to meet contractual  

obligations when the reservoir is at full water storage capac-
ity. As storage capacity is lost to sedimentation, the policy 
promotes sustainable reservoir use by decreasing the  C

m
rate 

proportionately to remaining capacity. This recovers storage 
capacity by increasing the volume of impounded water pro-
viding potential energy for HD sediment transport.  

We next conduct a bifurcation analysis to study the struc-
tural stability of reservoir equilibria for small perturbations 
in the  C

m
rate with other parameters held constant. The 

analysis uncovers a ‘saddle-node’ bifurcation:  C
m

rates be-
low the bifurcation threshold produce two branches of 
equilibria consistent with sustainable reservoir management 
from a range of initial storage capacities. The equilibria dis-
appear for  C

m
rates above the threshold, and the reservoir 

evolves toward ‘extinction’ for all initial storage capacities.  

We draw hydrologic parameter values required to solve 
our model from a case study of the Tianjiawan reservoir on 
the Jian River in Yuci, Shanzi province, China [14]. The 
reservoir was built in 1960 with a storage capacity of 9.425 
million m

3
, and an annual sediment load of 0.25 million m

3
. 

In the first 15 years, the reservoir accumulated about 4.0 
million m

3
 of deposited sediment. Since 1975, a siphon 

sediment removal system has been used consisting of a sub-
merged floating pipeline—of 229m in length and 550mm in 
diameter—connected to the dam outlet.  

Dimensional Reservoir Model  

The interdependent dynamics of impounded reservoir 

water 
  
W

t
,m

3( ) and remaining reservoir storage capacity 

  
S

t
,m

3( )  follow along the lines of [11]: 

   

dW

dt
= R W

t
,S

t( )
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1 24 34
C W

t
,S

t
;C m( )

contractual obligations

1 244 344
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W

W
t
,S
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W

t
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sediment transport rate

1 244 344
SI

     sediment 
entrapment rate

{         (1b) 

The volume of impounded water changes at a net annual 

rate 
  

m
3

/ t( )  in (1a) equaling the difference between the an-

nual refill rate and the rates at which impounded water is 

consumed in three major activities: meeting contractual obli-

gations, HD sediment transport, and evaporative losses. Re-

maining reservoir storage capacity changes at a net annual 

rate 
  

m
3

/ t( )  in (1b) equaling the difference between the rate 

at which sediment is transported by HD and a fixed annual 

rate at which sediment is entrapped in the reservoir. The 

functional forms characterizing the rates in (1a, b) are dis-

cussed below. The associated variables and parameters are 

summarized in Table 1.  

The reservoir accommodates additional water each  

year proportionate to the difference between remaining  

storage capacity and water already impounded: 

  
R W

t
,S

t( ) = 1
S

t
W

t( ) , where 
 1

 
  
1/ t( )  is fixed at unity. 

Additional water exceeding remaining storage capacity is 

involuntarily spilled. 

The annual consumption rate of impounded water avail-

able to meet contractual obligations is modeled with a 

Michaelis-Menton function (graphed in Fig. 2): 

  
C W

t
,S

t
;C

m( ) = 1
W

t
/ W

t
+

2( )         (2a) 

  
1
=C

m
S

t
/ S

m( )           (2b) 

  
2
=

2
1 S

t
/ S

m( )          (2c) 

The annual consumption rate function (2a) depends on 

two composite parameters: 
1
 and 

2
. Mathematically speak-

ing, 
1
 gives the horizontal asymptote of 

  
C W

t
,S

t
;C

m( )  as 

stored water increases toward infinity, and 
2
 is the stored 

water level yielding half of this asymptote, 0.5 
1
. Compos-

ite parameter 
 2

is inversely related to the annual consump-

tion rate of impounded water, 
  
C W

t
,S

t
;C

m( ) , indicating that 

smaller values of 
2
 cause 

  
C W

t
,S

t
;C

m( ) to adjust more rap-

idly toward its maximum rate 
1
.  

The behavior of composite parameter 
1
 is given by (2b). 

When the reservoir is at maximum storage capacity, St = 

 S
m

  
m

3( ) , 
1
 equals the ‘maximum allowable consumption’ 

rate  C
m

  
m

3
/ t( ) , and 

  
C W

t
,S

t
;C

m( )  asymptotically increases 

from zero (when the stock of impounded water is zero) to-

ward  C
m

 (as impounded water increases). As storage capac-

ity is lost (St <  S
m

),  C
m

 adjusts downward proportionately 

to the fraction of remaining storage capacity: 
  
C

m
S

t
/ S

m( ) .  

The behavior of composite parameter 
2
 is given by (2c). 

When the reservoir is at full storage capacity,
 
S

t
= S

m
, 

  
C W

t
,S

t
;C

m( )  adjusts instantaneously to the  C
m

rate. Alter-

natively, as the reservoir becomes sedimented, 

  
C W

t
,S

t
;C

m( )  adjusts more slowly to the  C
m

rate. This in-

creases future storage capacity by increasing the volume of 

water left impounded (unconsumed) to provide potential 

energy for HD sediment transport.  

To model HD sediment transport, we first specify an ele-

vation-storage curve because the reservoir’s surface elevation 
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provides the potential energy for the process. Empirical ele-

vation-storage curves show that surface elevation increases 

at a decreasing rate with the volume of impounded water [1, 

15]. Consequently, we employ a Michaelis-Menton function 

which increases elevation asymptotically toward  E
m

(m)—

the maximum elevation to which the reservoir surface can 

rise during ordinary operating conditions (‘normal pool 

level’)—as impounded water increases.  

  
E W

t
,S

t( ) = E
m
W

t
/ W

t
+

5
+

6
S

t( )          (3) 

The term 
  

5
+

6
S

t( )  measures the volume of impounded 

water for which surface elevation reaches half of it maxi-

mum level (0.5 E
m

), and consequently is inversely related to 

the efficiency with which impounded water is converted to 

maximum surface elevation. Consistent with empirical eleva-

tion-storage curves, this term is designed to shift 
  
E W

t
,S

t( )  

to the left as remaining storage capacity decreases due to 

sedimentation. This has the impact of increasing the eleva-

tion obtained by each volume of impounded water. The justi-

fication is that impounded water becomes ‘perched’ upon an 

enlarged layer of sediment. Ironically, sediment perching 

increases the potential energy for HD transport by increasing 

reservoir surface elevation—a ‘bad’ does some ‘good’. 

The annual rate at which sediment is transported by the 

HD pipeline is roughly proportional to surface elevation for 

typical parameters (i.e., pipeline length, diameter, and mate-

rial) and intermediate-sized reservoirs [11]: 
  
HD

SD
W

t
,S

t( ) =  

  4
E W

t
,S

t( ) ,  

where 
 4

 
  

m
3
t

1
/ m( )  is the proportionality parameter.  

Following Kawashima et al. [10], we assume that the an-

nual rate at which water is required to drawn sediment 

through the HD pipeline is proportional to the sediment 

transport rate by parameter 
 3

 (unitless): 
  
HD

W
W

t
,S

t( ) =  

  3
HD

SD
W

t
,S

t( ) . 

Evaporative losses sustained by reservoirs in hot and arid 

climates are typically approximated as a proportion of a res-

ervoir’s average water surface area [16]. Since these losses 

are not the focal point of our model, we account for them 

more simply as a constant proportion 
  

7
1/ t( )  of im-

pounded water: 
  
EV W

t( ) = 7
W

t
. 

Finally, sediment is assumed to be entrapped in the res-

ervoir at a fixed annual rate: 
  
SI =

8
m

3
/ t( ) .  

Dimensionless Reservoir Model 

The number of system parameters can be reduced from 

ten to six by scaling the dimensional system (1) to the fol-

lowing dimensionless variables: 
  
s
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m
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m
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=

1
t  (dimensionless time variable): 

  

dw

d
= w

•

= s
t

w
t

c
m
s

t
w

t
/ w

t
+

1
1 s

t( ){ }

3 2
w

t
/ w

t
+

3
+

6
s

t( ) 4
w

t

      (4a) 
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d
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where 
  
c

m =C
m

/
1
S

m( )  is a dimensionless parameter meas-

uring the maximum allowable consumption rate as a fraction 

of maximum reservoir storage capacity. The definitions and 

interpretations of the other dimensionless parameters are 

reported in Table 1 
 1

,
3
,

6( )  and Table 2 
 1

through 
5( ) . 

 

Fig. (2). The annual consumption rate of impounded water to meet contractual obligations. 
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Table 1. Dimensional Variables and Parameters 

Variables Description Units  

St remaining storage capacity m3  

Wt volume of impounded water m3  

t time Years  

Parameters   Values 

 S
m

 maximum storage capacity m3 9,430,000 a 

 1
 refill rate parameter t-1 1 

Cm maximum allowable consumption rate of impounded water to satisfy contractual obligations m3t-1 3,772,000 c 

  

2
1

S
t

S
m

 volume of impounded water giving half of maximum allowable consumption rate m3 
 2

=  

3,000,000 c 

 3
 proportion of water needed to remove a unit of sediment -- 6.41b 

 4
 slope of sediment transport-elevation function m3t-1 /meter 47,000b 

Emax maximum reservoir elevation Meters 17.4a 

 5
(
 6

) slope (intercept) of elevation-storage water efficiency m3 (--) 1 (1)c 

 7
 proportional evaporation rate t-1 0.02c 

 8
 annual sediment entrapment rate m3t-1 250,000a 

aThese parameter values are drawn directly from Liu et al. [14]. We assume that the maximum reservoir elevation 
  

E
max( )  is the ‘gross’ head (vertical distance in surface elevation 

between the upstream reservoir and downstream river) reported in Liu et al. [14]. 
bThese parameter values are calculated from data in Liu et al. [14]. We calculate

 
3

 as the inverse of the reported sediment-water ratio of 15.6%. We calculate
 

4
 as the ratio of 

dredged sediment (320,000   m
3

) to ‘effective’ head (6.81  m ). Effective head is the gross head corrected for water losses through trashracks, valves, penstocks, etc.  In sum, effective 

head is the elevation providing potential energy for HD transport. Lui et al. [14] report that effective head for Tianjiawan Reservoir is in the interval of 5.5 to 8.8 m.   
cThese parameter values are unavailable from Liu et al. [14].  Values are selected that generate reasonable results in numerical simulations in combination with known values. For 

example, the maximum allowable consumption rate of impounded water to satisfy contractual obligations,  C
m

, is set at 40% of the reservoir’s maximum storage capacity, 
 S

m . 

 

Table 2. Dimensionless Variables and Parameters 

Variables Definition 

 

s
t
=

S
t

S
m

 fraction of maximum storage capacity remaining 

 

w
t
=

W
t

S
m

 fraction of maximum storage capacity of impounded water 

  
=

1
t  time variable 

Parameters  

  

c
m
=

C
m

1
S

m
 fraction of maximum storage capacity of maximum consumption rate of storage water in non-hydrosuction activities 

  
1
= 2

S
m

 consumption function rate of adjustment parameter 

  

2
= 4

E
m

1
S

m
 sediment transport function parameter 

  
3
= 5

S
m

 sediment transport function parameter 

 

4
= 7

1

 proportional evaporation rate 

  

5
= 8

1
S

m
 fraction of maximum storage capacity of sediment entrapment rate 
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Solution of Dimensionless Model 

We solve system (4) numerically with baseline parame-

ters values drawn from a case study of HD sediment trans-

port in the Tianjiawan reservoir, China [14], and reported in 

Table 1. To illustrate system dynamics exhibiting sustainable 

reservoir use, we arbitrarily set the maximum allowable con-

sumption rate of impounded water at 40% of maximum stor-

age capacity:   C
m
= 0.4S

m
= 3,772,000  m

3
t
-1

. The corre-

sponding dimensionless value is: 
  
c

m =C
m

/
1
S

m( ) = 0.4 . 

The nullclines associated with (4) are shown in Fig. 3(a). 

Nullcline wn is the curvilinear graph of impounded-water 

(w) and storage-capacity (s) combinations that set    &w = 0  in 

(4a) by balancing the reservoir-refill rate with the rates at 

which reservoir water is consumptively used in satisfying 

contractual obligations, HD sediment transport, and evapora-

tion. Nullcline sn is the linear curve of impounded-water and 

storage-capacity combinations that set    &s = 0  in (4b) by bal-

ancing sediment inflow and removal rates. Storage capacity 

increases (decreases) over time for impounded water vol-

umes above (below) sn because the potential energy supplied 

by the reservoir allows (does not allow) the HD pipeline to 

remove sediment at a greater rate than it enters.  

The nullclines intersect at two equilibria: SSL 

  
s

L

ss = 0.427, w
L

ss = 0.188( ) and SSH 
  

s
H

ss = 0.935, w
H

ss = 0.412( ) . 

SSL is characterized by volumes of impounded water and 

storage capacity that are relatively lower than those charac-

terizing SSH. Linear stability analysis produces real eigenval-

ues of opposite sign in the neighborhood of SSL 

 
1.917,0.012( ) , and negative real eigenvalues in the neigh-

borhood of SSH 
 

1.38, 0.0083( ) . Thus, SSL is a saddle 

point
*
 and SSH is a stable node

†
 (Fig. 3(a). Since both 

                                                        
* A saddle point equilibrium is characterized by a ‘stable arm’ solution 

trajectory parallel to which other trajectories approach equilibrium before 

eventually veering away; and an ‘unstable arm’ solution trajectory parallel 

to which other trajectories asymptotically veer away from equilibrium. 
 

† A stable node equilibrium is characterized by solution trajectories that 

equilibria are hyperbolic (i.e., the eigenvalues of the linear 

flow at equilibrium all have nonzero real parts), the Stable 

Manifold Theorem guarantees that linear stability properties 

hold for the nonlinear flow, and are robust for small pertur-

bations of (4) [17].  

Solution trajectories for the baseline parameter values are 
shown in Fig. 3(b). Impounded water volumes converge rap-
idly along vertical trajectories toward a solution manifold 
(denoted as ) comprised of the divergent separatrices as-
sociated with saddle point SSL, and convergent trajectories 
associated with stable node SSH. In particular, the divergent 
separatrix to the right of SSL is a heteroclinic orbit linking 
SSL with SSH. Upon reaching , impounded-water and stor-
age-capacity volumes evolve relatively slowly along the 
manifold.  

The dynamics along  are characterized by two basins 

of attraction separated by the convergent separatrices associ-

ated with lower-volume equilibrium SSL (thickened dashed 

trajectories for emphasis). Storage capacities to the left of 

this boundary evolve along  toward the origin. The reser-

voir eventually fills up with sediment and loses its capacity 

to impound water. The reductions in storage capacity and 

impounded water along this section of  have offsetting 

impacts on the reservoir surface elevation that provides po-

tential energy for HD sediment removal (3). The loss of stor-

age capacity increases surface elevation due to sediment 

perching, but the reduction in impounded water reduces ele-

vation for a given storage capacity. For the baseline parame-

ters, the net effect is that surface elevation decreases along 

with the potential energy for HD transport. The reservoir is 
managed as a non-sustainable asset.  

Alternatively, relatively larger storage capacities to the 
right of this boundary gravitate along  toward the higher-
volume equilibrium, SSH. Impounded water increases over 
time with expanded storage capacity. The potential energy 
for HD transport increases because the positive impact of 
increased volumes of impounded water on reservoir surface 
elevation out-weights the negative impact of reduced sedi-

                                                                                               
asymptotically approach equilibrium from all initial values of the state vari-

ables. 

 

Fig. (3). Phase diagram of system (4) for baseline parameters: (a) graphs of nullclines and directions of motion (Mathematica); (b) numeri-

cally generated phase diagram (Berkeley Madonna software). 
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ment perching as storage capacity expands. The HD pipeline 
is able to remove sediment at a greater rate than it enters the 
reservoir. The reservoir is managed as a sustainable asset.  

We proceed to search for a bifurcation-threshold of the 

maximum-allowable impounded-water consumption rate 

 

c
m( )  beyond which the possibility of sustainable reservoir 

management is foreclosed.  

 Bifurcation Analysis  

Bifurcation points occur only at a ‘non-hyperbolic’ equi-

librium,
 
SS

nh
, for which at least one of the eigenvalues of the 

linear flow at equilibrium has a zero real part [17]. Conse-

quently, the criterion for detecting a bifurcation point for 

system (4) is to find values of  c
m

 resulting in zero-valued or 

purely-imaginary eigenvalues. Fig. (4) plots numerical calcu-

lations of one of the two eigenvalues associated with the 

upper and lower steady states (SSL with SSH) for increasing 

levels of  c
m

(other baseline parameters held constant). A 

zero eigenvalue 
 

1
= 0( )  occurs for 

  
c

nh

m
= 0.483  (i.e., when 

the scaled maximum allowable impounded-water consump-

tion rate reaches 48.3% of maximum storage capacity). The 

second calculated eigenvalue is 
 2

= 1.781 . The associated 

non-hyperbolic equilibrium is

   

SS
nh
= 0.586

s
nh

SS

{ ,0.258

w
nh

SS

{ .  

In contrast to hyperbolic equilibria, the Stable Manifold 

Theorem cannot be invoked to guarantee that 
 
SS

nh
 is struc-

turally stable, or that linear stability properties hold for the 

nonlinear flow. Radically new dynamic behavior can occur 

for small shifts in parameters. Instead, the stability properties 

of 
 
SS

nh
 are governed by the Center Manifold Theorem [17]. 

The zero eigenvalue gives rise to a center manifold in phase 

space, and stability properties are resolved by studying the 

dynamics of system (4) restricted to this manifold in the 

neighborhood of
 
SS

nh
. 

Computing the center manifold requires that system (4) 
be converted to the following generalized ‘normal’ form for 

the case of one zero 
 

1
= 0( ) , and one negative 

 
2
< 0( )  

eigenvalue [18]: 

  

dx

dt

dy

dt

= 1
= 0 0

0
2
< 0

x(t)

y(t)
+

f (x(t), y(t), )

g(x(t), y(t), )

d

dt
= 0

        (5) 

where 
  

x, y,( ) = 0,0,0( )  is the nonhyperbolic equilibrium of 

(5), and  is a perturbation parameter treated as an  

additional dependent variable with no dynamics. Nonlinear 

functions 
  
f x(t), y(t),( )  and 

  
g x(t), y(t),( )  are restricted  

as follows: (1) 
  
f (0,0,0) = 0 = g(0,0,0);  and (2) 

  
Df (0,0,0) = 0 = Dg(0,0,0) , where D is the Jacobian operator.  

The normal form for system (4) is: 

  

w
2

•

s
2

•
=

   

1.781 0

0 0

w
2

s
2

+

0.452109s
2

2
1.02656c

m

1 s
2
+0.311589c

1

m

1.13003w
2

2
0.886238s

2
w

2
0.518379c

1

mw
2

f s
2

,w
2

,c
1

m( )
1 244444444 344444444

0.02011962s
2

2
0.0456814c

m

1 s
2
+0.0138656c

1

m +

0.0396664w
2

2 +0.0842781s
2
w

2
0.0230677c

1

mw
2

g s
2

,w
2

,c
1

m( )
1 2444444444 3444444444

 (6a) 

  
c

1

m

•

= 0            (6b) 

where 
  

w
2

•

=
dw

2

d
, 

  

s
2

•

=
ds

2

d
, and 

  
w

2
and s

2
are transformed 

impounded water and storage capacity variables, respectively. 

The derivation of normal form (6) is given in the Appendix. 

The center manifold associated with normal form (6)  

is represented in the neighborhood of equilibrium 

  
s

2
, w

2
,c

1

m( ) = 0,0,0( )  as: 

 

Fig. (4). Graph of one of the two eigenvalues associated with the upper and lower steady states for increasing levels of cm (Mathematica). 
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W

c (0) = s
2
,w

2
,c

1

m( ) w
2
= h

c
s

2
,c

1

m( ) ,hc
(0,0) = 0, Dh

c
(0,0) = 0{ }     (7) 

In words, the 
  

s
2
, w

2
,c

1

m( ) coordinates on 
  
W

c (0)  must sat-

isfy the center manifold equation: 

  
w

2
= h

c
s

2
,c

1

m( )             (8) 

Variable 
  
s

2
 serves as the dependent variable since the 

zero eigenvalue is found in the 
  
s

2

•

 equation (6a) [18]. The 

conditions 
  
h

c
(0,0) = 0 = Dh

c
(0,0)  ensure that the local rep-

resentation of the center manifold is tangent to the corre-

sponding generalized eigenspace associated with the zero 

eigenvalue at equilibrium [17].  

In addition, the coordinates on 
  
W

c (0)  must satisfy the 
time derivative of the center manifold equation:  

  

w
2

•

=
h

c

s
2

s
2

•

+
h

c

c
1

m
c

1

m

•

=
h

c

s
2

s
2

•

          (9) 

where 
  
c

1

m

•

= 0 by (6b). Substituting 
  
w

2

•

 and 
  
s

2

•

 from (6a), 

along with the center manifold equation (8), into (9) yields: 

   

1.78h
c

s
2
,c

1

m( )
w

2

1 24 34
+ f s

2
,h

c
s

2
,c

1

m( )
w

2

1 24 34
,c

1

m

dw
2

d

1 24444444 34444444

=
h

c

s
2

g s
2
,h

c
s

2
,c

1

m( )
w

2

1 24 34
,c

1

m

ds
2

d

1 2444 3444

  (10) 

or equivalently: 

  

N h
c

s
2
,c

1

m( )( )
h

c

s
2

g s
2
,h

c
s

2
,c

1

m( ) ,c1

m( )+1.78h
c

s
2
,c

1

m( ) f s
2
,h

c
s

2
,c

1

m( ) ,c1

m( ) = 0

      (11) 

where functions 
  
f s

2
, w

2
,c

1

m( ) and 
  
g s

2
, w

2
,c

1

m( ) are defined in 

(6a). Equation (11) is a partial differential equation that is 

solved for the center manifold equation, 
  
w

2
= h

c
s

2
,c

1

m( ) .  

An approximation theorem allows 
  
h

c
s

2
,c

1

m( )  to be computed 

to any desired degree of accuracy by solving (11) to the same 

degree of accuracy [18]. Consequently, we can pose the fol-

lowing power series expansion for 
  
h

c
s

2
,c

1

m( ) : 

  
w

2
= h

c
s

2
,c

1

m( ) = a
1
s

2

2 + a
2
s

2
c

1

m + a
3

c
1

m( )
2

+…       (12) 

where 
  
a

1
, 

  
a

2
, and 

  
a

3
 are unknown constants. Substituting 

(12) into (11), and retaining only terms of the same order as 
(12), yields: 

  

N s
2
,c

1

m( ) = 0 = 0.0138656a
2

c
1

m( )
2

+1.78086a
3

c
1

m( )
2

+1.02656c
1

m
s

2

+0.0277312a
1
c

1

m
s

2
+1.78086a

2
c

1

m
s

2
0.452109s

2

2 +1.78086a
1
s

2

2 + ...

  (13) 

We solve (13) for 
  
a

1
, 

  
a

2
, and 

  
a

3
 by equating coeffi-

cients: 

  

s
2

2
term: 0.452109+1.78086a

1
= 0 a

1
= 0.253871

c
1

m
s

2
 term:     1.02656+0.0277312a

1
+1.780869a

2
= 0

a
2
= 0.580394

c
1

m( )
2

term:    0.0138656a
2
+1.78086a

3
= 0 a

3
=0.00451889

 

Substituting these coefficients into (12) gives the numeri-
cal center manifold equation: 

  

w
2
= h s

2
,c

1

m( ) = 0.253871s
2

2
0.580394s

2
c

1

m +

0.00451889 c
1

m( )
2

+ ...

      (14) 

The dynamics of normalized system (6) reduced to the 

center manifold are obtained by substituting center manifold 

equation (14) into 
  
s

2

•

 in (6a): 

  
s

2

•

= 0.0201196s
2

2
0.0456814c

m

1
s

2
+0.0138656c

1

m
+...       (15) 

RESULTS 

The dynamics of (15) satisfy the general conditions for a 

saddle-node bifurcation in the neighborhood of equilib-

rium,
  

s
2
, w

2
,c

1

m( ) = (0,0,0) : 

   

s
2

•

0
s

2

{ , 0

c
1

m

{ = 0.0201196 0

s
2

2

{ 0.0456814 0

c
1

m

{ 0
s

2

{ +

0.0138656 0

c
1

m

{ = 0

     (16a) 

   

s
2

•

s
2

(0,0) = 2(0.0201196) 0
s
2

{ 0.0456814 0
c

1
m

{ = 0     (16b) 

   

s
2

•

c
1

m
(0,0) = 0.0456814 0

s
2

{ +0.0138656 0      (16c) 

  

s
2

•

s
2

2
(0,0) = 2(0.0201196) 0       (16d) 

where (16a,b) are the conditions defining a nonhyperbolic 
equilibrium [18].  

The bifurcation diagram plotting equilibria of (15), 
  
s

2

SS
, 

against the bifurcation parameter,
  
c

1

m
, is shown in Fig. (5). 

For
  
c

1

m
< 0  (indicating that the maximum-allowable im-

pounded-water consumption rate  c
m

is less than the bifurca-

tion rate 
 
c

nh

m
 equaling  48.3% of maximum reservoir storage 

capacity), there are two branches of storage capacity 

equilibria: 

  

s
2

SSu
= 0.0456814c

1

m
+ 24.8514

0.00117558c
1

m
+0.00208679c

1

m2
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s
2

SSl
= 0.0456814c

1

m
24.8514

0.00117558c
1

m
+0.00208679c

1

m2

 

Linear stability analysis shows that the upper branch,
  
s

2

SSu
 

(dashed line), is always unstable, while the lower 

branch,
  
s

2

SSl
, is stable for the baseline parameters. For 

  
c

1

m
> 0  

(indicating that  c
m

 is greater than the bifurcation rate, 

  
c

nh

m
= 0.483), (15) has no equilibria.  

These results demonstrate that reservoir dynamics 

abruptly change for the worse in this case study when the 

maximum allowable consumption rate exceeds the 48.3% 

threshold of maximum reservoir storage capacity for the 

baseline parameters. Both equilibria are destroyed—along 

with the potential for sustainable reservoir management—

because the volumes of impounded water and storage capac-

ity required to balance impounded water dynamics (4a) are 

insufficient to balance sedimentation dynamics (4b) (i.e., the 

wn nullcline lies below the sn nullcline for all storage capaci-

ties in Fig. 3(a)). Due to contractual obligations that are 

overly large in proportion to maximum storage capacity, the 

reservoir can not furnish the volume of impounded water 

providing the potential energy required for the HD pipeline 

to remove sediment at its inflow rate.  

Larger bifurcation thresholds,
 
c

nh

m
, permit sustainable res-

ervoir use over a broader range of maximum allowable con-

sumption rates of impounded water. Thresholds can be 

shown numerically to increase in response to larger maxi-

mum storage capacities (Fig. 6a), reduced sediment entrap-

ment rates (Fig. 6b), and reduced proportions of water re-

quired to transport a unit of sediment through the HD pipe-

line (Fig. 6c). The first two measures (Figs. 6a, b) reflect the 

conventional practice of prolonging the life of dams by con-

structing reservoirs with large storage capacities relative to 

the volume of incoming sediment [1]. The third measure 

(Fig. 6c) promotes sustainability by increasing the water-use 

efficiency of HD sediment transport.  

DISCUSSION AND CONCLUSION  

We asked two questions in the introduction. First, is the 
potential for sustainable reservoir management threatened by 
a threshold rate of impounded water consumption beyond 
which storage capacity is lost because sediment can no 
longer be transported through the HD pipeline at the rate that 
it enters the reservoir? Second, what are the dynamic proper-
ties of the reservoir in transition through such a threshold?  

The answers to these questions depend on how the reser-

voir is managed. We posed a set of general management 

rules that broadly apply to multi-purpose public projects. 

First, the reservoir manager dedicates a maximum allowable 

consumption rate 
 

C
m( )  of impounded water to satisfy con-

tractual obligations for multiple uses including hydropower 

production, irrigation, municipal water supplies, and so on. 

Second, the manager has the flexibility to adjust contractual 

obligations downward to provide impounded water required 

for restoration of lost storage capacity due to sedimentation. 

We accounted for this flexibility with a feedback rule that 

decreases impounded water allocated to meet contractual 

obligations as storage capacity is lost. As a result, more wa-

ter remains in the reservoir to provide the potential energy 

for the HD sediment-removal pipeline. We embedded these 

management rules into a reservoir sedimentation model, and 

drew baseline parameter values from a case study of HD use 

in the Tianjiawan reservoir, China. 

In answer to the first question, we found a bifurcation 

threshold for  C
m

. In terms of the scaled parameter,  c
m

, the 

bifurcation occurs when the maximum allowable consump-

tion rate equals 48.3% of maximum reservoir storage capac-

ity. Sustainable reservoir management is physically possible 

when the maximum allowable consumption rate is less than 

the 48.3% threshold. Two equilibria provide the necessary 

‘impounded-water balance’ (the annual refill rate is balanced 

by the sum of the rates at which impounded water is con-

sumed by contractual obligations, sediment removal re-

quirements, and evaporation), and ‘sediment balance’ (reser-

voir storage capacity is sustained because sufficient im-

 

Fig. (5). Bifurcation diagram plotting equilibria of (17) against cm
1
 (Mathematica). 
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pounded water is allocated to provide the potential energy 

required for the HD pipeline to remove sediment at the rate it 

enters the reservoir). One of the equilibria is a saddle point 

whose convergent separatrices divide initial storage capaci-

ties into two basins of attraction. Relatively smaller initial 

capacities to the left of this boundary are drawn toward res-

ervoir ‘death’ (i.e., a complete loss of storage capacity to 

sedimentation). Alternatively, relatively larger initial capaci-

ties to the right of this boundary are drawn toward a stable-

node equilibrium and sustained reservoir management.  

In answer to the second question, we found that the po-
tential for sustainable reservoir management is abruptly fore-
closed when the maximum allowable consumption rate ex-
ceeds the 48.3% threshold of maximum reservoir storage 
capacity. Volumes of impounded water and storage capacity 
balancing impounded-water dynamics are less than those 
required to balance sediment inflow and transport rates. Con-
tractual obligations are too large in proportion to maximum 
storage capacity for the reservoir to furnish the potential en-
ergy required for the HD pipeline to remove sediment at its 
inflow rate. The percentage threshold can be expanded—
along with the potential for sustainable reservoir manage-
ment using the HD technology—by constructing larger res-
ervoirs relative to the volume of incoming sediment and in-
creasing the water-use efficiency of the HD pipeline. 

APPENDIX 

The first step in converting (4) to the generalized normal 

form (5) is to transform (4) to new variables that shift the 

nonhyperbolic equilibrium,
 
S

nh

SS
, and the scaled consumption 

rate generating it, 
 
c

nh

SS
, to the origin: 

  
s

1
= s s

nh

SS
, 

  
w

1
= w w

nh

SS
, and 

  
c

1

m
= c

m
c

nh

m
: 

  

w
1

•

= s
1
+ s

nh

SS( ) w
1
+w

SS( )
c

1

m + c
nh

m( ) s
1
+ s

nh

SS( ) w
1
+w

nh

SS( ) / w
1
+w

nh

SS( )+ 1
1 s

1
+ s

nh

SS( ){ }{ }
3 2

w
1
+w
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SS( ) / w
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+w
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SS( )+ 3
+

6
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1
+ s
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SS( ){ } 4
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1
+w
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 (A.1) 

  

s
1

•

=
2

w
1
+w

nh

SS( ) / w
1
+w

nh

SS( )+ 3
+

6
s

1
+ s

nh

SS( ){ } 5
       (A.2) 

  

dc
1

m

d
= c

1

m

•

= 0         (A.3) 

where 
  

s
nh

SS
, w

nh

SS
,c

nh

m( ) = 0.586,0.258,0.483( ) .  

To compel the nonlinear portions of (A.1) and (A.2) to 

satisfy the normal form restrictions for (5), i.e., 

  
Df (0,0,0) = 0 = Dg(0,0,0) ], we approximate (A.1) and 

(A.2) with a multivariate Taylor Series expansion: 

   

w
1

•

s
1

•
=

w
1

•

s
1

•

w
1
=0,s

1
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+
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•
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1
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Jacobian Matrix

1 24444 34444

w
1

s
1

+
j w

1
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1
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1
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    (A.4) 

where: 
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    (A.6) 

Terms in (A.1) and (A.2), including the perturbation pa-

rameter, 
  
c

1

m
, are viewed as nonlinear and included in 

 

Fig. (6). Plots of c
m
nh against (a) increasing maximum storage capacity S

m
; (b) increasing sediment entrapment rate, a8; and (c) increasing 

proportion of water needed to transport one unit of sediment, 3. 
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j w

1
,s

1
;c

1

m( )  and 
  
k w

1
,s

1
;c

1

m( )  in (A.5) and (A.6) [18]. Using 

parameter values in Table 1, and the definitions of dimen-

sionless parameters in Table 2, the numerical expansion of 

(A.4) is: 
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d
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=
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1

m

•

= 0          (A.7) 

The last step in converting (4) to normal form (5) is to in-

troduce new variables 
  

s
2
, w

2( )  that diagonalize the Jacobian 

matrix in (A.4): 

   

w
1

s
1

=
-0.99917 -0.402972

0.0407266 -0.915212

P

1 24444 34444

w
2

s
2

, where 

the columns of P are the eigenvectors of the Jacobian matrix. 

The resulting normal form is: 

   

w
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•

s
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•
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    (A.8) 

  
c

1

m

•

= 0          (A.9) 

where the eigenvalues of the Jacobian matrix (-1.781, 0) are 

along the diagonal of the  2 2  matrix in (A.8).  
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