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Abstract: The objective of this work is to derive the soil water retention from the soil structure without curve-fitting and 

only using the physical parameters found irrespective of an experimental retention curve. Such physical modeling is more 

preferable for both data analysis and prediction. Two key points underlie the work: (i) the soil suction at drying coincides 

with that of the soil intra-aggregate matrix and contributive clay; and (ii) both the soil suction and volume shrinkage at 

drying depend on the same soil water content. In addition the two following results are used: (i) the available two-factor 

(capillarity and shrinkage) model of clay suction enables one to connect a clay suction and clay water content using the 

clay matrix structure; and (ii) the recent reference shrinkage curve model based on the concepts of intra-aggregate soil 

structure permits one to connect the soil water content at shrinkage with the water content of the contributive clay. With 

that the available two-factor model was essentially modified and, in particular, the effect of adsorbed water film was taken 

into account. The developed model includes the following input parameters: the solid density, relative volume of contrib-

utive-clay solids, relative volume of contributive clay in the oven-dried state, soil clay content, aggregate/intra-aggregate 

mass ratio, and specific volume of lacunar pores in the aggregates at maximum swelling. The validation of the model is 

based on available data of water retention and the above input parameters for six soils. A promising agreement between 

the predicted and observed water retention curves was found. 
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1. INTRODUCTION 

Water retention is a key soil property. Methods of its 
measurement are known (e.g., [1,2]). However, its physical 
prediction, i.e., from a finite number of physical soil parame-
ters that are obtained irrespective of soil water retention, is 
lacking. Different available models relating to swelling and 
non-swelling soils and originating from different empirical 
or physical considerations (e.g., [3-15]), are eventually re-
duced to curve-fitting to relevant experimental soil water 
retention data. Tuller et al. [7] and Or and Tuller [8] use pa-
rameters of a pore-size distribution in the fitting. Other re-
searchers utilize parameters of some approximation of a re-
tention curve. At least a part of the parameters in each of the 
models has no clear physical meaning and can only be found 
by fitting. The fitting models can be useful for engineering 
applications. However, in the best case they are limited from 
the viewpoint of advancement in understanding and knowl-
edge of the links between inter- and intra-aggregate soil 
structure and soil water retention as a function of the struc-
ture. Therefore, nearly total domination of curve-fitting 
(judged by the available publications) as applied to the soil 
water retention seems to be unreasonable, and water reten-
tion modeling using only physical parameters is obviously 
more preferable for both data analysis and prediction. Re-
cently the possibility of the physical prediction of another 
key soil characteristic, the shrinkage curve, was shown [16-
21]. These works permit one to explain soil shrinkage and  
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multiple cracking from inter- and intra-aggregate soil struc-
ture without fitting. Results of these works show that the 
physical (non-fitting) prediction of soil characteristics is not 
impossible, but is merely a difficult problem. 

The objective of this work is to suggest some physical al-
ternative to curve-fitting domination as applied to the con-
sideration of soil water retention (drying branch) in a general 
case, i.e., for swell-shrink aggregated soils. This relies on the 
concepts and results of recent works devoted to pure clay 
water retention [22] (in the following referred to as the basic 
model) and soil shrinkage [16,18,19]. The physical model to 
be presented includes three parts which we consider in detail: 
(i) how, in a general case, a soil water retention curve can be 
connected with the water retention curves of a contributive 
clay and intra-aggregate matrix (Section 2); (ii) the com-
pletely new version of the two-factor model of clay suction 
(that enables one to find the suction head of the soil includ-
ing the clay as indicated in Section 2) using the previous 
version [22] (the basic model) as a background for compari-
son (Section 3); and (iii) the relevant aspects of the soil ref-
erence shrinkage curve model [16,18] that enable one to find 
the water content of the soil corresponding to its suction 
head (Section 4). Then, using the model we analyze the 
available data in order to substantiate it (Sections 5 and 6). 
Notation is summarized at the end of the paper. 

2. GENERAL INTERRELATIONS BETWEEN THE 

WATER RETENTION CURVES OF CONTRIBUTIVE 

CLAY, INTRA-AGGREGATE MATRIX, AND SOIL 

AS A WHOLE 

Recently introduced concepts relating to the intra-
aggregate soil structure [16,18,19] allow one to reduce find-
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ing h for an aggregated shrink-swell soil to finding h for a 
contributive clay. The objective of this section is to show the 
physical links (in terms of water retention) between soil, 
contributive clay, and intra-aggregate matrix. These links 
flow out of the soil structure. 

Soil volume includes aggregates that have the intra-
aggregate structure (Fig. (1)) and inter-aggregate (structural) 
pores. Following [16,18] we accept that inter-aggregate 
pores retain their size at shrinkage, and neglect the develop-
ment of possible inter-aggregate cracks (that implies the use 
of sufficiently small soil samples). A possible small effect of 
the inter-aggregate capillary cracks on soil suction can be 
considered separately (see e.g., [23]). The intra-aggregate 
structure (Fig. (1)) includes: (1) a deformable, but non-
shrinking surface layer of aggregates (or interface layer), and 
(2) an intra-aggregate matrix. These two parts of aggregates 
have similar specific volumes and gravimetric water contents 
in the water-saturated state of aggregates (i.e., at maximum 
swelling). Both the aggregate surface layer and intra-
aggregate matrix consist of a clay that surrounds silt and 
sand grains and, depending on soil clay content, possible so-
called lacunar pores. The latter usually essentially exceed the 
clay matrix pores in size [24]. 

We start from the totally water saturated state of the soil 
at zero suction. In general, the maximum soil water content 
Wm (Fig. (2)) consists of two contributions as: 

Wm=Wh+ Wm                                                                       (1) 

where Wh is the maximum water content of aggregates that 
corresponds to the maximum swelling of the soil, aggregates, 
and intra-aggregate clay [16,18]; Wm is the maximum water 
content of capillary inter-aggregate and (connected) lacunar 

pores (if there are any). That is, at the loss of water in the 
range Wh<W<Wm (Fig. (2)), aggregates retain the water con-
tent Wh and their size. Thus, the capillary suction "tail" of the 
soil at drying in the Wh<W<Wm range (Fig. (2)) coincides 
with the capillary suction of the system of non-shrinking 
aggregates in the maximum swelling state. For clay soils the 
possible suction "tail" with h(Wh)=ho (Fig. (2)) (or its ab-
sence) corresponds to a horizontal section of the shrinkage 
curve (or its absence) at water contents higher than the 
maximum swelling point Wh (see [16,18]). On many avail-
able experimental water retention curves, especially for soils 
with sufficiently high clay content, there is no suction "tail" 
(cf. Section 6) because of the small value of W=Wm-
Wh<<Wh, (Fig. (2)), the small value of ho<<(h-ho), or inaccu-
rate measurement. Contrary to that, for soils with sufficiently 
low clay content and matrix close to rigid Wh<<Wm (Fig. 
(2)), and the total water retention curve is degenerated to the 
"tail" only. It follows from the above that the "tail" should be 
considered separately in cases of special interest. Hereafter 
we are only interested in clay soil suction in the range W<Wh 
(Fig. (2)) where the soil water content is reduced to that of 
aggregates, and the soil suction h (we consider ho=0) is only 
determined by the intra-aggregate structure (Fig. (1)). 

Below we show how the intra-aggregate structure (Fig. 

(1)) connects water retention of the soil as a whole, h(W) at 

W<Wh (Fig. (2)) and water retention of the clay contributing 

to the soil. Curve 1 in Fig. (3) shows a clay water retention 

curve, )(wh  where w  is the water content of the clay, 
h

w  

is the maximum swelling and zero suction point of the clay. 

The suction of the intra-aggregate matrix including the clay 

(Fig. (1); aggregates without surface layer) coincides with 

 

Fig. (1). Illustrative scheme of the internal structure of aggregates at a clay content: (a) c>c*, without lacunar pores; and (b) c<c*, with lacu-

nar pores and possible non-totally contacting silt-sand grains where c* is the critical soil clay content (the modified Fig. (3) from [16]). 
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that of the clay (at a given w ), and water content of the in-

tra-aggregate matrix, w can be written as: 

w=c w                                                                                   (2) 

where c is the clay content of the soil (by weight). Curve 2 in 

Fig. (3) shows the corresponding water retention curve of an 

intra-aggregate matrix, h(w) and corresponding axis of water 

content w with changed scale compared with the w  axis. 

The maximum swelling point, wh on the w axis (Fig. (3)) 

corresponds to the 
h

w  point on the w axis (about points 
s

w  

and ws, see below). To find the water retention of the soil, it 

is sufficient to note that the suction in the soil, intra-

aggregate matrix, and aggregate surface layer (Fig. (1)) is 

similar (at a given w), and according to [16,18] the soil water 

content W is a sum of contributions of the aggregate surface 

layer,  and intra-aggregate matrix, w' as: 

 

Fig. (2). Illustrative graph of the soil water retention curve including a "tail" in the range W>Wh stipulated by the capillary inter-aggregate 

porosity. 

 

Fig. (3). Illustrative graph showing the single-valued interrelations between water retention curves (drying branches) of clay ( )(wh  - curve 

1), intra-aggregate matrix (h(w) - curve 2), and aggregated soil (h(W) - curves 3 and 4; the latter correspond to two variants of the interface 

layer contribution to the soil water content, 1 and 2, respectively, [16,18]) as well as transitions between them. At a given suction 

h=h(W)=h(w)= )(wh  water contents w , w, and W are interconnected as: W=w/K+ (w/K)= /Kwc + ( /Kwc ) (for (w') see [16,18]). The 

soil water content, Ws and suction hs correspond to the end point of the structural shrinkage area of the soil. 
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W= +w',   0< < h,   0<w'<w'h,   0<W<Wh                         (3) 

( h, w'h, and Wh correspond to the maximum swelling point). 
With that = (w') and w' is simply connected with w as: 

w'=w/K                                                                                 (4) 

where K>1 is the ratio of an aggregate solid mass to that of 
an intra-aggregate matrix - a new soil characteristic 
[16,18,19]. Equation (4) flows out of definitions of w and w'. 
The w and w' values present the same water of the intra-
aggregate matrix (i.e., aggregates without surface layer; Fig. 
(1)), but per unit solid mass of the matrix itself (w) and the 
soil as a whole (w') (including the surface layer solid mass). 

Accounting for Eq. (3) and (4) (and = (w')) we come to 
the conclusion that the soil suction curve, h(W) (Fig. (3), 
curves 3 and 4) is obtained from the intra-aggregate matrix 
curve, h(w) (Fig. (3), curve 2) by changing the scale along 
the water content axis as: 

W= (w/K)+w/K,   0<w<wh,   0<W<Wh  .                            (5) 

Together with that (see Fig. (3)) [16,18] 

Wh= (wh/K)+wh/K=wh                                                         (6) 

because at maximum swelling (w=wh) the intra-aggregate 
matrix and aggregate surface layer have a similar pore struc-
ture. Two possible variants of the h(W) curve (Fig. (3), 
curves 3 and 4) originate from two possible variants of the 
pore structure of the aggregate surface layer in the vicinity of 
the maximum swelling point and two corresponding de-
pendences (w') ( 1 and 2) [16,18,19]. Points Ws=ws/K and 
ws on the W and w axes, respectively, and on the h(W) (Fig. 
(3), curves 3 and 4) and h(w) (Fig. (3), curve 2) curves, re-
spectively, correspond to the end point of structural shrink-
age (and the initial point of basic shrinkage) when water of 
the aggregate surface layer exhausts, i.e., 0 and 
w' w's=Ws [16,18]. 

According to the above the soil water retention curve, 
h(W) in the range W<Wh (Fig. (3), curves 3 and 4) is ob-
tained from the contributive-clay water retention curve, 
h( w ) (Fig. (3), curve 1) by changing the scale along the wa-
ter content axis as (see Eq. (3) and (6)): 

W= (c w /K)+c w /K,   0< w <
h

w ,   0<W<Wh  .                 (7) 

One can also say that the h=h( w ) and W=W( w ) de-
pendences in the range 0< w <

h
w  (see curve 1 in Fig. (3) 

and Eq. (7)) give a parametric presentation of h(W) in the 
range 0<W<Wh. 

Thus, prediction of the soil water retention curve h(W) in 
the range W<Wh (Fig. (3)) is reduced to two steps. The first 
is the finding of the water retention curve of the contributive 
clay, h=h( w ) at 0< w <

h
w  (Fig. (3), curve 1). The second is 

the finding of the relation W=W( w ) (see Eq. (7)) between 
the water content of contributive clay, w  and that of the soil 
as a whole, W, with the following transformation of h( w ) to 
h(W) at 0<W<Wh by changing the scale along the water con-
tent axis as w W=W( w ). Such a two-step procedure was 
described above in general features (Fig. (3)). The water 
retention curve of the clay and its transformation to that of 
the soil by changing the scale along the water content axis as 
well as the necessary physical parameters are considered in 

detail in the following Sections. The first step (finding 
h=h( w )) is discussed in Section 3, the second (finding 
W=W( w )) in Section 4. The points connected to input 
physical parameters are considered in Section 5. 

3. TWO-FACTOR MODEL OF CLAY SUCTION 

3.1. General Frames of the Model 

The aim of this section is to make some preliminary 
notes about the structure of the model and emphasize, on the 
one hand its link with, and on the other hand, essential de-
velopment compared to the basic model [22]. Following the 
basic model we present clay suction, h as the product of two 
factors, H and Q (Fig. (4)): 

h=H Q  .                                                                               (8) 

However, unlike the basic model, h is considered in the 
more exact range a h where  is the relative clay water 
content (the ratio of the current water content to the maxi-
mum one at the liquid limit); a corresponds to a boundary 
state when the capillary water is exhausted, but adsorbed 
film has the maximum thickness, la; h corresponds to the 
maximum swelling point. a and h are considered below 
(see Section 3.2). 

In addition to the statements of the basic model [22], the 
physical meaning of H and Q can be commented on as fol-
lows. The H factor accumulates the effects of clay capillar-
ity, adsorbed film, and shrinkage (see Sections 3.3-3.8). 
However the capillarity is the major effect that is determined 
by the water configuration in the clay pore space at a given 
water content a h. Adsorbed film (of constant thickness 
la; see Section 3.7) influences H in the a h range through 
its variable contribution to the total water content,  (that 
also includes capillary water). The major effect of the ad-
sorbed water film appears in the area of very small water 
contents, 0 a where the film thickness is variable. This 
area is not considered in this work. The shrinkage influences 
H through decreasing pore sizes. The major effect of clay 
shrinkage (on h) is connected with rearrangement of clay 
particles, and this effect is accumulated in the dimensionless 
Q factor (see Sections 3.10-3.11). 

According to the basic model, the H factor for a clay only 
depends on one characteristic pore tube size, R( ) (see Sec-
tions 3.3-3.4). However, unlike the basic model, in this work 
we also account for the dependence of H for clay on the ad-
sorbed water film thickness, la. Finding H in this case in all 
the range a h is one of the major tasks (see Sections 3.3-

3.9). 

According to the basic model, Q=Q(v( )) in the range 

a h, where v( ) is the clay shrinkage curve in terms of 
the relative clay volume (the ratio of the current volume to 
the maximum clay volume at the liquid limit) and relative 
water content [25, 26]. In addition, Q( h)=0 (since h( h)=0, 
but H( h) 0) and Q( )=1 at a z (Fig. (4); z is the clay 
shrinkage limit; z a). Unlike the basic model where Q was 
used in the form of the simplest approximation, below we 
regard the finding of Q from a stricter physical considera-
tion. Finding the Q factor in the range a h is one of the 
major tasks (see Sections 3.10-3.11). 

All developments compared to the basic model that were 
not indicated in this section will be noted in due course. 
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3.2. Clay Water Content Range 

In the basic model h( ) is considered in the range 

a< < M=1 that is connected with three approximations (in 
[22] a is designated by 

*
): 

(i) the basic model neglects the difference between the 

maximum swelling point of the clay, 
h

w  and the clay liquid 

limit, 
M

w . This approximation, 
Mh

ww , i.e., h M=1 

differs from the real case when 
Mh

ww <  and h<1; 

(ii) the basic model neglects the effects of the adsorbed 
water film; and  

(iii) in force of approximation (ii) the a value is only 
roughly estimated to be 0.1 z. 

In this work the above approximations are removed. 

(i) The interrelation between 
h

w  and 
M

w  for clay as 

Mh
5.0 ww      ( 5.0

M
/

hh
= ww )                               (9) 

was obtained recently [16,27]. 

(ii) The effect of the adsorbed water film is considered in 
this work at such water contents where the contribution of 
the capillary water is more than zero, and the thickness la of 
the adsorbed film is constant (see Section 3.5). The la thick-
ness and summary perimeter L( ) of the pore tubes (per unit 
surface area of their cross-section) containing only the ad-
sorbed film of the thickness la, will be considered in Sections 
3.7 and 3.8 (note that we are speaking here about the pore 
tubes, meaning the pore channels of any cross-section 
shape). 

(iii) The exact boundary = a (instead of the approximate 
0.1 z value) of the water content range, where the adsorbed 

film thickness, la is constant, is determined by la and the 
maximum L value (La=L( a)) that corresponds to the total 
loss of capillary water (see Sections 3.7 and 3.8). 

Thus, below we consider the water content range a h 
(the small area 0 a without capillary water and with vari-

able adsorbed-water-film thickness, l<la is beyond the scope 
of this work). 

3.3. The General Expression for the H Factor 

The H factor (see Eq. (8) and Fig. (4)) for clay is re-
garded in the specified range a h<1 (see Section 3.2) 
where according to the basic model in a good approximation 
H is presented as: 

H=4 cos c/R( ),      a h  .                                         (10) 

Here  is the surface tension of water; c is a contact angle; 
and R( ) is a characteristic internal size of pore tubes (of any 
tube cross-section shape) of the clay matrix at a cross-
section. 

Again, according to the basic model, but in the specific 
range a h the R( ) size is written as (Fig. (5)): 

 

R( )=
'm( ) , n < h

'c( ) , a n

 ,                                      (11) 

where 'm( ) (Fig. (5), curve 2) is the maximum internal size 
of pore-tube cross-sections in the n< h range ( = n corre-
sponds to the clay air-entry point); 'c( ) (Fig. (5), curve 4) is 
the maximum internal size of the water-containing pore 
tubes in the a n range. Note that the H presentation in 
Eq. (10) reflects the physical peculiarity of a clay matrix 
structure. There is only one independent characteristic size, 
R( ) (unlike in the general case of soil). Indeed, at least in 
the area of normal (or basic) shrinkage, n< h<1 there is 
only one characteristic size - the maximum internal size of 
pore-tube cross-sections 'm( ) (Fig. (5), curve 2), that coin-
cides with the maximum internal size 'f( ) of the water-
filled pore tubes in this area. 

Note, that in this work, unlike in the basic model, the size 
R( ) entering Eqs. (10) and (11), in addition to finding in the 
specified range, is determined as affected by the adsorbed 
water film (see Sections 3.5-3.9). 

3.4. Expression for the Characteristic Pore Tube Size (R) 
of Saturated Clay Matrix 

According to the basic model in the area n h where 
the clay is in the saturated state (i.e., without air in pores) 
R( )

'
m( ) (Eq. (11); Fig. (5), curve 2) is expressed through 

v( ), vz (vz v( z) is the v value at the shrinkage limit of the 
clay, = z), vs (the relative volume of clay solids, i.e., the 
ratio of the solid volume to clay volume at the liquid limit), 
rmM (the maximum external size of clay pores at =1); and 
characteristic constants of the clay microstructure, 1.41 
and A 13.57 [25] as: 

R( )=
'
m( )= m( )- ( ) 

=rmMv( )
1/3

[0.75-( /A)(vs/v( ))],   n h                       (12) 

where m( ) is the maximum external size of clay pore-tube 
cross-sections (i.e., the size including the half thickness of 
clay particles that outline the pores), and ( ) is the mean 
thickness of clay particle cross-sections. Note, that R( ) at 

n h (Fig. (5), curve 2) from Eq. (12) does not depend 
explicitly on the water content , but only through the 
shrinkage curve v( ). That is, R( )=

'
m( )=

'
m(v( )) at 

n h. 

 

Fig. (4). General view of the Q factor and relative H factor of a 

clay. z is the shrinkage limit; h is the maximum swelling point; a 

is the water content that only corresponds to the adsorbed film of 

the maximum thickness; and n is the air-entry point. Qnmin and 

Qnmax determine the possible minimum and maximum of Qn for a 

given clay (see Section 3.10). 
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3.5. Equation for the Characteristic Pore Tube Size (R) of 
an Unsaturated Clay Matrix 

Unlike R in the n h range (see Section 3.4) the char-
acteristic size R( )=

'
c( ) at a n (see Eq. (11); Fig. (5), 

curve 4) cannot be written immediately, since in this range 
the pore water configuration is more complex. In addition to 
the water-filled pore tubes (with maximum internal size 

'
f( ); Fig. (5), curve 3) there are also the water-containing 

pore tubes (with maximum internal size 
'
c( ); Fig. (5), curve 

4) with air, capillary water, and adsorbed water, as well as 
the pore tubes with only adsorbed water film of maximum 
thickness la (with maximum internal size 

'
m( ); Fig. (5), 

curve 1). For such a water configuration in the clay at a 
given water content a n one can write the water balance 
equation that accounts for the corresponding contributions to 
the total water content. The unknown 

'
c( ) characteristic size 

in the area, a n (Eq. (11); Fig. (5), curve 4) enters this 
equation and can be found as its solution (see Section 3.9). 
The objective of this section is only to present and comment 
on this equation. The water balance equation (at a clay cross-
section) can be written as: 

F( )= (
'
f( ))+

 

g( )

f
( )

c ( ) d

d
d  

+la
.
L(

'
c( ), ),       a n                                                (13) 

where F is the pore volume fraction occupied by water (or 
saturation degree), at a relative water content ; (

'
) is the 

pore tube-size distribution, in particular, (
'
f) is the  value 

at 
'
=

'
f; g(

'
) is the degree of filling with water of the pore 

tubes of internal 
'
 size (0<g<1) if 

'
f <

'
<

'
c; and L(

'
c( ), ) 

is the summary perimeter of the pore tubes (per unit surface 
area of their cross-section) containing only the adsorbed film 
of thickness la at a given water content  and corresponding 
unknown 

'
c( ) value. The first and second terms in the right 

part of Eq. (13) give the contributions of the water-filled and 
water-containing pore tubes, respectively, to the total water 
content. The third term gives the contribution of the ad-
sorbed film of pore tubes without capillary water. For the 
clay with a shrinkage curve v( ) the saturation degree F( ) in 
Eq. (13) is found to be [25]: 

F( )=[(1-vs)/(v( )-vs)] ,     0< <1   .                                 (14) 

It is obvious that in the boundary states of the a n 
range, the right part of the Eq. (13) is only reduced to the 
contribution of adsorbed water [la

.
L(

'
c( a), a)] at = a or that 

of the water filled pores [ (
'
f( n))] at = n. However, before 

solving Eq. (13) we should consider the first (Section 3.6), 
second (Section 3.9), and third (Sections 3.7 and 3.8) terms 
in the right part of Eq. (13) in more detail. Finally, note that 
a similar equation has been used in the basic model, but 
without the adsorbed-water term. In addition, the two first 
terms in the right part of Eq. (13) will be essentially modi-

 

Fig. (5). Qualitative view of relative characteristic internal pore-tube cross-section sizes of a clay matrix against the relative water content 

(the modified Fig. (4) from [22]). "Relative" size means the ratio of a  size to rmM (maximum pore size at liquid limit); subscript i of 'i corre-

sponds to the index of the shown curves, i=1,…,5. 1-the maximum internal size of pore-tube cross-sections, 'm( )/rmM at 0< < n: 2-the same 

size as on curve 1, but at n< <1; 3-the maximum internal size of water-filled pore-tube cross-sections, 'f( )/rmM at a< < n; 4-the maxi-

mum internal size of water-containing pore-tube cross-sections, 'c( )/rmM at a< < n; 5-the minimum internal size of pore-tube cross-

sections, 'min( )/rmM. The smooth curve composed of curve 2 at n< < h and curve 4 at a< < n gives the relative characteristic size, 

R( )/rmM that determines the H factor as a function of the relative water content. a, z, ', n, and h are relative water contents corresponding 

to the boundary of the exhausting capillary water, shrinkage limit, "sewing" point where 'f( ')= 'c( '), air-entry point, and maximum swel-

ling point, respectively. The black circle marks merging curves 3, 4, and 5 at = a (see Eq. (20)). 

 

0 ' h n z a 
0 

1 

1

3

4

1

2

Relative water content,   

R
el

at
iv

e 
in

te
rn

al
 p

o
re

-t
u

b
e 

cr
o

ss
- 

se
ct

io
n

 s
iz

es
 o

f 
cl

ay
 m

at
ri

x,
  

' i/
r m

M
 

'm(a)/rmM 

5 

'min(a)/rmM 



50    The Open Hydrology Journal, 2010, Volume 4 V.Y. Chertkov 

fied compared with the basic model (see Sections 3.6 and 
3.9). 

3.6. The Pore Tube-Size Distribution of a Clay Matrix 

The presentation form of a pore-size distribution plays an 
important role. Chertkov [25,26] used the presentation that is 
convenient for considering clay shrinkage. The convenience 
consists in the use of an external pore (r) and pore tube ( ) 
sizes (i.e., the sizes that include a half-thickness of clay par-
ticles limiting the pores). In this case the volume of any pore, 
that is proportional to r

3
, is proportional to the clay volume V 

at shrinkage. However, such a presentation does not include, 
in an explicit form, the clay porosity that is connected with 
internal pore sizes (r' and ') which determine the clay water 
retention. For this reason the use of the pore-size distribution 
presentation from [25, 26] in the basic model [22] required 
special normalization of the distribution. The generalization, 
giving the more convenient presentation of the pore-size 
distribution, using internal pore sizes, and explicitly includ-
ing porosity as a distribution parameter, was recently sug-
gested [28]. In addition (unlike the presentation from [22, 25, 
26]), this presentation is generalized in a natural way to a 
two- or multi-mode porosity case that can be topical for clay 
and soil. 

We use the simplest pore-tube size distribution, 
(

'
) (x(

'
)) for the two-dimensional situation (with one-

mode porosity) from the intersecting-surfaces approach [28] 
as: 

(x(
'
))=[1-(1-P)

I(x( '))/I(1)
]/P                                               (15) 

where 

x( ')=( '- 'min)/( 'm- 'min),    0<x 1;                                  (16) 

I(x)=ln(6)(3x)
3
exp(-3x),    

(I(1)=2.4086)           0<x 1  .                                             (17) 

In Eq. (15) P is porosity (note that both the definitions of 
porosity - volumetric and areal - must give the same values; 
see, e.g., [29]). In Eq. (16) 'min and 'm are the minimum and 
maximum pore-tube cross-section sizes, respectively. 

The presentation of Eqs. (15)-(17) is relevant for both 
rigid and non-rigid matrices (with one-mode porosity). How-
ever, in the case of a clay matrix (a non-rigid matrix) 
Eqs.(15) and (16) should also be specified because the clay 
matrix parameters, 'min, 'm (Eq. (16)) and P (Eq. (15)) be-
come functions of the relative water content, . We are inter-
ested in ( ') as well as 'min, 'm, and P at a n (see Eq. 
(13)). The expression for 'm( ) at a n (Fig. (5), curve 1) 
coincides with the expression of the same clay matrix pa-
rameter at n h in Eq. (12) (see Fig. (5), curve 2) [22]. 
The clay porosity, P( ) was defined in [25] as: 

P( )=1-vs/v( ) .    a n  .                                              (18) 

Defining the expression for 'min( ) of clay as (see Fig. 
(5), curve 5): 

'min( )= o( )- ( )=ro( )- ( ) 

=rmM (vs/A)v( )
1/3

[ -1/v( )],   0< <1  .                              (19) 

we take that the minimum internal pore tube size ( o- ) co-
incides with the minimum internal size of pores (ro- ) (  is 

the mean thickness of clay particles [25], ro [25] and o [22] 
are the minimum external sizes of pores and pore tubes, re-
spectively, and 9 is the characteristic clay pore constant 
[25]). This definition of 'min( ) (Eq. (19)) differs from that 
in the basic model. 

Note that the 'min( ) (Eq.(19)), 'm( ) (Eq. (12)), and 
P( ) (Eq. (18)) dependences on  are determined by the clay 
shrinkage curve v( ) (for v( ) see [25,26]). In addition, it 
follows from the definitions and physical meaning of 

'
c( ) 

(see Section 3.3; Eq. (11); Fig. (5), curve 4), 
'
f( ) (see Sec-

tion 3.3; Fig. (5), curve 3), and 'min( ) (Eq. (19)) that: 

R( a)
'
c( a)=

'
f( a)= 'min( a)                                            (20) 

(see Fig. (5), curves 3, 4, and 5) which will be used in Sec-
tion 3.9. Finally, note that the pore-tube size distribution 
from Eq. (15)-(17) does not take into account the intra-
particle (or inter-layer) pores and for this reason relates to 
clays with negligible inter-layer porosity. 

3.7. The Summary Perimeter of Pore Tubes (L) Contain-
ing only the Adsorbed Water Film 

The L value can be written as follows: 

L(
'
c( ), )=4

 c ( )

m ( ) 1 d

d
d ,  a n                            (21) 

where = (x(
'
)) from Eq. (15); x(

'
) from Eq. (16); 'm( ) 

from Eq. (12), and 'c( ) is so far an unknown dependence 
(see Section 3.5; Fig. (5), curve 4). Indeed, (d /d

'
) d

'
 is the 

fraction of the pore-tube cross-section surface area for tubes 
with internal size 

'
 in the small range d

'
. The value, 

(1/
'2
)(d /d

'
) d

'
 gives the number of corresponding pore 

tubes, and (4/
'
)(d /d

'
) d

'
 is their perimeter if their cross-

section is considered to be a square or a circle. Integration in 
Eq. (21) between 'c( ) and 'm( ) at a given  (see Fig. (5), 
between curves 4 and 1) gives the summary perimeter of 
pore tubes, L(

'
c( ), ) containing only the adsorbed film of 

thickness la. Equation (21) can be rewritten in the form that 
is more suitable for numerical calculations as: 

L(
'
c, ) 

  

=
4

m
( )

4 (x(
c
))

min
( )+x(

c
)Z( )

+
4

Z( ) x( c)

1 (x )dx

[M ( )+x ]2
,

 

    a n                                                                          (22) 

where Z( ) 'm( )- 'min( ) and M( ) 'min( )/[ 'm( )-
'min( )]. This expression of L is used in Section 3.9 when 

solving Eq. (13). In addition, we need the boundary value 
La L(

'
c( a), a)=L(

'
min( a), a) (see Eq. (20) and Fig. (5), 

curves 4 and 5). La can be found without solving Eq. (13) 
and is necessary for estimating la (in Section 3.8). At = a 
Eq. (22) is reduced to: 

La=

  

4

m
(

a
)
+

4

Z(
a
)

(x )dx

[M (
a
)+x ]20

1
                                  (23) 
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As noted 'm( ) (Eq. (12)), 'min( ) (Eq. (19)), and P( ) 
(Eq. (18)) depend implicitly on , only through the shrinkage 
curve, v( ). Since at a z va v( a)=vz v( z), in fact 

'm( a)= 'm( z), 'min( a)= 'min( z) (see Fig. (5)), 
Pa P( a)=Pz=1-vs/vz, and correspondingly, La=Lz (see Eq. 
(23)). Finally, note that the dimension of all L values is the 
reciprocal of length. We should now consider the maximum 
thickness la of an adsorbed water film in clay. 

3.8. The Maximum Thickness (la) of an Adsorbed Film 
and Corresponding Boundary Water Content ( a) 

We rely on two physical conditions. 

(i) At usual temperatures ( 20
o
C) separate clay particles 

are covered by adsorbed film already before the formation of 
the clay particle network. For this reason, pores (and pore 
tubes) of a size that is less than 2la cannot appear at clay ma-
trix formation (we mean the absence of external loads lead-
ing to clay compaction and consolidation). That is, even at 
= a the minimum size of pore tubes, 'min( a) should be no 

less than 2la as: 

'min( a) 2la  .                                                                     (24) 

Note that from Eq. (19) for a given clay (i.e., at given 
rmM, vs, and vz, see [25]) one has 'min( a)= 'min( z)=rmM 
(vs/A)vz

1/3
( -1/vz). 

(ii) The clay water content, that corresponds to the pres-
ence of an adsorbed film only, should not exceed the water 
content that corresponds to the shrinkage limit. In terms of 
the saturation degree, F (see Eq. (14)) that is written as fol-
lows: 

Fa F( a) Fz F( z)  .                                                          (25) 

Since (by definition of F( a), la, and La Lz) Fa=la Lz the 
condition of Eq .(25) can be rewritten as 

la Fz/Lz                                                                              (26) 

where Fz/Lz (similar to 'min( a) in Eq. (24)) depends on the 
specific parameters (rmM, vs, and vz) of a given clay (see Eq. 
(14) and Section 3.7). 

In addition, it follows from the meaning of the condition 
leading to Eq.(24) that at clay particle network (or clay ma-
trix) formation the size of the minimum pores (at = a) 
strives to be maximally close to 2la and, on the contrary, 2la 
should be maximally close to 'min( a). This additional condi-
tion together with Eqs. (24) and (25) implies that 
2la= 'min( a) if only 'min( a)<2Fz/Lz. Otherwise, the same 
additional condition (of the maximum proximity of 2la to 

'min( a)) means that 2la=2Fz/Lz. Finally, one can write 2la as 

2la=min( 'min( a), 2Fz/Lz)                                                   (27) 

(it is worth reiterating that 'min( a) and 2Fz/Lz are the 
known functions of rmM, vs, and vz). Thus, for a given clay, 
depending on its specifications (usually connected with clay 
mineralogy and cation set) that are reflected by the rmM, vs, 
and vz clay matrix characteristics [25], one of two the follow-
ing possibilities can be realized. 

(i) If 

'min( a)<2Fz/Lz                                                                  (28) 

then (see Eq. (27)) 

2la= 'min( a)                                                             (29)  

and, correspondingly, 

Fa=la Lz<Fz                                                                        (30) 

and (see Eq. (14)) 

a=[(vz-vs)/(1-vs)] Fa< z=[(vz-vs)/(1-vs)] Fz                        (31) 

(Fig. (5) presents such a situation). 

(ii) If 

'min( a) 2Fz/Lz                                                                 (28') 

then (see Eq. (27)) 

la=Fz/Lz .                                                                            (29') 

Correspondingly, 

Fa=la Lz=Fz                                                                        (30') 

and (cf. Eq. (31)) 

a= z                                                                                  (31') 

(i.e., the points a and z in Fig. (5) merge). 

Note, that irrespective of which of the two above possi-
bilities takes place, i.e., at la from both Eq. (29) and (29') (see 
Fig. (5)), the Eq. (20) is fulfilled. See estimates of la, La, Fa, 
and a for real soils in Section 6. 

3.9. Solution of the Water Balance Equation for an Un-
saturated Clay Matrix 

When solving Eq. (13) with respect to 'c( ) we use the 
following boundary conditions. 

(i) At the boundary water content = a the maximum in-
ternal size of the water filled ( 'f( ); Fig. (5), curve 3) and 
water containing ( 'c( ); Fig. (5), curve 4) pore-tube cross-
sections should coincide (this condition was not used in the 
basic model): 

'f( a)= 'c( a).                                                                    (32) 

(ii) At the boundary water content = n 'f( ) (Fig. (5), 
curve 3) and 'c( ) (Fig. (5), curve 4) also coincide 

'f( n)= 'c( n)  .                                                                  (33) 

 

(iii) R( ) (Eq. (11)) should be smooth at = n (Fig. (5)). 
That is,  

'c( n)= 'm( n)     and     d 'c( )/d
 
= n

 

=d 'm( )/d
 
= n

 .                                                             (34) 

In addition, the 'f( ) and 'c( ) functions (Fig. (5), 
curves 3 and 4, respectively) should meet the obvious physi-
cal condition (which was not used in the basic model) that 
the water-containing (i.e., non-totally filled) pore tubes give 
a small contribution to the water balance equation (Eq. (13)). 
That is, the second term in the right side of Eq. (13) is small 
as: 

(
'
f( ))+la

.
L(

'
c( ), ) >>

 

g( )

f
( )

c ( ) d

d
d , a n         (35) 
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It follows that independently of an exact form of g(
'
) 

dependence, 'c( ) differs from 'f( ) by the small addition, 
'f as (Fig. (5)) 

'c= 'f+ 'f      a n                                                      (36) 

where 'f( )<< 'f( ) and according to Eq. (32) and (33) 

'f( a)= 'f( n)=0  .                                                          (37) 

Then (without additional assumptions with respect to the 
g(

'
) function and pore shape as in the basic model) we can 

find 'c( ) in the range a< < n in the first approximation as 
'c( )= 'f( ) where 'f( ) (Fig. (5), curve 3) is the solution of 

the equation 

F( )= (
'
f)+la

.
L(

'
f, ) ,    a n  .                                   (38) 

Note that the left side of Eq. (38) depends only on  
(Eq.(14)), but the right side (see Eqs. (15)-(17)) depends on 
both  (through 'min( ), 'm( ), and P( ) of Eqs. (19), (12), 
and (18), respectively) and 

'
f. Thus, at a given a n one 

can (numerically) find the corresponding 
'
f value, i.e., 

'c( ) 'f( ) dependence in the first approximation. 

The simplest way to find 'c( ) in the second approxima-
tion is as follows. One can write 'c( ) at a n (Fig. (5), 
curve 4) as 

 

'c( )

=
'
f
( ) , a

'
f
( )+ '

f
( ) , < n

  .                                     (39) 

It follows from the general qualitative picture (Fig. (5)) 
that max( 'f)=max( 'c- 'f) is reached close to = n. That is, 
the point of "sewing" = ' (Fig. (5); Eq. (39)) is also close to 
= n (i.e., n- '<< '- a; that is confirmed by direct calcula-

tions, see Section 6). For this reason we approximate 
'c= 'f+ 'f  at '< n to be 

'c( )/ 'm( )=1-G( - n)
2
  ,     '< n  .                             (40) 

Then conditions at = n (Fig. (5)) given by Eq. (34) are 
obviously fulfilled. The G coefficient and "sewing" point 
= ' (Fig. (5)) are found from conditions of the smooth con-

nection between 'c( )= 'f( ) from Eq. (39) and 'c( ) from 
Eq. (40) at = '. The 'c( ) found in good approximation 
meets Eq.(13) and conditions from Eq. (32)-(36) at a n 
(Fig. (5)). 

It is worth emphasizing an important property of 
R( )= 'c( ) 'f( )+ 'f( ) at a n. In this range (unlike 
the n h range, see the end of Section 3.4) 

'f( )= 'f( ,v( )). Hence, the similar presentation also relates 
to 'c( ) and R( ). That is, in this range R( )=R( ,v( )). In-
deed, the right side of Eq. (38) (besides 'f) only implicitly 
depends on  through v( ) (because 'min, 'm, and P depend 
on  through v( )), but the left side of Eq. (38) depends on  
both explicitly and through v( ) (see Eq. (14)). Finally, cal-
culation of R( ) (Eq. (11); Fig. (5), curves 2 and 4) together 
with Eq. (10) gives H( ). Hence, the H( ) dependence (simi-
lar to R( )) has the following  structure 

 

H ( )=
H ( ,v( )), a n

H (v( )), n h

  .                                  (41) 

3.10. Estimating the Q Factor Dependence on the Rela-

tive Water Content of a Clay 

The simple approximate presentation of Q in the basic 
model should be replaced with a more exact consideration. 
At a z Q(v( ))=1 (see Section 3.1 and Fig. (4)). We are 
interested in the Q(v( )) behavior at z h (Fig. (4)). Since 

h- z<1 it is reasonable to present Q( ) in this area as an ex-
pansion in powers of ( - z) or ( h- ). 

Besides the physically distinguished points, z (the 
shrinkage limit) and h (the maximum swelling point) in the 
range z h there is yet one other physically distinguished 
point, n (Fig. (4); the air-entry point) in which the character 
of the clay shrinkage curve changes (the curve becomes non-
linear). Therefore, it is natural to divide the z h range 
into two smaller ones, z n and n h (Fig. (4)) and 
present Q( ) in the former as an expansion in powers of ( -

z) and in the latter as an expansion in powers of ( h- ). 

One should remember that Q depends on  through the 
shrinkage curve v( ), Q( )=Q(v( )), and because we use for 
v( ) at z n the approximation connected with the expan-
sion in powers of ( - z) up to the second power ( - z)

2
 

[25,26,22], the expansions for the Q( ) should also be lim-
ited by the squared approximation as 

Q( )=q1+q2( - z)+q3( - z)
2
,     z n                           (42a) 

Q( )=q4+q5( h- )+q6( h- )
2
,     n h  .                       (42b) 

Accounting for the obvious boundary conditions Q( z)=1, 
Q'( z)=0, and Q( h)=0 (see Fig. (4)) Eq. (42) is reduced to 

Q( )=1-Q1( - z)
2
,     z n                                           (43a) 

Q( )=Q2( h- )+Q3( h- )
2
,     n h                              (43b) 

(q3 -Q1, q5 Q2, and q6 Q3 were re-denoted for conven-

ience). 
Since Q( ) is at its maximum at = z (Fig. (4)), Q1 in Eq. 

(43a) should be positive, Q1>0. In addition the Q2 and Q3 
coefficients in Eq. (43b) should be non-negative, Q2 0 and 
Q3 0. This stems from the considerations about the existence 
and position of the inflexion point of Q( ). Indeed, the 
shrinkage curve, v( ) inflexion point (in any approximation) 
is at = n [25,26]. Since Q( )=Q(v( )), the Q factor inflexion 
point should also be at = n. Accounting for the negative 
curvature (-Q1) of Q( ) (Eq. (43a)) at z n (Fig. (4)) it 
follows that Q( ) from Eq. (43b) should have the non-
negative curvature, Q3 0 (Fig. (4)). In addition, since Q( ) 
should monotonously decrease with  increase, Q2 0. These 
conditions, Q1>0, Q2 0 and Q3 0 will be used below. 

Thus, we have three coefficients, Q1, Q2 and Q3 and two 
"sewing" conditions at = n 

Q( n-)=Q( n+)                                                                   (44a) 

Q'( n-)=Q'( n+)                                                                 (44b) 

( n- and n+ correspond to approaching to = n from the left 
and right, respectively). The physical meaning of these con-
ditions is the smoothness of Q( ) at = n (Fig. (4)). It is 
worth emphasizing that a condition similar to Eq. (44b), but 
for the second derivatives of Q( ) at = n, does not take 
place in the squared approximation used. Indeed, the second 
derivative of v( ) is subject to a break at = n [25,26]. 
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Hence, Q''( n-)  Q''( n+). Using Eqs. (44) the Q2 and Q3 coef-
ficients can be expressed through Q1. However, for the fol-
lowing instead of Q1 we introduce the parameter Qn  Q( n) 
(see Fig. (4)) with more immediate physical meaning. Ac-
cording to Eq. (43a) at = n 

Q1=(1-Qn)/( n- z)
2
 .                                                            (45) 

Equations (43) and (44), after the replacement of Q1 with 
Qn from Eq. (45), give 

Q2=2Qn/( h- n)-2(1-Qn)/( n- z) ,                                        (46) 

Q3=[2(1-Qn)( h- n)/( n- z)-Qn]/( h- n)
2
  .                          (47) 

Here Qn (see Fig. (4)) is the (so far unknown) physical 
parameter that determines the coefficients Q1 (Eq. (45)), Q2 
(Eq. (46)), and Q3 (Eq. (47)) in Eq. (43) and thereby the Q( ) 
factor for a given clay. 

Similar to z and n [25,26] ( h=0.5 [16]), Qn can be ex-
pressed through the clay characteristics, vs and vz [25,26]. 
The dependence Qn(vs,vz) is discussed in the following Sec-
tion. However, before the consideration of Qn(vs,vz) the ob-
vious range, 0<Qn<1 (see Fig. (4)) (that also flows out of Eq. 
(45) and Q1>0) can be essentially diminished. Indeed, the 
above conditions, Q2 0 and Q3 0, using Eqs. (46) and (47), 
reduce the range where the Qn(vs,vz) value can be to 

0<Qnmin Qn Qnmax<1   ,                                                     (48) 

where 

Qnmin=( h- n)/( h- z),                                                        (49a) 

Qnmax=2( h- n)/[2( h- n)+( n- z)] .                                   (49b) 

Accounting for z< n< h (see Fig. (4)) one can see that 
the obvious condition Qnmin<Qnmax is always fulfilled. The 
effect of a possible Qn from Eqs. (48) and (49) on Q( ) de-
pendence is illustrated in Fig. (4). Checking the experimental 
feasibility of the clay Q( ,Qn) factor presentation by 
Eqs.(43), (45)-(47) using the Qn value from Eqs. (48) and 
(49) is considered in Sections 5 and 6. 

3.11. Estimating the Qn Parameter for a Clay through the 
Clay Porosity at the Air-Entry Point (Pn) 

We want to express Qn through a value that can be easily 
computed for a given clay, i.e., through clay parameters, vs 
and vz. Then, knowing this value we will be able to calculate 
Qn for the clay. By definition Qn=Q( n) where n=(vn-vs)/(1-
vs), vn=vs/(1-Pn) [25,26], and Pn is the clay porosity at the air-
entry point. Thus, Qn=Qn(Pn), and Qn(Pn) should be a univer-
sal function that is applicable to any clay. 

The Qn(Pn) dependence can be characterized as follows. 
For clays (contributing the real soils) Pn and Qn vary in the 
ranges 

0.3 Pn low<Pn<Pn up 0.8  ,                                                (50a) 

0.5 Qn low<Qn<Qn up 0.9  ,                                               (50b) 

where Pn low and Pn up are the lower and upper boundaries of 
Pn, and Qn low and Qn up are the similar boundaries of Qn 
variations (see Fig. (6)). With that Qn increases with Pn de-
crease and vice versa (Fig. (6)). Indeed, the Pn decrease 

means the transition to a more rigid clay with larger Qn. 
Hence 

Qn Qn up    at   Pn Pn low  .                                               (51) 

In addition (see Fig. (6)) 

Qn up-Qn(Pn)<<Pn-Pn low  at  Pn Pn low  .                            (52) 

That is, Qn grows very slowly when Pn Pn low. For this 
reason we take (see Fig. (6)) 

Qn'(Pn) 0  and  Qn"(Pn) 0  at  Pn Pn low  .                    (53) 

For convenience we introduce the relative values, p and q 
as 

p=(Pn-Pn low)/(Pn up-Pn low)  ,                                              (54a) 

q=(Qn-Qn low)/(Qn up-Qn low)  .                                            (54b) 

According to Eq. (50) for different clays p and q are in 
the ranges 

0 p 1    and    0 q 1  .                                                      (55) 

In the force of the Qn(Pn) dependence p and q from Eq. 
(54) are also interconnected, q=q(p). With that 0 q 1 in-
creases when 0 p 1 decreases (Fig. (6a)). Accounting for 
Eqs. (50) and (54) the conditions from Eqs. (51) and (53) 
mean (Fig. (6a)) 

q(0)=1  ,     q'(0)=0  ,    and    q"(0)=0  .                            (56) 

Using Eq. (56) one can present q(p) at p<<1 (see Fig. 
(6a)) as 

q(p)=1-Dp
3
  ,     0 p<<1                                                    (57) 

where D is some constant that should be found. Accounting 
for Eq. (55) we assume that the mutually opposite de-
pendences q(p) (0 p 1) and p(q) (0 q 1) are symmetrical, 
that is, have the same mathematical form (that will be justi-
fied by the available data in Sections 5 and 6). Then, based 
on the symmetry and Eq. (57) one can write (see Fig. (6a)) 

p(q)=1-Dq
3
  ,     0 q<<1  .                                                 (58) 

Note that the D coefficient in Eqs. (57) and (58) is the 
same in the force of the symmetry. We rewrite Eq. (57) in 
the form 

q(p)=(1-p
3
)

D
  ,     0 p<<1  .                                               (59) 

That is equivalent to Eq. (57) at 0 p<<1, but can be used 
as an approximation of q(p) in the wider range of p, adjacent 
to p=0. Using similar considerations we also rewrite Eq. (58) 
in the form 

p(q)=(1-q
3
)

D
  ,     0 q<<1  .                                               (60) 

From Eq. (60) the q(p) dependence at p close to unity can 
be written as 

q(p)=(1-p
1/D

)
1/3

  ,     1-p<<1  .                                            (61) 

Note that Eq. (61) (similar to Eq. (59)) can also be used 
as an approximation of q(p) in the wider range of p, adjacent 
to p=1. We should "sew" q(p) from Eqs. (59) and (61) in a 
point p=po (see Fig. (6a)). The D and po values are found 
from the smoothness conditions of q(p) at p=po as 
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q(po-)=q(po+)   and   q'(po-)=q'(po+)                                  (62) 

(po- and po+ correspond to approaching to p=po from the 
left and right, respectively). As a result we obtain po 0.795 
and D 0.3286. As it should be, according to the above sym-
metry of q(p) and p(q) these po and D values fulfill the equa-
tions (cf. Eqs. (59) and (61); see Fig. (6a)) 

po=(1-po
3
)
D
     or     po=(1-po

1/D
)
1/3

   .                                 (63) 

Finally, the q(p) dependence is written as (see Fig. (6a)) 

<
=

1795.0,)1(

795.00,)1(
3/13286.0/1

3286.03

pp

pp
q   .                       (64) 

In practical calculations one can also use the simple de-
pendence as 

q(p)=(1-p
3
)
1/3

  ,     0 p 1 ,                                                 (65) 

remembering that Eq. (64) is still more substantiated. 

Using q(p) from Eq.(65) and q Q, p P relations (Eq. 
(54)) one can write Qn(Pn) as (see Fig. (6b)) 

Qn(Pn)=Qn low 

+(Qn up-Qn low) q((Pn-Pn low)/(Pn up-Pn low))  .                        (66) 

To estimate Qn one can take Qn up, Qn low, Pn up, and Pn low 
from Eq. (50). However, more accurate (universal) presenta-
tion for Qn(Pn) is obtained by estimating these four values 
from positions of two extreme points in the (Pn, Qn) plane 
(Fig. (6b); see Sections 5 and 6). The experimental checking 
of Eq. (66) is considered in Sections 5 and 6. 

Thus, results of this and the previous section enable one 
to estimate the clay Q factor as a universal function of the 

relative water content,  based on the clay parameters vs and 
vz. 

3.12. Input Physical Parameters of the Two-Factor Clay 
Water Retention Model 

The Q( ) (Sections 3.10-3.11) and H( ) (Sections 3.3-

3.9) factors give the clay water retention curve from the to-
tally modified two-factor model, h( )=H( )Q( ) where 
=

M
/ ww . The modified h( w ) curve is determined by the 

same input physical parameters of the clay as in the basic 
model [22], vs, vz, rmM, and the density of clay solids s. Note 
that rmM can be estimated through vz as follows. The maxi-
mum external size of 3D pores (at 

M
ww = ), rmM, playing 

the part of a characteristic scale, is connected with the 
maximum size of clay particles in oven-dried state, rmz as 
rmM=rmzvz

-1/3
 [25]. If we take rmz 2μm (according to the gen-

erally accepted definition of the maximum size of clay parti-
cles in the oven-dried state) rmM is estimated to be rmM 2vz

-1/3
 

(μm). This result is used in Section 5.2. 

4. EFFECT OF INTRA-AGGREGATE STRUCTURE 
ON SOIL WATER RETENTION CURVE 

Now, to transit from the contributive-clay water retention 
to that of the clay-containing soil we should consider the 
transformation of the contributive-clay water content ( w ) to 
that of the soil (W) (see Section 2) following the recent 
model of the reference shrinkage curve [16, 18, 19]. This 
model relies on the new concepts of an intra-aggregate soil 
structure (Fig. (1)): (a) the existence and dewatering of a 
deformable, but non-shrinking superficial aggregate layer 
(interface layer) at any clay content as well as (b) the exis-
tence and volume increase of intra-aggregate lacunar pores at 
clay content lower than the critical one. We only touch on a 
point of the model that is relevant to finding the W=W( w ) 

 

Fig. (6a). The auxiliary function q(p) (Eq. (64)) participating in the calculation of the Qn(Pn) dependence. 
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relation between water contents of contributive clay ( w ) and 
the soil as a whole (W). According to Eq. (3) there are two 
contributions to the water content of a soil as a whole, W: the 
contribution of the interface layer ( ) and that of intra-
aggregate matrix (w') (Fig. (1)). According to Eq. (7) 
w'=c w /K. To find the W=W( w ) relation we need depend-
ence = (w'). One can write the water contribution of the 
interface layer (Fig. (1)), (w') [16] as 

  

(w )

=
0, 0 w <ws

wUi
F

i
(w ), ws w <w

h
,

                                       (67) 

where w is the water density; Ui is a (constant) contribution 
of the interface layer (Fig. (1)) to the specific volume of the 
soil;  is a (non-shrinking) clay porosity of the interface 
layer (Fig. (1)) (  coincides with the soil porosity stipulated 
by clay matrix pores in the maximum swelling state); Fi(w') 
is the volume fraction of the water-filled (non-shrinking) 
clay pores of the interface layer at a given w' value; w's cor-
responds to the end point of the structural shrinkage; w'h 
(=Wh/K) corresponds to the maximum swelling point. The 
Fi(w') dependence exists in two variants, each of which is 
defined by the pore-size distribution of the interface and in-
tra-aggregate clays (Fig. (1)). One can find details of the 

(w') calculation in [16,18], and the qualitative view of 
(w') in [17,19]. Input parameters for the (w') calculation 

(Eq. (67)) and correspondingly for the W( w ) calculation 
(Eq. (7)) of a soil include: the density of solids ( s), relative 
volume of contributive-clay solids (vs), relative volume of 
contributive clay in the oven-dried state (vz), soil clay con-
tent (c), aggregate/intra-aggregate mass ratio (K), and spe-
cific volume of lacunar pores in the aggregates at maximum 
swelling (Ulph). There are different ways to calculate Ui and 

 (see Eq. (67)). For instance, one finds subsequently the 
relative solid volume, us of the soil to be 

us=vs[c+ vs(1-c)]
-1

,                                                              (68) 

the maximum swelling water content of the soil, Wh to be 

Wh=0.5(1/us-1)( w/ s) ,                                                      (69) 

the specific solid volume as 1/ s, and the specific aggregate 
volume, Uh at W=Wh to be 

Uh=1/ s+Wh/ w+Ulph .                                                        (70) 

Finally, 

Ui=Uh(1-1/K)                                                                     (71) 

and 

=1-(1/ s+Ulph)/Uh .                                                          (72) 

For the calculation of w's and Fi (see Eq. (67)) at given  
and clay shrinkage curve, v( ) [25, 26] see Eqs. (20)-(29) 
from [16]. 

The set of the necessary parameters ( s, vs, vz, c, K, and 
Ulph) for the calculation of W( w ) includes those that are 
needed for the calculation of h( w ) (see Section 3.12), s, vs, 
and vz (if rmM is estimated through vz). For data ( s, vs, vz, c, 
K, and Ulph) accessibility see Section 5. 

Finally, note that in the above calculation of the aggre-
gate surface layer contribution, (w') to the total water con-
tent W (that follows [16]) we neglect the adsorbed water film 
that is present in the clay of the aggregate surface layer be-
cause its contribution to W is small compared with that of the 
adsorbed water film that is in the clay of the intra-aggregate 
matrix (see Fig. (1); Section 3.8). The reason for this is the 

 

Fig. (6b). The theoretical universal Qn(Pn) dependence (Eq. (66)) (solid line). Points 3 and 2 (corresponding to soils 3 and 2 in Tables 1-3) 

participated in estimating the parameters of the dependence. The arrangement of other points visually show the agreement between the model 

(solid curve) and data used. 
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small pore surface area of clay in the non-shrinking aggre-
gate surface layer compared with that in the intra-aggregate 
matrix. 

5. EXPERIMENTAL VALIDATION 

5.1. Possible Ways to Estimate the Necessary Input Data 

To substantiate the two-factor model of a soil water re-
tention curve one needs data on the six above soil parameters 
to predict its water retention and independent data on the 
observed soil water retention to compare the prediction and 
observation (we imply the physical, but not curve-fitting 
comparison). In principle, the data on the indicated physical 
parameters can be obtained independently of the observed 
water retention and shrinkage curves of a soil. Indeed, s is 
measured by standard methods [30]; vs and vz can be esti-
mated from the oven-dried specific volume of the clay and 
water content at maximum swelling of the clay [16]; clay 
content, c is measured by standard methods [31]; estimating 
the K ratio by the maximum size of aggregates in the oven-
dried state and the mean size of the soil solids (by their 
weight fractions) was recently suggested [20]; and finally, 
Ulph=(W*h-Wh)/ w (see Fig. (7)) where W*h-Wh is a dis-
placement between pseudo and true saturation lines. At the 
same time the available simultaneous data on the six indi-
cated parameters, are missing because the overwhelming 
majority of corresponding works containing measured soil 
water retention curves are eventually oriented to curve-fitting 
when the above parameters are just not needed. As a result, 
although there are many works with data on experimental 
soil water retention curves, the latter are not accompanied 

with simultaneous data on s, vs, vz, c, K, and Ulph, and in 
most of the cases it is practically impossible to extract the 
necessary data from these works. 

Nevertheless, in order to use available data we chose an-
other way to estimate the necessary input data and took ad-
vantage of three following circumstances: (i) only the mutual 
independency between an observed water retention curve 
and data on the above six parameters is important; in all the 
other relations the origin of the parameter data is not essen-
tial for the aims of this work; (ii) the necessary data either 
accompany ( s, c) the available observed water retention 
curves or can be extracted (vs, vz, K, Ulph) from a soil shrink-
age curve (if it is also available) using the analysis that was 
recently described in detail [16,18]; (iii) single works are 
available where one simultaneously can find the experimen-
tal soil water retention and shrinkage curves for a number of 
soils. 

5.2. Data Used 

Based on the above three circumstances ((i)-(iii)) we con-
sidered six soils from Boivin et al. [12] (see Table 1) who 
simultaneously presented experimental water retention and 
shrinkage curves. (We did not use data on two of the eight 
soils of [12], namely the soils from Figs. (2c) and (5b) of 
[12]. The reason is the non-simultaneous start of the soil 
shrinkage and growing of the soil suction in these figures 
that speak of some defect in shrinkage or suction data). The 
necessary data that enable us to predict the observed shrink-
age curves for the soils are given in Table 1 (see explana-
tions below). Since the experimental shrinkage curves in this 

 

Fig. (7). Shrinkage curve data (white squares) and prediction (solid line) corresponding to soil 4 in Tables 1-3. The maximum relative differ-

ence =max(|Y-Ye|/Ye) between the predicted (Y) and experimental (Ye) values  of the specific volume for the soil is equal to 0.004. The dotted 

line is parallel to the shrinkage curve in the basic shrinkage area. Dashed and dash-dot inclined lines are the true and pseudo saturation lines, 

respectively. The water contents Wz, Wn, Ws, Wh, and Wh*, correspond to shrinkage limit, end-point of basic shrinkage, end-point of structural 

shrinkage, maximum swelling, and filling of lacunar pores (if they are filled in), respectively. The specific volumes Yz and Yh correspond to 

oven-dried state and maximum swelling, respectively. wh' is the maximum contribution of the intra-aggregate matrix to the total water con-
tent Wh at maximum swelling. Ulph=(Wh*-Wh)/ w is the specific volume of lacunar pores in the intra-aggregate matrix at maximum swelling. 
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work are only used as a source of the necessary parameter 
values (to predict the soil water retention curve), we only 
reproduce (in Fig. (7)) the data on the experimental shrink-
age curve (white squares) for soil 4 (see Table 1) from [12] 
as an example. In addition, Fig. (7) is used below for the 
illustration of different parameters. Data on c and s for soils 
1 through 6 in Table 1 reproduce the data from [12]. 

To predict the reference shrinkage curve [18], one needs 
(see Table 1 and Fig. (7)): the oven-dried specific volume, 
Yz; maximum swelling (gravimetric) water content, Wh; 
mean solid density, s, soil clay content, c; oven-dried struc-
tural porosity, Pz; the ratio of the aggregate solid mass to the 
solid mass of the intra-aggregate matrix, K; the lacunar fac-
tor, k; and water content Wh* with a displacement relative to 
Wh that is similar to the displacement of the true saturated 
line relative to the pseudo one. If lacunar pores are absent at 
maximum swelling, Wh*=Wh (see Table 1, soils 3 and 5). 
Additionally, if lacunar pores are absent at any water content 
in the course of shrinkage (as in Fig. (1a)), k=0 (see Table 1, 
soil 5). 

The Yz, Wh, and Wh* values for indicated soils (see Fig. 
(7)) were estimated from the initial and final points of the 
corresponding shrinkage curves (Table 1). 

In estimating the structural porosity in the oven-dried 
state, Pz (Table 1) we took into account that Pz differs from 
zero if the shrinkage curve has a horizontal section at water 
content W>Wh, that is, higher than the maximum swelling 
point [18]. The size of the section determines the specific 
volume of the structural (inter-aggregate) pores, Us and 
Pz=Us/Yz. If Us=0 Pz=0 (as in Fig. (7)). Note that for soils 3 
and 5 (Table 1) Pz>0. 

In this work K was estimated from the experimental 
shrinkage curves (Table 1) using its definition as the Wh/wh' 

ratio (see Fig. (7)). For an independent way to estimate K see 
[20]. 

The soil lacunar factor k by definition, is a micro-
parameter of the intra-aggregate structure (Fig. (1)) that de-
termines at c<c* the fraction of the clay matrix pore volume 
decrease that is transformed to the lacunar pore volume in-
crease inside the aggregates (at c>c* k=0) [18,19]. Here, in 
estimating k (Table (1)) we used the following important 
result: the k micro-parameter is simply connected with such 
immediately observed macro-parameter of soil shrinkage as 
the slope S of the reference shrinkage curve in the basic 
shrinkage area (Fig. (7), Wn<W<Ws), k=1-S w. 

Parameters vs, vz (Table (2)) were also estimated for soils 
1 through 6 in the course of the construction of the reference 
shrinkage curve for each soil (see as an example Fig. (7)) 
according to the approach from [16,18]. 

Thus, parameters s, vs, vz, c, K, Ulph (or Wh and W*h) 
from Tables 1 and 2 were used to predict the water retention 
curves of soils 1 through 6 based on the analysis from Sec-
tions 2-4. 

For example, Figs. (8) and (9) reproduce the data for the 
comparison (white circles), on the experimental water reten-
tion curves of soils 4 and 5 (Tables 1 and 2) from Figs. (2e) 
and (2f) of [12]. Note that the data from [12] only cover the 
Wn<W Wh range of water content (Wn is the end point of 
basic shrinkage). 

5.3. Data Analysis 

First, we checked the possibility of the clay Q factor 
presentation as Q( ,Qn) (Section 3.10) at some definite Qn 
value. With this aim in mind, we calculated the water reten-
tion curve, h(W) for each used soil as was described in Sec-
tions 2-4 using data on s, vs, vz, c, K, and Ulph from Tables 1 

Table 1. Input Parameters
#
 of the Model [16,18] from Which the Observed Shrinkage Curves for Soils from [12] are Predicted. 

These Parameters (i) Contain Three Input Parameters ( s, c, K) for the Soil Water Retention Curve Prediction, and (ii) De-

termine (see [18]) Three Input Parameters for this Prediction, the vs and vz Clay Characteristics as well as the Lacunar Pore 

Volume at Maximum Swelling, Ulph=(Wh*-Wh)/ w (see Table 2) 

Yz Wh s Wh* 
Soil Data Source 

dm
3
 kg

-1
 kg kg

-1
 kg dm

-3
 

c Pz K k 

kg kg
-1

 

1 
Cambisol from 

Fig.2a of [12] 
0.687 0.326 2.660 0.170 0 1.031 0.620 0.365 

2 
Cambisol from 

Fig.2b of [12] 
0.674 0.285 2.660 0.140 0 1.035 0.829 0.321 

3 
Vertisol from 

Fig.2d of [12] 
0.581 0.321 2.650 0.510 0.130 1.043 0.248 

0.321 

=Wh 

4 
Fluvisol from 

Fig.2e of [12] 
0.558 0.142 2.660 0.090 0 2.709 0.875 0.184 

5 
Fluvisol from 

Fig.2f of [12] 
0.598 0.296 2.650 0.420 0.021 1.190 0 

0.296 

=Wh 

6 
Cambisol from 

Fig.5a of [12] 
0.720 0.296 2.660 0.150 0 1.046 0.815 0.362 

#Yz, oven-dried specific volume; Wh, maximum swelling water content; s mean solid density; c, soil clay content; Pz, oven-dried structural porosity; K, aggre-

gate/intra-aggregate mass ratio; k, lacunar factor; and Wh*,water content that corresponds to filling in lacunar pores. 
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and 2 and some Qn value from the range Qnmin<Qn<Qnmax 
(Qnmin and Qnmax for the soil from Eq. (49)). The possibility 
of the clay Q factor presentation as Q( ,Qn) was checked by 
the fitting of the predicted h(W) (see Figs. (8) and (9), solid 
lines for soils 4 and 5 as an example) to the experimental 
data (see Figs. (8) and (9), white circles for soils 4 and 5 as 
an example) in the course of the Qn variation (between Qnmin 
and Qnmax) for each soil (at given s, vs, vz, c, K, and Ulph) and 
using the least-square criterion. To check the feasibility of 
the Q( ,Qn) presentation for each soil we estimated the 
goodness of fit, r

2
, the best-fitted Qn value, and standard er-

ror, h of the experimental points hex(Wi) (i=1,…, N) ( h was 
calculated according to [32] simultaneously with r

2
 and Qn). 

Table 3 shows the r
2
, Qn, and h values that were found. See 

in Section 6 the results of the data analysis. 

Second, we checked the universal dependence Qn(Pn) 

from Section 3.11 (Eq. (66)). Preliminarily, to construct this 

dependence we estimated Pn low, Pn up, Qn low, and Qn up values 

entering Eq. (66). With this aim in mind, we first found the 

experimental points (Pnj, Qnj) (in the Pn,Qn plane; Fig. (6b)) 

for the six clays (j=1,…, 6) contributing to the six soils that 

were considered at h(W) fitting (see above). With that, Qnj 

are the corresponding fitted Qn values from Table 3 and 

Pnj=1-vsj/vnj are estimated for the clays (at vs and vz given for 

each clay in Table 2) through the calculation of vn=vs+(1-

vs) n and n by vs and vz [25,26]. The Pnj values (as well as 

z, n, and vn) are also indicated in Table 3. Figure (6b) 

shows the points (Pnj, Qnj) (white squares with numbers 

j=1,…, 6). Then, to construct the theoretical dependence 

Qn(Pn) (Eq. (66)) we defined Pn low and Qn up as Pn and Qn for 

soil 3 (see Table 3 and point 3 in Fig. (6b)) as well as Pn up 

and Qn low as Pn and Qn for soil 2 (see Table 3 and point 2 in 

Fig. (6b)). Soils 2 and 3 were taken based on the obvious 

considerations connected with the extreme positions of the 

corresponding points in Fig. (6b). The solid curve in Fig. 

(6b) shows the universal dependence Qn(Pn) (Eq. (66)) with 

indicated Pn low, Pn up, Qn low, and Qn up and q(p) from Eq. (64) 

(Fig. (6a)). To check Qn(Pn) dependence one should compare 

the relative positions of the (Qn, Pn) points corresponding to 

soils 1, 4, 5, and 6 [that did not participate in the construction 

of Qn(Pn)] and the solid curve in Fig. (6b). See in Section 6 
the results of the analysis. 

Finally, to check the two-factor model as a whole we 
should compare, for each of soils 1, 4, 5, 6, the predicted soil 
water retention curves h(W, Qn) with the fitted Qn value (see 
Table 3; Figs. (8) and (9), solid lines for soils 4 and 5 as an 
example) and the theoretical Qn(Pn) value that follows from 
Eq. (66) and lies on the solid curve in Fig. (6b) at a given Pn 
(that corresponds to soils 1, 4, 5, and 6, see Table 3). See in 
Section 6 the results of the analysis. 

6. RESULTS AND DISCUSSION 

6.1. About the Q Factor Presentation through the Qn Pa-

rameter 

In Figs. (8) and (9) (for soils 4 and 5 as an example) dis-
crepancies between the experimental points and the h(W) 
curve (solid one) that was fitted using the Q( ,Qn) presenta-
tion of the Q factor (Eqs. (43), (45)-(47)), do not surpass 
approximately two standard errors, h from Table 3 (the 
same relates to soils 1-3 and 6) These estimates along with 
the high r

2
 values (Table 3) speak in favor of the feasibility 

of Q factor presentation from Eqs. (43), (45)-(47). 

6.2. About the Theoretical Dependence of Qn(Pn) 

Accounting for the errors h (Table 3) of the experimen-
tal hex(W) points (white circles in Figs. (8) and (9)), two-
factor model approximations (Section 3), and computational 
errors, one can estimate the errors, DQ of the fitted Qn values 
(Table 3) as DQ<0.05 by order of magnitude. On the other 
side, as one can see, in Fig. (6b) the discrepancy, |Qn-Qntheor| 
between the Qn values of the six points and corresponding 
Qntheor values of solid line, Qn(Pn) (Eq. (66)) does not surpass 

0.05.That is, |Qn-Qntheor| DQ. Therefore, the arrangement of 
the (Pnj, Qnj) points (j=1,…, 6) in the (Pn, Qn) plane (Fig. 
(6b)) does not contradict the theoretical dependence Qn(Pn) 
(Eq. (66)). 

6.3. About the Two-Factor Model as a Whole 

Because for the six soils |Qn-Qntheor| DQ [Qntheor=Qn(Pn)] 
the predicted h(W, Qntheor) practically coincides with the fit-

Table 2. Three Input Parameters
#
 (Together with Other Input Parameters, s, c, K from Table 1) from Which the Water Retention 

Curves for the Six Soils Under Consideration (see Figs. 8a, b and 9a, b) as well as the Estimated Characteristic Water Con-

tents of the Soils
§
 are Predicted 

vs vz Ulph Wa Wz W' Wn Ws 
Soil 

 dm
3
kg

-1
 kg kg

-1
 

1 0.089 0.342 0.039 0.055 0.133 0.214 0.217 0.264 

2 0.084 0.317 0.036 0.040 0.096 0.184 0.184 0.228 

3 0.230 0.295 0 0.024 0.024 0.077 0.078 0.180 

4 0.107 0.394 0.042 0.013 0.030 0.037 0.038 0.045 

5 0.211 0.467 0 0.107 0.154 0.168 0.169 0.207 

6 0.087 0.384 0.066 0.060 0.159 0.207 0.209 0.244 

# vs, relative volume of contributive clay solids; vz, relative volume of contributive clay matrix in oven-dried state; and Ulph, specific volume of the clay lacunar 

pores within the intra-aggregate matrix at maximum swelling point. 
§ Wa, boundary of the exhausting capillary water; Wz, soil shrinkage limit; W', "sewing" point; Wn, end point of basic shrinkage; and Ws, end point of soil struc-

tural shrinkage. 
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ted h(W, Qn) for each soil (see the solid line in Figs. (8) and 
(9) for soils 4 and 5 as an example). Therefore the discrepan-
cies between the experimental hex(W) points (white circles in 
Figs. (8) and (9)) and theoretically predicted soil water reten-
tion curve, h(W, Qntheor) (solid line in Figs. (8) and (9)) do not 

surpass two standard errors, h from Table 3. This result 
shows that the soil water retention curves predicted by the 
two-factor model (Sections 2-4) for the six soils from [12] 
are in the good agreement with the corresponding experi-
mental curves from [12]. 

 

Fig. (8a). The water retention curve for soil 4 (see Tables 1-3). The white circles present data from [12]. The solid line presents the model 

predicted h(W) dependence in the total range of the water content for both the fitted Qn parameter and theoretically predicted, Qn(Pn) (Pn is 

the porosity of the contributive clay at the air-entry point). Black circles on the curve correspond to the characteristic values of the soil water 

content with indicated marks (the sign and indices). These water contents respond to the boundary of the exhausting capillary water (Wa); 

shrinkage limit (Wz); "sewing" point (where 'f( ')= 'c( ')) (W'); end point of soil basic shrinkage (Wn); end point of soil structural shrinkage 

(Ws); and the maximum swelling point (Wh). 

 

Fig. (8b). The part of Fig.(8a) for the limited range of soil water content where there are the experimental data from [12]. 
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It should be noted that the water content range of the pre-
dicted suction head (Wa W Wh) is wider than that of the 
observed suction head in [12] (Wn<W Wh) (see as an exam-
ple Figs. (8a) and (9a)). Although the theoretical h(W) de-
pendences in the different parts of the water content range 
are closely connected with each other (according to Sections 
2-4), and thereby the experimental confirmation for the 
Wn<W Wh range is in part the confirmation for the 
Wa W Wn range also, nevertheless, the comparison of the 

predicted h(W) and independent data for the Wa W Wn range 
is desirable in the future. 

Several additional points should be mentioned: 

(a) Table 4 contains the estimates of all the values con-
nected with the boundary water content a (see Fig. (5)). 
These results show the characteristic order of magnitudes. 
Table 4 shows that among the six considered soils only in the 
case of soil 3 does a= z ( z see in Table 3; or Wa=Wz in Ta-

 

Fig. (9a). As in Fig. (8a) for soil 5. 

 

Fig. (9b). The part of Fig. (9a) for the limited range of soil water content where there are the experimental data from [12]. 
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ble 2), 'min( a)>2la, and Fa=Fz; for the other soils a< z, 
'min( a)=2la, and Fa<Fz (cf. Section 3.8). Note that the 

maximum value La (Table 4) of the summary perimeter of 
clay pore tubes (per unit surface area of their cross-section) 
containing only the maximum adsorbed water film, varies in 
a small range 6.2-7.9 μm

-1
 for the soils under consideration. 

According to Table 4 the ratios 'min( a)/rmM and 'm( a)/rmM 
(see Fig. (5)) also vary in a small ranges. The values 'min( a) 
and 'm( a) (Table 4) characterize the total range of the size 
variation of the internal pore-tube cross-section in the con-
tributive-clay matrices at = a. Finally, it is worth noting that 
the maximum thickness of the adsorbed water film, la is in 
the range 4 10

-2
-10

-1
μm (Table 4) that is in agreement with 

the estimates [33] flowing out of the general physical con-
siderations (10

-3
-10

-1
μm). 

 (b) As one can see in Table 2 for all the six considered 
soils (Wn-W')<<Wn (cf. Section 3.9). 

(c) At a given set of the input parameters ( s, vs, vz, c, K, 
and Ulph) the soil shrinkage curve has two possible variants 
in the vicinity of the maximum swelling point, Wh 

[16,18,19]. In the prediction of the soil water retention curve 
h(W) we tried both the possible W( w ) dependences. The 
experimental data [12] on the retention curves are in agree-
ment with the predicted h(W) only for the W( w ) variant 
leading to the shrinkage curve that is convex upward in the 
vicinity of the W=Wh point (see [16]). Figs. (8) and (9) show 
the results that relate namely to this variant. 

(d) The specification of the universal dependence Qn(Pn) 
(the solid curve in Fig. (6b)) is possible as data accumulation 
with other soils. However, as judged by Fig. (6b) it should 
be very small because extreme points 3 and 2 in Fig. (6b) are 
on the horizontal and vertical sections of the Qn(Pn) line, 
respectively. 

(e) About additional results of this work. This work is 
aimed at the physical modeling of clay soil water retention 
based on the generalization of the two-factor model of clay 
water retention [22] as well as on the new concepts of intra-
aggregate soil structure (Fig. (1)) [16,18,19]. Hence, the 
above results relative to the soil water retention give the ad-
ditional validation of both the two-factor model (in addition 

Table 3. Estimated Parameters
#
 of the Contributive Clays for the Soils Under Consideration that Were Used in the Data Analysis 

h 

Soil z n vn Qnmin Qnmax Pn Qn r
2 

cm 

of H2O 

1 0.211 0.343 0.402 0.544 0.705 0.778 0.570 0.989 29.83 

2 0.174 0.335 0.391 0.508 0.674 0.784 0.513 0.985 13.10 

3 0.040 0.128 0.329 0.809 0.894 0.625 0.874 0.972 45.19 

4 0.282 0.360 0.429 0.641 0.781 0.751 0.686 0.988 16.76 

5 0.309 0.340 0.480 0.839 0.912 0.559 0.860 0.998 7.23 

6 0.281 0.370 0.424 0.598 0.748 0.795 0.601 0.998 11.18 

#
z, relative water content of clay at shrinkage limit; n, relative water content of clay at air-entry point; vn, relative clay volume at air-entry point; Qnmin, possi-

ble minimum value of Qn for a clay; Qnmax, possible maximum value of Qn for a clay; Pn, clay porosity at air-entry point; Qn, clay Q factor at air-entry point; r2, 

goodness of fit for the best-fitted Qn value; and h, estimate of standard error of experimental suction values 

 
Table 4. Estimates of all Values

#
 Connected with Boundary Water Content a 

la 'min( a) 'm( a) 'min( a)/rmM 'm( a)/rmM La 

Soil a 

μm   

Fa Fz
 

μm
-1 

1 0.087 0.040 0.080 1.446 0.028 0.505 0.313 0.762 7.830 

2 0.074 0.036 0.073 1.445 0.025 0.492 0.288 0.684 7.927 

3 0.040 0.075 0.190 1.337 0.063 0.445 0.472 0.472 6.260 

4 0.122 0.051 0.102 1.444 0.037 0.529 0.381 0.873 7.506 

5 0.214 0.107 0.214 1.406 0.083 0.546 0.660 0.952 6.179 

6 0.106 0.041 0.082 1.453 0.030 0.528 0.324 0.864 7.898 

#
a, relative clay water content corresponding to maximum adsorbed film; la, maximum thickness of adsorbed water film; 'min( a), minimum ' value in clay 

matrix at = a; 'm( a), maximum ' value in clay matrix at = a; 'min( a)/rmM, minimum relative internal size of pore-tube cross-sections at = a; 'm( a)/rmM, 

maximum relative internal size of pore-tube cross-sections at = a; Fa, clay saturation degree at = a; Fz, clay saturation degree at shrinkage limit; and La, 

summary perimeter of pore tubes (per unit surface area of their cross-section) containing only the maximum adsorbed water film at = a. 
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to the results relating to pure clay from [22]) and the new 
concepts (in addition to the results of soil shrinkage predic-
tion from [16,18,19]). 

(f) About the case of sufficiently small clay content. In 
this case the differences between intra-aggregate lacunar 
pores (Fig. (1)) and inter-aggregate ones disappear because 
the aggregates themselves diminish and are reduced to sepa-
rate sand and silt grains (see [18,20]). The above general 
approach to the soil water retention remains applicable in the 
case of the small clay content. However the contribution to 
the soil suction, stipulated by the intra-aggregate clay (Fig. 
(2)), is degenerated and the contribution of the "tail" (Fig. 
(2)) becomes the major one. For this reason the contributing 
sand for such soils should be considered as a "zero approxi-
mation", but not clay, as in this work. 

Finally, it is worth reiterating an essential difference be-
tween the available models and the one presented in this 
work. These models are not physical ones in the exact sense 
of the word because they do not give the quantitative soil 
water retention prediction from a number of physical pa-
rameters. Even the models that start from (different for each 
model) fundamental concepts (e.g., [7,8,14]), are eventually 
reduced to curve-fitting. A number of input model parame-
ters that they use can only be found by fitting to an observed 
water retention curve. Unlike that, the presented model only 
uses the physical input soil parameters that can be measured 
or estimated independently of an observed water retention 
curve. This difference is of principle importance for under-
standing the physical interrelations between soil structure 
and hydraulic functions, even though one can quickly meas-
ure a local soil water retention curve and even though there 
are good fitting approximations for the local curve. 

7. CONCLUSION 

The objective of this work is to derive the soil water re-
tention from soil structure without curve-fitting and using 
only parameters with clear physical meaning that can be 
measured independently of an experimental retention curve. 
Two obvious key points underlying the work are: (i) the soil 
suction at drying (h) coincides with that of the soil intra-
aggregate matrix and contributive clay; and (ii) both the soil 
suction and volume shrinkage at dewatering (drying) de-
pends on the same soil water content (W). Together with 
some recent results these two simple points open the way to 
the physical prediction of soil water retention. Indeed, the 
two-factor (capillarity and shrinkage) model of clay water 
retention [22] enables one to connect clay suction (h) and 
clay water content ( w ) based on the clay matrix structure 
[24,25] and without curve-fitting. Accounting for this result 
the key point (i) means that the same dependence (h( w )) 
takes place between soil suction (h) and water content of the 
contributive clay ( w ). In addition, the reference shrinkage 
curve model [16,18,19], based on new concepts of intra-
aggregate soil structure, permits one to connect the soil water 
content (W) at volume shrinkage with the water content of 
the contributive clay ( w ). Accounting for this result key 
point (ii) implies that the same connection (W( w )) is kept 
when the soil suction increases at drying and shrinkage. 
Thus, knowing the h( w ) dependence for contributive clay 
from [22] and W( w ) dependence from [16,18,19] one comes 
to the parametric presentation of the soil water retention 

curve, h(W) (with w  as parameter). The realization of this 
approach required essential modification and specification of 
the available two-factor model for clay [22] and, in particu-
lar, taking the effect of adsorbed water film into account 
(Sections 3-4). As a result the model as a whole includes the 
following input parameters: the density of solids ( s), rela-
tive volume of contributive-clay solids (vs), relative volume 
of contributive-clay in the oven-dried state (vz), soil clay 
content (c), aggregate/intra-aggregate mass ratio (K), and 
specific volume of lacunar pores in the aggregates at maxi-
mum swelling (Ulph). 

The substantiation of the model is based on available data 
simultaneously on the experimental water retention and 
shrinkage curves for six aggregated clay soils from [12]. The 
analysis of the shrinkage curves using the approach from 
[16,18] gives the necessary input for the soil water retention 
prediction (how the input data is obtained is not essential for 
the aims of this work). The major result of this work is the 
quite reasonable and promising agreement between the pre-
dicted (without curve-fitting) and observed water retention 
curves of the aggregated shrink-swell soils. 

NOTATION 

A = constant of clay microstructure, dimensionless 

c = soil clay content, kg kg
-1

 

D = coefficient in Eqs. (57)-(61), (63), dimension-
less 

DQ = estimate of standard error of Qn, dimensionless 

F( ) = saturation degree, dimensionless 

Fa = F value at = a, dimensionless 

Fz = F value at = z, dimensionless 

G = coefficient in Eq. (40), dimensionless 

g( ') = degree of water-filling the pore tubes of the 
internal 

'
 size, dimensionless 

H = one of two factors determining suction, kPa or 
cm of water 

h = soil (or clay, or intra-aggregate matrix) suc-
tion, kPa or cm of water 

ho = suction at the maximum soil swelling (Fig. 
(2)), kPa or cm of water 

I(x) = function entering the pore-tube size distribu-
tion (Eq. (17)), dimensionless 

K = aggregate/intraaggregate mass ratio, dimen-
sionless 

k = lacunar factor, dimensionless 

L( ) = summary perimeter of pore tubes (per unit 
surface area of their cross-section) containing 
only the maximum adsorbed water film, μm

-1
 

La = L value at = a, μm
-1

 

la = maximum thickness of adsorbed water film, 
μm 

M( ) = function determined after Eq. (22), dimension-
less 
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P = clay matrix porosity, dimensionless 

Pn = clay porosity at the air-entry point, dimension-
less 

Pn low = lower boundary of Pn for different clays, di-
mensionless 

Pn up = upper boundary of Pn for different clays, di-
mensionless 

Pz = oven-dried structural porosity of soil in oven-
dried state, dimensionless 

p = relative value connected with Pn (Eq. (54a), 
dimensionless 

po = specific p value of the q(p) dependence, di-
mensionless 

Q = one of two factors determining suction, dimen-
sionless 

Q1,.,Q3= coefficients in Eq. (43), dimensionless 

Qn = Q( n) value, dimensionless 

Qn low = lower boundary of Qn for different clays, di-
mensionless 

Qnmax = possible maximum value of Qn for a given 
clay, dimensionless 

Qnmin = possible minimum value of Qn for a given 
clay, dimensionless 

Qn up = upper boundary of Qn for different clays, di-
mensionless 

q = relative value connected with Qn (Eq. (54b)), 
dimensionless 

qi(i=1,…,6) = coefficients in Eq. (42), dimensionless 

R( ) = characteristic (internal) size of pore-tube cross-
section of clay matrix, μm 

rmM = maximum external size of clay pores at the 
liquid limit, μm 

ro( ) = minimum external size of clay pores, μm 

r
2
 = goodness of fit for the best-fitted Qn value, 

dimensionless 

Ulph = specific lacunar pore volume at maximum 
swelling, dm

3
/kg 

Us = specific volume of inter-aggregate pores, 
dm

3
/kg 

v( ) = relative clay volume, dimensionless 

vh = relative clay volume at maximum swelling, 
dimensionless 

vM = relative clay volume at liquid limit (vM=1), 
dimensionless 

vn = relative clay volume at air-entry point, dimen-
sionless 

vs = relative volume of clay solids, dimensionless 

vz = v value at the shrinkage limit of clay, dimen-
sionless 

W = gravimetric soil water content, kg kg
-1

 

Wa = boundary of the exhausting capillary water, 
kgkg

-1
 

Wh = water content at maximum soil swelling, kg 
kg

-1
 

Wm = maximum soil water content, kg kg
-1

 

Wn = end point of soil basic shrinkage, kg kg
-1

 

Ws = end point of soil structural shrinkage, kg kg
-1

 

Wz = shrinkage limit, kg kg
-1

 

W' = "sewing" point (where 'f( ')= 'c( ')), kg kg
-1

 

w = water content of intra-aggregate matrix, kg kg
-1

 

wh = w value at the maximum swelling point, kg kg
-1

 

ws = w value at the end point of soil structural 
shrinkage, kg kg

-1
 

w  = water content of the contributive clay, kg kg
-1

 

h
w  = maximum swelling point of the clay, kg kg

-1
 

M

w  = clay liquid limit, kg kg
-1

 

s

w  = w  value at the end point of soil structural 
shrinkage, kg kg

-1
 

w' = contribution of intra-aggregate matrix to soil 
water content, W, kg kg

-1
 

w'h = w' value at maximum swelling point, kg kg
-1

 

w's = w' value at the end point of soil structural 
shrinkage, kg kg

-1
 

x( ') = argument of the I(x) function in Eq. (16)-(17), 
dimensionless 

Yz = minimum specific volume of soil, dm
3
 kg

-1 

Z( ) = function determined after Eq. (22), dimension-
less 

 = constant of clay microstructure, dimensionless 

c = contact angle, degrees 

 = surface tension of water, N/m 

 = mean thickness of clay particles, μm 

h = estimate of standard error of experimental suc-
tion values, kPa or cm of water 

Wm = maximum water content of capillary inter-
aggregate pores, kg kg

-1
 

( ) = mean thickness of clay particle cross-sections, 
μm 

 = relative water content of clay, dimensionless 

a = relative water content corresponding to the 
maximum adsorbed film, dimensionless 

h = relative water content of clay at maximum 
swelling, dimensionless 

n = relative water content of clay at air-entry point, 
dimensionless 

z = relative water content of clay at the shrinkage 
limit, dimensionless 

' = "sewing" point (Eq. (40)), dimensionless 
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 = external pore-tube cross-section size, μm 

s = density of solids, kg dm
-3

 

w = water density, kg dm
-3

 

m( ) = maximum external size of clay pore-tube 
cross-sections, μm 

o( ) = minimum external size of clay pore-tube cross-
sections, μm 

' = internal pore-tube cross-section size of clay 
matrix, μm 

'm = maximum ' value in clay matrix, μm 

'min = minimum ' value in clay matrix, μm 

'c( ) = maximum internal size of water-containing 
pore tubes, μm 

'f( ) = maximum internal size of water-filled pore 
tubes, μm 

( ') = one-mode pore-tube cross-section size distri-
bution of clay, dimensionless 

 = contribution of aggregate surface layer to soil 
water content, kg kg

-1
 

h =  value at maximum swelling point, kg kg
-1

 

REFERENCES 

[1] Klute A. Water retention: laboratory methods. In: Klute A, Ed. 
Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA 

and SSSA; Madison,WI 1986; pp. 635-62 
[2] Bruce RR, Luxmoore RJ. Water retention: field methods. In: Klute 

A, Ed. Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. 
ASA and SSSA, Madison,WI 1986; pp. 663-86. 

[3] van Genuchten MT. A closed form equation for predicting the 
hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 

1980; 44: 892-8. 
[4] Havercamp R, Parlange J-Y. Predicting the water-retention curve 

from particle-size distribution: 1. Sandy soils without organic mat-
ter. Soil Sci 1986; 142(6): 325-39. 

[5] Tariq A, Durnford DS. Moisture retention of a swelling soil under 
capillary and overburden pressures. J Hydrol 1997; 203: 119-26. 

[6] Assouline S, Tessier D, Bruand A. A conceptual model of the soil 
water retention curve. Water Resour Res 1998; 34: 223-31. 

[7] Tuller M, Or D, Dudley LM. Adsorption and capillary condensa-
tion in porous media: liquid retention and interfacial configurations 

in angular pores. Water Resour Res 1999; 35:1949-64. 
[8] Or D, Tuller M. Liquid retention and interfacial area in variably 

saturated porous media: upscaling from single-pore to sample-scale 
model. Water Resour Res 1999; 35: 3591-605. 

[9] Assouline S. A model for soil relative hydraulic conductivity based 
on the water retention characteristic curve. Water Resour Res 2001; 

37: 265-71. 

[10] Assouline S. Modeling the relationship between soil bulk density 

and the water retention curve. Vadose Zone J 2006; 5: 554-63. 
[11] Braudeau E, Mohtar RH. Water potential in nonrigid unsaturated 

soil-water medium. Water Resour Res 2004; 40: W05108. 
[12] Boivin P, Garnier P, Vauclin M. Modeling the soil shrinkage and 

water retention curves with the same equations. Soil Sci Soc Am J 
2006; 70: 1082-93. 

[13] Khlosi M, Cornelis WM, Douaik A, van Genuchten MTh, Gabriels 
D. Performance evaluation of models that describe the soil water 

retention curve between saturation and oven dryness. Vadose Zone 
J 2008; 7(1): 87-96. 

[14] Wang T, Grove SM, Anderson MG. A physical-chemical model for 
the static water retention characteristic of unsaturated porous me-

dia. Adv Water Resour 2008; 31: 701-13. 
[15] Pham HQ, Fredlund DG. Equations for the entire soil-water charac-

teristic curve of a volume change soil. Can Geotechn J 2008; 45(4): 
443-53. 

[16] Chertkov VY. The reference shrinkage curve at higher than critical 
soil clay content. Soil Sci Soc Am J 2007; 71(3): 641-55. 

[17] Chertkov VY. The reference shrinkage curve of clay soil. Theor 
Appl Fract Mech 2007; 48(1): 50-67. 

[18] Chertkov VY. The soil reference shrinkage curve. Open Hydrol J 
2007; 1: 1-18. 

[19] Chertkov VY. The physical effects of an intra-aggregate structure 
on soil shrinkage. Geoderma 2008; 146: 147-56. 

[20] Chertkov VY. Estimating the aggregate/intraaggregate mass ratio 
of a shrinking soil. Open Hydrol J 2008; 2: 7-14. 

[21] Chertkov VY. The geometry of soil crack networks. Open Hydrol J 
2008; 2: 34-48. 

[22] Chertkov VY. A physically based model for the water retention 
curve of clay pastes. J Hydrol 2004; 286: 203-26. 

[23] Chertkov VY, Ravina I. The effect of interaggregate capillary 
cracks on the hydraulic conductivity of swelling clay soils. Water 

Resour Res 2001; 37:1245-56. 
[24] Fiès JC, Bruand A. Particle packing and organization of the tex-

tural porosity in clay-silt-sand mixtures. Eur J Soil Sci 1998; 49: 
557-67 

[25] Chertkov VY. Modeling the pore structure and shrinkage curve of 
soil clay matrix. Geoderma 2000; 95: 215-46. 

[26] Chertkov VY. Modelling the shrinkage curve of soil clay pastes. 
Geoderma 2003; 112: 71-95. 

[27] Chertkov VY. Non-fitted prediction of clay soil aggregate shrink-
age. Int J Phys Sci 2006; 1: 34-46. 

[28] Chertkov VY. Intersecting-surfaces approach to soil structure. Int 
Agrophys 2005; 19: 109-18. 

[29] Kochina PI. Theory of ground water movement. Princeton Univer-
sity Press: Princeton, NY 1962. 

[30] Blake GR, Hartge KH. Particle density. In: Klute A. Ed. Methods 
of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, 

Madison,WI; 1986; pp. 377-382. 
[31] Gee GW, Bauder JW. Particle-size analysis. In: Klute A. Ed. 

Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA 
and SSSA, Madison,WI; 1986; pp. 383-412. 

[32] Hamilton WC. Statistics in physical science. Ronald Press: New 
York 1964. 

[33] Landau LD, Akhiezer AI, Lifshitz EM. General physics - mechan-
ics and molecular physics. Pergamon: Oxford 1967. 

 
 

Received: November 06, 2009 Revised: February 03, 2010   Accepted: February 08, 2010 
 

© V.Y. Chertkov; Licensee Bentham Open. 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 

work is properly cited. 


