
 The Open Hydrology Journal, 2010, 4, 227-235 227 

 

 1874-3781/10 2010 Bentham Open 

Open Access 

Testing Computational Algorithms for Unsaturated Flow 

F.T. Tracy* 

Department of Defense (DoD) Supercomputing Resource Center (DSRC), Information Technology Laboratory (ITL), 

Engineer Research and Development Center (ERDC), Vicksburg, MS, USA 

Abstract:  The purpose of this work is to test different computational algorithms for unsaturated flow for accuracy and 

robustness by comparing computed results in a finite element program with analytical solutions. Because real-world 

problems are complex, testing codes for accuracy is often difficult. This is particularly true for flow in the vadose zone 

where Richards' equation is highly nonlinear. Recently, however, Tracy (Tracy WRRJ 2006) [1] (Tracy JHYD 2007) [2] 

has derived analytical solutions for a box-shaped flow region that is initially dry until water is applied to the top of the 

region. Two-dimensional and three-dimensional versions of these solutions for both steady-state and transient flow are 

available to be used in the testing process. Numerical precision and nonlinear solver robustness were investigated for 

varying degrees of nonlinearity by varying the Gardner  parameter. As  was increased, three ways of modeling 

relative hydraulic conductivity inside individual finite elements and two versions of the nonlinear solver were tested using 

three different ways to measure the error. The results of these tests are given in this paper.  

Keywords: Unsaturated flow, finite element method, nonlinear system of equations, Newton and Picard linearizations,  
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1. INTRODUCTION 

 Because real-world problems are complex, testing 
unsaturated groundwater simulation finite element (FE) 
codes for accuracy is often difficult. This is particularly true 
when part or all of the flow is in the vadose zone where 
Richards' equation is highly nonlinear. Recently, analytical 
solutions have been derived (Tracy WRRJ 2006) [1] (Tracy 
JHYD 2007) [2] for a box-shaped flow region that is initially 
dry until water is applied to the top of the region. Two-
dimensional (2-D) and three-dimensional versions of these 
solutions for both steady-state and transient flow are 
available, and one of the 2-D solutions was used in this study 
as a test problem. Another excellent feature of this test 
problem is that its nonlinearity can be reduced or increased 
by changing the Gardner parameter, . As shown in more 
detail in Section 2 describing Richards' equation, this 
conservation of water partial differential equation (PDE) for 
total head has coefficients in it (such as relative hydraulic 
conductivity) that are functions of pressure head, too, thus 
creating a nonlinear PDE. During saturated flow, relative 
hydraulic conductivity is equal to one, and the steady-state 
flow equation in a homogeneous, isotropic, incompressible 
medium becomes the linear partial differential equation of 
Laplace's equation. 

Another challenge in the FE program is that the nonlinear 
solver has trouble converging when the nonlinearity of the 
problem is significant. The ideal algorithm is one that is 
robust and accurate. The goal of this study is to determine 
the impact on accuracy and robustness in an unsaturated FE  
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flow simulation code when increasing the nonlinearity of the 
test problem. It is hoped that from this research, clear 
recommendations can be provided for real-world FE 
simulations. Specifically, as  is increased, the following 
were considered for the transient problem: (1) three ways to 
model relative hydraulic conductivity inside individual finite 
elements, and (2) two versions of the nonlinear solver. Three 
error metrics were used for each test. A smaller study was 
done for the steady-state case. 

2. RICHARDS' EQUATION 

The general version of Richards' equation for unsaturated 
flow that is used in this work has the following form: 

krKs( ) =
t

             (1) 

with the definition, 

= h + z                 (2) 

where kr  is the relative hydraulic conductivity, Ks  is the 

saturated hydraulic conductivity tensor,  is the total head, 

 is the moisture content, t  is the time, h  is the pressure 

head, and z  is the vertical co-ordinate. The form used in the 

FE program is 

ks kr( ) =
d

dh t
= wc t

          (3) 

where wc  is the water capacity, and ks  is the scalar 

isotropic, homogeneous saturated hydraulic conductivity. 

The version or Richards' equation that is the foundation for 

deriving the analytical solution used for the test problem is 

kr h( ) +
kr
z
=
1

ks t
           (4) 
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2.1. Relative Hydraulic Conductivity 

Relative hydraulic conductivity is modeled by the quasi-
linear assumption (Gardner SS 1958) [3], 

kr = e
h

                (5) 

This can be compared with the more well-known van 
Genuchten equation (van Genuchten SSAJ 1980) [4], 

kr =
1 h( ) 1

1+ h( )
μ{ }

2

1+ h( )
μ /2         (6) 

with 

μ =1
1

                (7) 

where , , and μ  are parameters. Fig. (1) shows a sample 

comparison of the two methods with = 0.17 cm 1
, = 2 , 

μ =1/ 2 , and = 0.45 cm 1 . The same characteristic steep 

descent is achieved in either equation. However, it must be 

cautioned that matching Gardner and van Genuchten curves 

is not always successful (Rucker, Warrick, and Ferré AWRJ 

2005) [5]. The justification for using the Gardner approxi- 

mation for relative hydraulic conductivity instead of the van 

Genuchten curve is not how well these curves can be 

matched; rather, it is that the Gardner approximation is 

needed to derive the analytical solution used as the test 

problem. Fig. (2) shows a plot of (5) for three different 

values of . 

 

Fig. (1). Plot of relative hydraulic conductivity versus pressure head 

for the exponential and van Genuchten equations for = 0.17 cm 1
, 

μ =1/ 2 , = 2 , and = 0.45 cm 1
. 

 

Fig. (2). Plot of relative hydraulic conductivity versus pressure head 

for  = 0.05, 0.10, and 0.15 cm 1
. 

2.2. Moisture Content 

Moisture content, , is computed from a linear variation 
between  and kr  (Irmay ETAGU 1954) [6]. What is used 
is 

= s d( )kr + d              (8) 

where s  is the saturated moisture content, and d  is the 

moisture content when the soil is dry. 

3.  FINITE ELEMENT FORMULATION 

The FE procedure discussed here starts with (3) and uses 
a standard continuous Galerkin fully implicit approach (Istok 
AGU 1989) [7], (Cook John Wiley & Sons 1981) [9] using 
the linear, triangular isoparametric element to produce for a 
given finite element, 

Aekse kr( )
e

n+1
BT B e

n+1 +
Ae
3 t

wc1 0 0

0 wc2 0

0 0 wc3

e
n+1

e
n( ) =Qe

 (9) 

where Ae  is the area of an element; kse  is the saturated 

hydraulic conductivity of an element; t  is the time-step 

size; kr( )
e

n+1
 is the equivalent constant relative hydraulic 

conductivity of an element (see Section 3.1) at time-step, 

n+1, of an element; B  is a 2 3  matrix that depends only 

on the geometry of an element; e
n+1

 is the vector of total 

head for the three nodes of an element at time-step, n+1; wc1  

is water capacity of the first node of an element; wc2  is 

water capacity of the second node of an element; wc3  is 

water capacity of the third node of an element; and Qe  is a 

vector of known flow-type terms for the three nodes of an 

element. kr( )
e
 is given by 
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kr( )
e
=
1

Ae Ae

kr h(x, z)( )dA          (10) 

B  comes from the gradient of the transpose of the vector 

of local interpolation functions, L . , x , and z  are 

interpolated by 

= LT e
n+1

 

x = LT Xe  

z = LT Ze               (11) 

i=1

3

(L)i =1  

inside individual finite elements. Here, Xe ,Ze( )  are vectors 

of the x, z( )  coordinates of the three nodes of a triangular 

element, and (L)i  is the ith  interpolation function. This 

notation for (L)i  as used in (Kelley SIAM 2003) [8] for the 

ith  component of a vector will be used throughout this paper. 

From common FE derivation, B  is 

B = LT               (12) 

Using (11), B  can then be computed. It is important to note 

that the time term is treated as the "lumped mass" scheme. 

3.1.  Relative Hydraulic Conductivity Models 

Discussion has risen at times about how to numerically 
handle the relative hydraulic conductivity in finite element 
programs. Three ways of modeling relative hydraulic 
conductivity inside a 2-D triangular finite element were 
considered, and they are as follows: 

1. Constant kr  in the element using a simple average of 
pressure head of the nodes of an element. 

he =
1

3 j=1

3

hj              (13) 

kr( )
e
= kr he( )             (14) 

2. Linearly varying kr  over the element. This is 
equivalent to 

kr( )
e
=
1

3 j=1

3

kr hj( )            (15) 

3. Numerically integrating kr  over the element. From the 
definition, 

ĥ1

ĥ2

ĥ3

=
1

6

4 1 1
1 4 1
1 1 4

h1
h2
h3

       (16) 

this case is equivalent to 

kr( )
e
=
1

3 j=1

3

kr ĥj( )            (17) 

4.  NONLINEAR SOLVER 

The FE program uses either a full exact Newton 
nonlinear iteration (Kelley SIAM 2003) [8] or a Picard 
nonlinear iteration (Putti and Paniconi CMWR 1992) [10] 
applied to (9) at any given nonlinear iteration. To test the 
robustness of the nonlinear solution, various numbers of 
Picard iterations were sometimes used before the full 
Newton solver was turned on. In all cases, a bisection line 
search was used at each nonlinear iteration. Nonlinear 
convergence was achieved when the maximum change in 
total head at any node was less in magnitude than 10 5

 when 
comparing the current nonlinear iteration to the previous one. 

5.  TEST PROBLEM 

The test problem consists of applying water to the top of 
a vertical 2-D cross-section of soil with dimensions, a L , 
that is initially dry (see Fig. 3). 

 

Fig. (3). Plot of the test problem showing a vertical cross-section of 

soil with dimensions, a L , and water being applied at the top. 

5.1.  Initial and Boundary Conditions 

The initial condition at time, t = 0 , for 0 x a,0 z L  is 

h(x, z, 0) = hd              (18) 

where hd  is the pressure head when the soil is dry. Starting 

with the definition, 

d = e
hd               (19) 

the boundary conditions for t > 0  are 

h(0, z, t) = h(a, z, t) = h(x,0, t) = hd        (20) 

h(x,L, t) =
1
ln d + 1 d( )sin

x

a
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where  is a parameter such that the larger it is, the more 

nonlinear the problem is. Fig. (4) shows a plot of (20) at 

z = L . It is important to note that as  is increased, the 

absolute values of the respective slopes near x = 0  and 

x = L  become steeper. This adds further stress in the ability 

of computer models to be able to solve this test problem. 

 

 

Fig. (4). Plot of the pressure head boundary condition on the top of 

the soil sample for four values of cm 1( ) . 

6.  RESULTS AND ANALYSIS 

Results for the test problem were obtained using the FE 

program and then compared with the analytical solution 

(Tracy WRRJ 2006) [1]. The following data were used: 

a = L  = 25 cm with grid = 101  101, a = L  = 50 cm with 

grid = 201  201, and a = L  = 75 cm with grid = 301  

301; ks  = 0.1 cm/day; d  = 0.15; s  = 0.45; constant grid 

spacing = x  = z  = 0.25 cm; time-step size = 0.1, 0.01, 

and 0.001 day;  = 0.05, 0.10, 0.15, and 0.20 cm 1
; and a 

time period of 0.5 and 2.0 day. Each gtid square is divided 

into two triangular finite elements in this work. 

Absolute or actual error is used in the reporting of results 
in this work as compared to relative error. Given a particular 
computer run, the error at each node is 

E( )i = ( )i ( )i , 1 i N          (21) 

where E  is the vector of error at the nodes;  is the vector 

of total head at the nodes computed by the FE program,  

is the vector of total head at the nodes computed from the 

analytical solution, and N  is the total number of nodes. 

Define w  as the E( )i  with the largest magnitude or "worst" 

error among all the nodes. It is important to note that the sign 

of this worst error is kept. The bias ( b ) and root-mean-

squared error ERMS( )  over all the nodes of the grid are given 

by 

b =
1

N i=1

N

E( )i             (22) 

ERMS =
1

N i=1

N

E( )i
2

           (23) 

6.1.  Accuracy of Computations 

Fig. 5(a) shows a plot of the analytical solution of total 

head for the upper, right-hand corner of the flow region for 

= 0.2 cm 1 , t  = 0.001 day, and total time = 0.5 day, and 

Fig. 5(b) - 5(d) show contour plots of E  for the three ways 

of modeling kr . Figs. (6-17) give plots of worst error, bias 

error, and RMS error for different values of , domain size, 

time duration, and handling of kr  options. Observations are 

as follows: 

1.  The plots in Fig. (5) show that the constant kr  model 
performed the best among the three choices in the middle of 
the domain with numerically integrated kr  coming in 
second, and linear kr  coming in last. This is counter-
intuitive. A full explanation requires further research, but it 
is somewhat equivalent to the research that has been done 
with consistent versus "lumped mass" element matrices for 
the time term. Sometimes the lumped mass approach (similar 
to a finite volume approach) does better than the consistent 
mass formulation, although it is less accurate in the element 
matrix formulation sense. This appears to also sometimes be 
true in some sense for the evaluation of the stiffness matrix.  

2.  The corner effects near the top of the flow region as 
shown in Fig. (5) are worst in the constant kr  case and best 
in the numerically integrated kr  case. These corner effects 
are the result of the steep slope at the corners of the applied 
boundary condition. Here, it makes perfect sense that the 
numerically integrated case would do best. This test problem 
thus becomes an excellent example of where adaptive mesh 
refinement could be effectively applied, and thus a good 
option for further research.  

3.  When looking at the data in Figs. (6-17), linearly 
varying kr  often does best. Therefore, no one method 
consistently beats the other. However, the numerically 
integrated option is recommended more as the nonlinearity 
increases.  

4.  As the size of the mesh became bigger, the errors 
became smaller.  

5.  As the time period grew longer, the errors became 
smaller.  

6.  As the nonlinearity increases, the errors increase.  

7.  As the nonlinearity increases, the t  required to get 
the same accuracy as a less nonlinear problem decreases.  

8.  Sometimes the errors are positive, and sometimes they 
are negative. This means that the speed of the moving front 
of water is not matched exactly by the numerics, and it is 
sometimes slower and sometimes faster than the actual 
speed.  

6.2. Robustness of Nonlinear Solver 

Both the Newton and Picard nonlinear solvers and 

combinations of the two were tried on the test problem, and 

Table 1 gives the results. What is given is the nonlinear 

solver iteration count for various values of  and t  for the  
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Table 1. Nonlinear Solver Iteration Count for Various Values of  and t for the 201  201 Grid for the First Nonlinear Iteration of 

the First Time-Step for The Three Relative Hydraulic Conductivity Models for Four Options of the Nonlinear Solver 

Nonlinear Solver 

Type 
t  Constant kr  Linear kr  

Numerically  

Integrated kr  

Newton only 0.1 0.05 30 26 14 

10 Picard + Newton 0.1 0.05 17 18 14 

Picard only 0.1 0.05 14 14 14 

Newton only 0.1 0.2 >100 Blew up 27 

10 Picard + Newton 0.1 0.2 Blew up 33 27 

20 Picard + Newton 0.1 0.2 38 36 27 

Picard only 0.1 0.2 32 36 27 

Newton only 0.001 0.2 >100 53 20 

10 Picard + Newton 0.001 0.2 71 56 20 

20 Picard + Newton 0.001 0.2 19 54 20 

Picard only 0.001 0.2 19 46 20 

 

 

Fig. (5). Plot of the transient analytical solution and error (E) in total head (cm) for the three ways of modeling kr for the upper, right-hand 

corner of the flow region for  = 0:2 cm
-1

, t = 0.001 day, and total time = 0.5 day. 

 

201  201 grid for the first nonlinear iteration of the first 

time-step for the three relative hydraulic conductivity models 

for the four options of only Newton iterations, only Picard 

iterations, 10 Picard iterations with the remaining nonlinear 

iterations being the Newton type, and 20 Picard iterations 

with the remaining nonlinear iterations being the Newton 

type. For  = 0.05 cm
-1

, all nonlinear solver options worked, 

and the Newton only option had the fewest iterations. 
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However, as  was increased to 0.2 cm 1
, the Newton only 

option became increasingly unstable until it did not work at 

all. So from the standpoint of robustness of the nonlinear 

solver, the 20 Picard plus Newton option is the safest choice 

for the test problem. Other problems such as modeling real-

world pump-and-treat remediation systems must be tested 

before knowing how universal this result is. This is another 

option for further research. 

7. STEADY-STATE SOLUTION 

A steady-state solution can be achieved with either a 
pseudo-transient time-stepping technique to bring the 
solution to steady-state by gradually increasing the time-step 
or by eliminating the time-dependent term up front and 
solving the remaining steady-state equation. What was done 
in this study was to use the latter approach, and only the 10 
Picard plus Newton nonlinear solver, linear kr  model, 201 

 201 grid size, and the w  metric were used. Fig. 18(c) 

 

Fig. (6). Plot of worst error (w) of total head (cm) for t = 0.1, 

0.01, and 0.001 day; L =  = 25 cm; and  = 0.05, 0.10, 0.15, and 

0.2 cm
-1

 after a time period of 0.5 day for the three relative hydrau-

lic conductivity models of constant (C), linear (L), and numerically 

integrated (I). 

 

Fig. (7). Plot of worst error (w) of total head (cm) for t = 0.1, 

0.01, and 0.001 day; L =  = 50 cm; and  = 0.05, 0.10, 0.15, and 

0.2 cm
-1

 after a time period of 0.5 day for the three relative hydrau-

lic conductivity models of constant (C), linear (L), and numerically 

integrated (I). 

 

Fig. (8). Plot of worst error (w) of total head (cm) for t = 0.1, 

0.01, and 0.001 day; L =  = 75 cm; and  = 0.05, 0.10, 0.15, and 

0.2 cm
-1

 after a time period of 0.5 day for the three relative hydrau-

lic conductivity models of constant (C), linear (L), and numerically 

integrated (I). 

 

Fig. (9). Plot of worst error (w) of total head (cm) for t = 0.1, 

0.01, and 0.001 day; L =  = 50 cm; and  = 0.05, 0.10, 0.15, and 

0.2 cm
-1

 after a time period of 2.0 day for the three relative hydrau-

lic conductivity models of constant (C), linear (L), and numerically 

integrated (I). 
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shows the error (E) plot for the steady-state solution at 
= 0.2 cm 1 , and Fig. 18(d) shows a zoom of this plot near 

the bottom of the grid. It is amazing how the error has been 
shoved so extensively to the bottom of the mesh. This can be 
explained by observing the total head plot in Fig. 18(a) and 
zoom of the total head plot in Fig. 18(b). Although the total 
head ranges from -50 cm to 50 cm, the  = 0 contour line 
occurs at less than 10 cm from the bottom at x  = 25 cm. 
Thus, the analytical solution drops very sharply in this 
region, creating a need to refine the grid even more in this 

area. Table 2 shows "worst" ( w ) error and position where it 
occurred for different values of . As  increases, the 
errors increase, and the point where they occur is steadily 
moved toward the bottom. 

8. SUMMARY AND CONCLUSIONS 

A summary of results of this study are as follows: 

1.  The simple average relative hydraulic conductivity 
model inside each finite element performed better than 
expected.  

 

Fig. (12). Plot of bias error (b) of total head (cm) for t = 0.1, 0.01, 

and 0.001 day; L =  = 75 cm; and  = 0.05, 0.10, 0.15, and 0.2 

cm
-1

 after a time period of 0.5 day for the three relative hydraulic 

conductivity models of constant (C), linear (L), and numerically 

integrated (I). 

 

Fig. (13). Plot of bias error (b) of total head (cm) for t = 0.1, 0.01, 

and 0.001 day; L =  = 50 cm; and  = 0.05, 0.10, 0.15, and 0.2 

cm
-1

 after a time period of 2.0 day for the three relative hydraulic 

conductivity models of constant (C), linear (L), and numerically 
integrated (I). 

 

Fig. (10). Plot of bias error (b) of total head (cm) for t = 0.1, 0.01, 

and 0.001 day; L =  = 25 cm; and  = 0.05, 0.10, 0.15, and 0.2 

cm
-1

 after a time period of 0.5 day for the three relative hydraulic 

conductivity models of constant (C), linear (L), and numerically 

integrated (I). 

 

Fig. (11). Plot of bias error (b) of total head (cm) for t = 0.1, 0.01, 

and 0.001 day; L =  = 50 cm; and  = 0.05, 0.10, 0.15, and 0.2 

cm
-1

 after a time period of 0.5 day for the three relative hydraulic 

conductivity models of constant (C), linear (L), and numerically 
integrated (I). 
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2.  The numerically integrated relative hydraulic 
conductivity model did best as the problem became more 
nonlinear, especially with difficult boundary conditions at 
the corners.  

3.  As  gets larger and the problem becomes more 
nonlinear, the Newton nonlinear solver struggled to 
converge.  

4.  The Picard / Newton solver provided the most 
stability to the nonlinear solver.  

 

Fig. (14). Plot of RMS error of total head (cm) for t = 0.1, 0.01, 

and 0.001 day; L =  = 25 cm; and  = 0.05, 0.10, 0.15, and 0.2 

cm
-1

 after a time period of 0.5 day for the three relative hydraulic 

conductivity models of constant (C), linear (L), and numerically 

integrated (I). 

 

Fig. (15). Plot of RMS error of total head (cm) for t = 0.1, 0.01, 

and 0.001 day; L =  = 50 cm; and  = 0.05, 0.10, 0.15, and 0.2 

cm
-1

 after a time period of 0.5 day for the three relative hydraulic 

conductivity models of constant (C), linear (L), and numerically 
integrated (I). 

 

Fig. (16). Plot of RMS error of total head (cm) for t = 0.1, 0.01, 

and 0.001 day; L =  = 75 cm; and  = 0.05, 0.10, 0.15, and 0.2 

cm
-1

 after a time period of 0.5 day for the three relative hydraulic 

conductivity models of constant (C), linear (L), and numerically 

integrated (I). 

 

Fig. (17). Plot of RMS error of total head (cm) for t = 0.1, 0.01, 

and 0.001 day; L =  = 50 cm; and  = 0.05, 0.10, 0.15, and 0.2 

cm
-1

 after a time period of 2.0 day for the three relative hydraulic 

conductivity models of constant (C), linear (L), and numerically 

integrated (I). 

Table 2. Worst Error and Position for The Steady-State 

Problem for Various Values of  

 xworst  zworst  Worst Error 

0.05 1.25 46.00 -0.006 

0.10 0.25 47.75 -0.564 

0.15 24.75 0.25 -3.036 

0.20 24.50 0.25 -4.824 
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5.  Errors are concentrated at the corners for the transient 
case and the bottom of the mesh for the steady-state case, 
thus showing a compelling need for adaptive mesh 
refinement.  

6.  The more nonlinear the problem is, the smaller the 
time-step must be.  
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Fig. (18). Plot of the steady-state analytical solution and error in total head (cm) for the right-hand side of the flow region for  = 0.2 cm
-1

. 

 


