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Abstract: Various statistical methods were applied to spatially discrete data from 14 intensively sampled small estuarine 

systems in the mid-Atlantic U.S. The number of sites per system ranged from 6 to 37. The surface area of the systems 

ranged from 1.9 to 193.4 km
2
. Parameters examined were depth, bottom temperature, bottom salinity, surface chlorophyll 

a, bottom dissolved oxygen, lead concentration in sediments, silt-clay content of sediments, and number of infaunal ben-

thic species. Statistical methods included means, standard deviations, coefficients of variation, empirical cumulative dis-

tribution functions, and contours determined by bivariate interpolation and interpolation by kriging. All of these methods 

were found to be appropriate depending upon the purpose of the characterization. Contouring was applied only to those 

systems with at least 23 discrete sample sites (7 systems). Cross-validation and randomization techniques were used to 

compare the two interpolation methods. Kriging was advantageous over bivariate interpolation when moderate to strong 

spatial correlation existed in the residuals (that is, after removal of the spatial trend with a nonparametric regression 

model). When kriging was conducted, the removal of the trend was necessary if the stationarity assumption was to be 

valid. The Delaware/Maryland coastal bays are shallow, well-mixed (horizontally and vertically) systems that exhibit little 

or no spatial correlation for the parameters examined. The South and Severn Rivers, subsystems of the Chesapeake Bay, 

exhibited moderate to strong spatial dependence for some parameters. Randomization techniques were used to evaluate 

the effect of decreasing the number of sites in kriged parameters. Based upon these randomizations, it was found that 23 

discrete sites could be used for kriging in estuaries with characteristics similar to those in the mid-Atlantic and if the sam-

ples were collected with a comparable design. 
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INTRODUCTION 

The estuarine component of the U.S. Environmental Pro-
tection Agency’s Environmental Monitoring and Assessment 
Program (EMAP) was designed with probability-based sam-
pling to collect data on indicators of ecological condition. 
The initial statistical population for estimates of condition 
was the overall estuarine waters within a biogeographic 
province and the sampling strata within the province [1,2]. 
The strata were large systems (estuarine surface area > 260 
km

2
 with estuarine length/width < 18), large tidal rivers (> 

260 km
2
 with length/width > 18), and small estuarine sys-

tems (< 260 km
2
). Over 400 probability sampling sites were 

visited during the summers of 1990-93 in the Virginian Bio-
geographic Province (Chesapeake Bay northward to Cape 
Cod) [3,4]. Although not part of the initial design, estimates 
could nonetheless be made for major estuarine systems that 
had sufficient sampling sites (typically > 25). Examples for 
the Virginian Province included Chesapeake Bay, Delaware 
Bay, and Long Island Sound [5]. However, since only single 
sites were sampled within each small estuarine system, rea- 
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sonable estimates could not be made on condition of an indi-
vidual small system.  

Environmental managers would like to extract as much 
useful information as possible from available environmental 
data. And for estuarine systems, in particular, they would 
like characterization of conditions on at least three scales: 
regional scale to set the context for interpreting information, 
the large watershed scale of major systems to determine the 
issues of importance for priority setting, and small system 
scale to provide direction to local land management and pol-
lution control. The overall goal is to provide information for 
environmental managers in their efforts to protect estuarine 
resources. The data acquired in the EMAP Virginian Prov-
ince project provide information at the first two scales. In 
1993, an EMAP project was conducted in the Dela-
ware/Maryland coastal bays to collect data to characterize 
these systems [6]. In 1997-98, EMAP conducted a study in 
the Chesapeake Bay, Delaware Bay, Delmarva coastal bays, 
and Albemarle-Pamlico estuarine system [7]. One objective 
was the characterization of small estuarine systems by inten-
sive sampling (spatially) in selected individual systems [8]. 
The 1993 and 1997-98 studies were intended to address the 
characterization needs of environmental managers at the 
third scale. Actual characterization of conditions can be ac-
complished by various statistical methods, with the method 
of choice dependent upon the particular question addressed.  
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Information on the mean condition for a system assists in 
setting relative priorities and deciding upon possible man-
agement actions across systems. Mean conditions are gener-
ally not related to biological significance since there is no 
relationship to thresholds of effects. Cluster analysis on 
mean values classifies systems into similar groups. Standard 
deviations provide estimates of uncertainty about the means 
and allow one to test for significance of differences in 
means. Obviously, mean and standard deviations can not be 
used to characterize the distribution of conditions and spatial 
variability within an individual system. Coefficients of varia-
tion provide an estimate of overall relative variability within 
a system. Correlations among variables provide information 
on how the variables are related. Empirical cumulative dis-
tribution functions (CDFs) provide information on the distri-
bution of conditions within a system, irrespective of the un-
derlying statistical distribution. If thresholds of effect can be 
defined, then CDFs can provide percent area of the system in 
good or poor condition (e.g., [3 , 5], However, CDFs do not 
provide the actual spatial distribution of the conditions (i.e., 
where in the system the worst conditions are that might be in 
need of management action).  

Contouring of interpolated data presents the spatial dis-
tribution of conditions across the system when data from 
spatially discrete sampling sites are available. Various inter-
polation methods used in contouring, however, provide dif-
ferent levels of error. The actual error inherent in contoured 
results is generally unknown. Kriging, an alternative to tradi-
tional interpolation methods, is a best linear unbiased estima-
tor for spatially discrete data [9]. It is linear in that weight-
ings are linear combinations of available data, unbiased be-
cause it tries to have the mean residual error equal to zero, 
and best because it minimizes the variance in the errors. 
Kriging was originally developed for geostatistical applica-
tions [10], but has in recent years been applied in many dis-
ciplines and to various natural resources [11-14]; [15-17] . 

The purpose of this paper is to apply various statistical 
methods for characterizing spatially discrete data collected 
from small estuarine systems in the mid-Atlantic region of 
the U.S. The capabilities of the different statistical analysis 
techniques are compared for characterizing conditions in the 
estuarine systems. The characterizations are presented in 
terms of what information an environmental manager could 
use in addressing their decisions. The effect of varying num-
ber of sample sites within a system on the results is dis-
cussed with implications for designing estuarine monitoring 
programs. 

METHODS 

Study Area 

The estuarine area of the U.S. mid-Atlantic region pro-
vides the geographic area for this study. This region has been 
the home to over 21 million people [18]. It also contains a 
landscape mosaic of ecological systems – lakes, streams, 
forest, agricultural areas, wetlands, and estuaries. The mid-
Atlantic has all of the environmental problems typically as-
sociated with human activities, including air pollution 
(ozone, acid rain); water quality problems (eutrophication, 
acid mine drainage); solid waste disposal problems (landfill 
leachate); large-scale habitat alteration from urbanization, 
agricultural, and forestry management practices; hydrologic 

modifications, such as dams and stream channelization; loss 
of biotic diversity; and threatened and endangered species. 

Fourteen individual estuarine systems in the mid-Atlantic 
that were intensively sampled (spatially) in summers of 1993 
and 1997 (Fig. 1) provided data for applying the statistical 
methods. These systems were chosen from all of those sam-
pled in 1993 and 1997-98 using the criterion that they each 
had at least 6 discrete sample sites. The sample site selection 
used a probability-based sampling grid (systematic hexago-
nal grid) overlain on each system, with random selection of 
one sample site within each grid. A list of the systems, along 
with the number of sites sampled and the estuarine surface 
area in each, appear in Table 1. Based on the number of sites, 
the systems fall into two groups: those systems with at least 
23 sites (“large number of sites”), and those with 6 to 11 
sites (“small number of sites”). Some of the analysis proce-
dures were conducted only for the first group. To provide for 
an analysis of a system with a large number of sites, the 
combination of Chincoteague Bay, Trappe Creek/Newport 
Bay, and Sinepuxent Bay was also included as a “combined 
system” (Table 1). 

Data Source 

During the summers of 1993 and 1997, the estuarine sys-
tems were sampled for various water, sediment, and biologi-
cal variables listed in Table 2. The data from 1998 dealt 
mostly with fish and were not used in this study. Refer to 
Challou et al. [6] and Strobel et al. [3] for details on sam-
pling and analysis procedures. For illustration purposes in 
this paper, the following variables were used in applying the 
characterization methods for the individual systems: depth, 
surface chlorophyll a, bottom temperature, bottom salinity, 
bottom dissolved oxygen concentration, silt-clay content of 
sediments, lead concentrations in sediment (smaller number 
of samples in most systems), and total number of benthic 
infaunal species. The data used in this study were acquired 
from the web site www.epa.gov/emap. 

Basic Statistical Analysis 

Information on the variables for each system was deter-
mined. These were mean, standard deviation, coefficient of 
variation (CV), minimum, maximum, empirical cumulative 
distribution function (CDF), and linearly interpolated con-
tours. Agglomerative hierarchical clustering was conducted 
on mean values to identify systems in similar groups [19]. 
Euclidian distance was used with a complete linkage model. 
The cluster analyses were conducted separately for the sys-
tems with large and small number of sites. Spearman rank 
correlations ( ) between variables within each system were 
calculated; variables were typically non-normally distrib-
uted. Tests for difference in means for each variable between 
systems were conducted using t-tests. Correlation matrices of 
seven variables in each system (lead excluded) were tested 
for differences using procedure in Morrison [20]. The esti-
mation formula as presented in Hyland et al. [21] was used 
to construct the CDFs. The CDFs were tested for difference 
between systems using the Kolmogorov-Smirnov test [22]. 
There were no non-detects in the data sets used. A few data 
values were missing; these missing values were assumed to 
be random (i.e., the results for non-missing data were as-
sumed to include the missing values). The significance level 
for all tests (p-value) was 0.05.  
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Fig. (1). Map of study area, small estuarine systems sampled, and sampling sites within small systems. 

 

Table 1. Mid-Atlantic Estuarine Systems Used in Characterization Analysis 

 Number of sample sites Year sampled Estuarine surface area (km
2
) 

Rehobeth Bay 30 1993 37.4 

Indian River 37 1993 29.7 

St. Martin River 25 1993 11.3 

Trappe Creek/Newport Bay 23 1993 19.9 

Chincoteague Bay (MD only) 36 1993 193.4 

South River 27 1997 23.4 

Severn River 29 1997 24.7 

Cherrystone Inlet 9 1997 5.4 

Chowan River 10 1997 12.9 

Mobjack Bay 9 1997 91.0 

Pamunkey River 11 1997 27.8 

Salem River 10 1997 1.9 

Schuykill River 6 1997 2.4 

St. Jerome Creek 10 1997 4.5 

Combined system † 63 1993 235.5 

† combination of Chincoteague Bay, Trappe Creek/Newport Bay, and Sinepuxent Bay 
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Table 2. Water Column and Sediment Compartment Variables Measured in Mid-Atlantic Estuarine Systems at Sampling Sites in 

1993 and 1997 [6; 8] 

Water Column Variables Sediment Compartment Variables 

depth 

salinity 

temperature 

dissolved oxygen 

pH 

dissolved and particulate nutrients 

chlorophyll a 

grain size (% silt/clay) 

sediment toxicity (amphipod and Microtox®) 

invertebrate macrofauna 

organic contaminants (24 PAHs, 18 PCB congeners, DDTs, 11 pesticides, butyltins) 

inorganic contaminants (15 metals) 

total suspended solids  

secchi depth  

 

Contouring takes variables that may be on irregular grids, 
and estimates them on a regular and significantly finer grid. 
For this analysis, the value at a point that was contoured was 
estimated by a weighted linear combination of the nearest 
sample points (bivariate interpolation [23]). Contours were 
not produced for the systems with small number of sites. 
Geographic coordinates were converted to UTM coordinates 
for linear interpolation and contouring. The contouring soft-
ware was capable of constraining the contours so that land 
areas were excluded from the contoured domain. SAS [24] 
and S-Plus software [25] were used for statistical analysis 
and contouring.  

Kriging Analysis 

Since kriging is not as well understood as the other 
methods, we provide a simple introduction to the topic. Krig-
ing assumes that two observations taken near each other are 
typically more alike than observations at a much greater dis-
tance apart. Modeling this spatial correlation is usually ac-
complished through construction of an empirical variogram 
(e.g., Goovaerts [15]. The variogram is a measure of the dis-
similarity between two observations that are a distance |h| 
apart. (Bold letters are used here to denote vectors.) The em-
pirical variogram is defined as  

 

(h) = 1
2 N(h)

 
i
(x + h) (h)

n=1

N ( h ) 2

,          (1) 

where (h) is the empirical variogram and N(h) is number of 
pairs of sample points for variable values i(x) at the separa-
tion distance h. By definition, the variogram is one-half the 
average squared difference between the paired data values. 
Equation (1) is often referred to as the semivariogram be-
cause of the one-half factor. For some variograms, the aver-
age squared difference between the pairs of point values no 
longer increases as the separation distance increases, i.e., the 
variogram flattens out. The distance at which this occurs is 
called the range, while the variogram value at that distance is 
referred to as the sill. In practice, there is a discontinuity in 
the variogram at the origin, i.e., it does not go to zero. This is 
called the nugget effect and is attributed to measurement 
error and variation within the minimum sampling site spacing. 

The variogram in equation (1) is the classical formulation 
given by Matheron [10]. Cressie and Hawkins [26] devel-
oped a robust estimator that reduces the effect of outliers 

without removing data points from a data set. This robust 
estimator is based on the fourth power of the square root of 
the absolute difference: 

 

(h)  =  

4
1

2  N(h) 

1/2

 
i
(x + h) - 

i
(x)  

n=1

N(h )

 

0.457 +  0.494 /  N(h) 
  .      (2) 

This form of the empirical variogram was used in the 
analysis. 

Two assumptions underlying the procedures developed 
for kriging are isotropy and stationarity of variograms [9], 
referred to as the intrinsic hypothesis by Matheron. Isotropy 
refers to the independence of the variogram with respect to 
direction. A complicating factor in spatial relationships is a 
change in correlation as a function of direction. Anisotropy 
refers to variograms that are functions of distance and direc-
tion. Directional variograms were used to evaluate the degree 
of anisotropy. Stationarity means that the variogram is a 
function only of the separation distance of points, not on 
actual location. A stationary variogram is independent of 
spatial location, that is, no spatial trend exists in the data.  

The occurrence of spatial trends in the data can be ac-
counted for in two ways. For the first, when the range exists 
and the trend is minimal over distances up to the range, then 
there is no practical need to detrend the data. Strictly speak-
ing, the stationarity assumption applies not to the entire data 
set but only to the search neighborhood [9]. The actual 
search neighborhood can be less than the total sampled area 
when a large number of sites is available for computing lags 
(differences in distances). In the second way, regression 
models, such as parametric or non-parametric local regres-
sion (loess) models [27], are fit to the data to remove the 
trend. The variogram construction and kriging are then con-
ducted on the residuals from removal of the trend. For this 
study, loess models were fit for each variable to remove spa-
tial trends. Refer to Kaluzny et al. (1998) for details and im-
plementation of loess model.  

Since empirical variogram values are derived only at spe-
cific lags, a continuous function, or model, is fit so that val-
ues of (h) can be obtained at all distances (h). Typical mod-
els include linear, exponential, spherical, and Gaussian, al-
though the Gaussian model is known to lead to unstable krig-
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ing systems and artifacts in the estimated maps (Goovaerts 
[28] referencing Wackernagel [29], pp. 109-111). Once the 
model is fit, the nugget, sill, and range of the variogram can 
be obtained. For example, the spherical model is  

(h) = C
0
+C

1
(1.5  

h

r
  -  0.5 

h

r

3

),      h  r

        =  C
0
+C

1
,                                   h >  r 

      (3) 

the exponential model is 

(h) = C
0
+C

1
(1 exp(  

h

r
)),           (4) 

and the linear model is 

(h) = C
0
+C

1
 h,               (5) 

where C0 is nugget variance, r is the range parameter, and 
the sill or total variance is (C0 + C1). The spherical and ex-
ponential models are bounded in that they reach a sill either 
at a given range value (spherical model) or asymptotically 
(exponential model). The practical range is defined as the 
distance at which the model value is 95% of the sill, that is, 
3r for the exponential model. The linear model is un-
bounded.  

Spherical, exponential, and linear functions were evalu-
ated as possible models for the empirical variograms for the 
variables for each system. Once the form of the variogram is 
known, estimation of the variables at unsampled locations 
(

*
(u)) is conducted by ordinary kriging, which uses only the 

available data for the variable to be estimated. That is, ordi-
nary kriging estimates values as a linear combination of 
neighboring observations ( (u ),  = 1,…. n): 

* (x) = (x)
=1

n ( x )

 (x ).             (6) 

The ordinary kriging weights, (x), are chosen to mini-
mize the error variance under the constraint that the estima-
tion be unbiased. Ordinary kriging also provides a standard 
error estimate. This can be combined under certain assump-
tions with the estimated value to derive confidence intervals 
for the uncertainty in the resulting values.  

The assumed spatial model for each variable consists of 
three components: a spatial component for the trend (the 
loess model), a random but spatially correlated component 
(based on the modeled variogram), and a random noise rep-
resenting the residual error (assumed to be normal). The kri-
ged estimate for the residuals is added to the loess compo-
nent to predict values for the variables. Variogram construc-
tion and kriging were only applied to the systems with at 
least 23 sample sites. A small number of sample points limits 
the number of lags that can be used for construction of the 
empirical variogram and the resultant fit of the continuous 
function [30].  

The procedure used to select the functional form for the 
model variogram was as follows: a spherical function was fit 
to the empirical variogram. If the range was much greater 
than the system size, then a linear model was selected and 
appropriate coefficients chosen. If the range was zero (nug-
get equaled total variance), then the model is “pure nugget,” 
with no spatial dependence in the variogram. If the spherical 

model was determined to be neither linear nor pure nugget, 
then a cross-validation was conducted to compare with the 
exponential model fit. Cross-validation is a technique to de-
termine the reliability of the estimation procedure in repro-
ducing the sample value. This is accomplished by removing 
each sample value from the sample and reestimating the re-
moved value from the remaining values [9]. The mean 
square error was calculated for the kriged predictions as an 
estimate of the variability, where  (xi) and *(xi) represent 
the actual and estimated values, respectively: 

MSE    =    
1

n
(x

i
) * (x

i
)

i=1

n 2

.          (7) 

The model with the smaller MSE was selected. The 
S+SpatialStats module in S-Plus [31] was used for construc-
tion of the empirical variograms and implementation of the 
kriging procedures. The geographic coordinates were trans-
formed to UTM coordinates for kriging. 

Effect of Sample Size on Kriging 

To estimate the effect of sample size, simulations were 
conducted for those systems with N > 35 (Indian River, 
Chincoteague Bay, and the combination of Chincoteague 
Bay, Trappe Creek/Newport Bay, and Sinepuxent Bay) with 
all of the variables. The sample size, NS, was decreased in 
steps of 5 (10 for combined system) in each of these systems 
from the maximum until NS was less than 25. Randomization 
techniques [32] were used to evaluate for each value of NS. 
A random selection of NS (< Nmax) sites out of the possible 
Nmax was made, and the entire kriging process was conducted 
for the NS randomly-selected samples. For each value of NS, 
100 randomizations were conducted. 

The relative mean square error of prediction (RMSE) was 
used as a criterion to compare the accuracy of the kriged 
estimates from the simulations:  

RMSE = MSE / total variance of sample 

The Spearman rank correlation coefficients were calcu-
lated between values estimated for reduced sample sizes (NS 

samples) and values from the maximum sample size [16, 33]. 
The median results from the randomizations were compared. 

Evaluation of Interpolation Methods 

The performance of the kriged estimate was compared to 
that of the bivariate interpolation. This was conducted using 
cross-validation for Severn River, Indian River, and com-
bined system. The comparison criterion was the ratio of 
mean square errors (MSE). Since we found that contours by 
kriging and by bivariate interpolation were not much differ-
ent for most variables, we present results for kriging focus-
ing on the possible increase in uncertainty rather than pre-
senting contour plots.  

RESULTS 

Basic Statistical Results 

The number of samples, mean, standard deviation, coef-
ficient of variation, minimum, and maximum for the vari-
ables for each system are listed in Table 3. CVs can express 
the variability between systems. Low CVs were exhibited for 
bottom temperature and salinity, while higher values were 
shown for chlorophyll a, sediment silt-clay content, and  
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Table 3. Basic Statistical Results for Conditions in Intensively Sampled Estuarine Systems 

 Mean  ‡
 

CV
 * 

Med Min Max Mean  ‡
 

CV
 * 

Med Min Max 

 Rehobeth Bay (N = 30, N = 6 for Pb) Indian River (N = 37, N = 4 for Pb) 

Depth (m) 1.3 0.6 45.5 1.2 0.6 3.4 1.5 0.6 37.7 1.5 0.6 3.7 

Bottom temperature (oC) 25.7 2.7 10.7 25.7 19.4 29.8 26.5 3.8 14.5 26.6 19.2 37.4 

Bottom Salinity (o/oo) 29.7 2.6 8.6 30.4 21.6 32.9 26.4 4.9 18.7 26.9 8.4 32.1 

Surface chlorophyll a (:g/L) 13.3 9.5 71.4 10.3 1.7 43.1 28.1 21.5 76.5 21.1 2.9 95.6 

Bottom oxygen (mg/L) 6.7 1.3 19.6 6.3 4.6 10.5 6.0 1.5 24.5 5.7 3.8 9.6 

Sediment silt-clay (%) 37.0 36.7 99.1 12.5 2.2 98.3 65.4 30.0 45.9 77.3 2.0 99.8 

Sediment Pb (:g/g) 38.9 9.9 25.6 42.7 19.0 45.0 58.6 0.6 1.0 58.6 57.8 59.2 

Benthic infaunal species (#)† 20.8 6.9 33.3 21.5 3.0 31.0 20.2 7.1 35.3 21.0 1.0 32.0 

 St. Martin River (N = 25, N = 4 for Pb) Trappe Creek/Newport Bay (N = 23, N = 1 for Pb) 

Depth (m) 1.3 0.3 22.9 1.2 0.6 1.8 1.6 0.3 20.1 1.8 0.9 2.1 

Bottom temperature (oC) 27.4 1.8 6.6 27.2 24.1 31.7 25.6 1.9 7.6 25.6 21.4 28.2 

Bottom Salinity (o/oo) 28.6 2.6 9.1 29.4 23.7 31.6 27.7 2.1 7.4 27.6 23.1 30.9 

Surface chlorophyll a (:g/L) 19.9 6.2 31.0 18.0 13.2 32.1 17.7 15.2 85.6 12.2 2.4 60.3 

Bottom oxygen (mg/L) 5.7 1.1 19.6 5.8 3.0 8.3 6.2 0.8 13.5 6.2 4.3 8.3 

Sediment silt-clay (%) 57.7 27.3 47.4 69.2 4.7 91.4 66.1 28.4 42.9 76.8 2.5 95.7 

Sediment Pb (:g/g) 22.0 10.3 47.0 18.7 14.0 36.6 65.2 - - 65.2 65.2 65.2 

Benthic infaunal species (#)† 20.8 9.7 46.4 20.0 1.0 38.0 26.4 6.9 26.1 28.0 11.0 38.0 

 Chincoteague Bay (N = 36, N=6 for Pb) South River (N = 27) 

Depth (m) 1.5 0.5 29.8 1.6 0.6 2.1 3.1 1.5 49.5 4.8 0.8 6.2 

Bottom temperature (oC) 24.9 2.3 9.4 25.8 21.0 28.8 25.9 1.7 6.5 11.0 24.3 31.6 

Bottom Salinity (o/oo) 32.2 2.4 7.4 33.0 26.9 35.0 11.7 1.0 8.9 24.9 9.4 13.4 

Surface chlorophyll a (:g/L) 5.7 4.8 84.1 4.3 0.1 19.7 24.9 14.3 57.6 34.9 5.6 54.3 

Bottom oxygen (mg/L) 6.3 0.9 14.7 6.3 4.2 8.8 5.1 2.8 54.8 12.0 0.1 11.7 

Sediment silt-clay (%) 34.7 31.7 91.4 24.6 1.4 99.9 59.0 41.4 70.1 3.2 0.0 99.3 

Sediment Pb (:g/g) 37.8 17.6 46.7 40.0 14.9 66.2 33.9 21.7 64.1 83.8 4.2 68.7 

Benthic infaunal species (#)† 30.5 8.2 26.9 30.5 16.0 57.0 10.3 4.8 46.5 21.6 0.0 21.0 

 Severn River (N = 29) Combined system & (N = 63, N = 7 for Pb) 

Depth (m) 4.7 2.7 58.6 3.0 0.8 9.2 1.6 0.4 26.6 1.6 0.6 2.1 

Bottom temperature (oC) 25.3 1.2 4.9 8.0 24.1 27.7 25.1 2.1 8.5 25.6 21.0 28.8 

Bottom Salinity (o/oo) 10.7 1.5 14.0 24.8 7.0 12.8 30.4 3.1 10.1 29.8 23.1 35.0 

Surface chlorophyll a (:g/L) 16.7 7.7 45.8 46.3 5.9 32.4 10.2 11.3 110.9 6.5 0.1 60.3 

Bottom oxygen (mg/L) 3.5 3.0 86.2 10.8 0.1 9.5 6.2 0.9 13.8 6.2 4.2 8.8 

Sediment silt-clay (%) 62.0 41.6 67.1 5.5 0.5 99.1 45.6 33.5 73.4 40.5 1.4 99.9 

Sediment Pb (:g/g) 48.1 32.5 67.6 88.6 4.3 115.0 41.7 19.2 45.9 40.2 14.9 66.2 

Benthic infaunal species (#)† 8.4 7.4 87.8 13.2 0.0 24.0 29.2 7.8 26.6 29.0 11.0 57.0 
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Table 3. contd…. 

 Mean  ‡
 

CV
 * 

Med Min Max Mean  ‡
 

CV
 * 

Med Min Max 

 Cherrystone Inlet (N = 9) Chowan River (N = 10) 

Depth (m) 1.4 0.7 46.8 1.3 0.9 3.0 5.5 2.1 37.4 5.8 2.0 9.3 

Bottom temperature (oC) 26.0 0.5 2.0 26.0 25.1 26.7 27.4 0.3 1.0 27.3 27.0 27.8 

Bottom Salinity (o/oo) 23.0 0.9 3.7 23.2 21.8 24.0 0.1 0.2 169.3 0.1 0.0 0.5 

Surface chlorophyll a (:g/L) 16.7 4.8 29.0 16.1 9.8 25.1 8.0 3.3 40.9 7.6 3.5 13.7 

Bottom oxygen (mg/L) 7.6 0.7 9.4 7.2 6.7 8.8 5.7 1.5 26.0 6.2 3.5 7.4 

Sediment silt-clay (%) 76.4 32.0 41.9 89.2 1.5 97.3 66.8 41.7 62.5 89.9 1.4 96.8 

Sediment Pb (:g/g) 19.3 6.8 35.1 20.8 3.4 25.2 28.7 12.8 44.6 35.2 8.2 39.5 

Benthic infaunal species (#)† 14.4 9.3 64.6 11.0 5.0 35.0 14.0 4.2 30.1 13.0 9.0 20.0 

 Mobjack Bay (N = 9) Pamunkey River (N = 11) 

Depth (m) 4.1 2.2 53.1 4.2 1.5 6.6 2.1 1.8 89.8 1.4 0.1 5.5 

Bottom temperature (oC) 25.5 0.5 1.9 25.4 24.6 26.0 28.4 0.8 2.9 28.2 27.5 30.1 

Bottom Salinity (o/oo) 20.3 0.8 4.0 20.2 18.9 21.5 1.3 3.1 227.3 0.2 0.1 10.5 

Surface chlorophyll a (:g/L) 11.5 2.2 18.8 11.0 8.9 14.9 17.2 7.2 41.5 13.6 10.2 32.2 

Bottom oxygen (mg/L) 6.4 1.2 18.0 6.4 4.9 8.4 5.9 0.5 8.6 5.9 5.0 6.9 

Sediment silt-clay (%) 44.7 46.5 104.1 14.0 1.9 99.5 54.4 43.3 79.6 68.8 1.4 98.3 

Sediment Pb (:g/g) 12.2 9.4 77.5 6.4 2.9 24.0 18.6 10.0 53.6 18.2 4.7 37.5 

Benthic infaunal species (#)† 17.7 7.9 44.7 20.0 7.0 27.0 15.7 5.3 34.0 12.0 10.0 24.0 

 Salem River (N = 10) Schuykill River (N = 6) 

Depth (m) 1.4 0.8 59.1 1.3 0.5 2.6 8.6 1.6 18.7 8.6 6.8 10.8 

Bottom temperature (oC) 23.8 0.4 1.9 24.0 23.0 24.5 22.0 0.4 1.7 22.0 21.6 22.5 

Bottom Salinity (o/oo) 5.0 0.1 1.4 5.0 4.8 5.0 0.2 0.0 0.0 0.2 0.2 0.2 

Surface chlorophyll a (:g/L) 48.9 30.8 62.9 36.0 15.9 94.8 7.5 4.9 65.3 6.0 2.9 15.2 

Bottom oxygen (mg/L) 5.4 2.2 39.7 6.1 0.0 7.7 6.0 1.7 28.6 6.4 3.6 8.2 

Sediment silt-clay (%) 73.2 37.3 50.9 91.0 4.4 99.2 59.0 35.6 60.3 40.7 21.8 98.5 

Sediment Pb (:g/g) 47.4 21.4 45.1 55.4 18.2 84.0 117.1 20.4 17.4 111.0 94.6 147.0 

Benthic infaunal species (#)† 10.5 1.4 13.7 10.0 9.0 13.0 14.3 1.4 9.5 14.0 13.0 16.0 

 St. Jerome Creek (N = 10) 

Depth (m) 1.5 0.4 26.7 1.5 1.0 2.2       

Bottom temperature (oC) 26.5 0.6 2.4 26.6 25.5 27.4       

Bottom Salinity (o/oo) 15.4 0.3 2.2 15.4 14.7 15.8       

Surface chlorophyll a (:g/L) 17.0 10.7 62.6 15.0 7.7 40.1       

Bottom oxygen (mg/L) 7.2 1.1 15.1 7.4 4.7 8.5       

Sediment silt-clay (%) 59.7 44.5 74.5 89.8 1.9 98.6       

Sediment Pb (:g/g) 16.4 9.2 56.3 18.0 5.1 27.8       

Benthic infaunal species (#)† 13.9 4.3 30.6 16.0 7.0 19.0       

†
 Based on 1 grab sample per station except South and Severn Rivers that are based on 3 grabs per station  

‡  - standard deviation 
* CV – coefficient of variation 
& combination of Chincoteague Bay, Trappe Creek/Newport Bay, and Sinepuxent Bay 
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number of benthic species. The high CVs for bottom salinity 
in Chowan and Pamunkey Rivers (> 100%) were due to the 
small mean values. Every system had silt-clay content of 
sediment spanning the range of 0 – 100%. For the group of 
systems with a large number of sites, the two systems from 
the Chesapeake Bay (South and Severn Rivers) were differ-
ent from the others (Fig. 2): they were deeper and fresher at 
the bottom and had lower bottom dissolved oxygen and 
numbers of benthic species. Chowan, Pamunkey, Salem, and 
Schuykill Rivers were tidal fresh systems. Chincoteague Bay 
had the sandiest sediments. Cherrystone Inlet and Salem 
River had sediments with the highest median silt-clay con-
tent. South and Severn Rivers had similar variable distribu-
tions with the exception that Severn River had higher sedi-
ment Pb concentrations. Schuykill River had the highest 
sediment lead concentrations. St. Martins, Indian River, and 
Rehobeth Bay were similar with the exception that Indian 
River had higher chlorophyll a concentrations and Rehobeth 
Bay was sandier. Within the coastal bays, Chincoteague Bay 
had more benthic species, low chlorophyll a, and was sandier 
and saltier.  

The cluster analyses resulted in the following groupings 
for the systems (Fig. 3): 

- Severn and South Rivers,  

- Rehobeth Bay, St. Martins River, Trappe Creek 
Creek/Newport Bay, Indian River, and Chincoteague 
Bay, 

- Cherrystone Inlet, Mobjack Bay, St. Jerome Creek, 
Chowan, Pamunkey, and Salem Rivers,  

- Schuykill River. 

The results of the t-test for difference in mean values at 
the p = 0.05 significance level are shown in Table 4. The 
means for all of the seven variables from Indian River and 
St. Martin River were not statistically significantly different. 
Except for salinity, the means for Trappe Creek/Newport 
Bay and combined system, and Chincoteague Bay and com-
bined system were not statistically significantly different, as 
might be expected. The means for Indian River and Trappe 
Creek/Newport Bay were not statistically significantly dif-
ferent except for number of benthic species. 

The results of the test for difference in distributions at the 
p = 0.05 significance level are shown in Table 5. None of the 
CDFs for Indian and St. Martins Rivers were statistically 
significantly different. The following systems had CDFs not  

 

Fig. (2). Radar plot of means for all variables and all systems. 
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Fig. (3). Results of agglomerative hierarchical cluster analysis on mean values. 

 

 

Fig. (4a). Cumulative distribution functions (CDFs) for Indian River. Dotted lines are 95% confidence limits. 
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Fig. (4b). Cumulative distribution functions (CDFs) for Severn River. Dotted lines are 95% confidence limits. 
 
Table 4. Results of t-Tests between Systems for Selected Variables. Level of Statistical Significance is p = 0.05. a) Significance of t-

Tests. b) Number of Statistically Significant Differences between Systems 

a) depth Rehobeth 

Bay 

Indian 

River 

St. Martins 

River 

Trappe Creek / 

Newport Bay 

Chincoteague 

Bay 

Severn 

River 

South 

River 

Indian River NA       

St. Martins River NA NA      

Trappe Creek/Newport Bay 0.0115 NA 0.0010     

Chincoteague Bay 0.0443 NA 0.0343 NA    

Severn River < .0001 < .0001 < .0001 < .0001 < .0001   

South River < .0001 < .0001 < .0001 < .0001 < .0001 0.0103  

combined system 0.0085 NA 0.0082 NA NA < .0001 < .0001 

Temperature        
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Table 4. contd…. 

a) depth Rehobeth 

Bay 

Indian 

River 

St. Martins 

River 

Trappe Creek / 

Newport Bay 

Chincoteague 

Bay 

Severn 

River 

South 

River 

Indian River NA       

St. Martins River 0.0120 NA      

Trappe Creek/Newport Bay NA NA 0.0018     

Chincoteague Bay NA 0.0350 < .0001 NA    

Severn River NA NA < .0001 NA NA   

South River NA NA 0.0037 NA NA NA  

combined system NA 0.0262 < .0001 NA NA NA NA 

Salinity        

Indian River 0.0017       

St. Martins River NA NA      

Trappe Creek/Newport Bay 0.0032 NA NA     

Chincoteague Bay 0.0001 < .0001 < .0001 < .0001    

Severn River < .0001 < .0001 < .0001 < .0001 < .0001   

South River < .0001 < .0001 < .0001 < .0001 < .0001 0.0034  

combined system NA < .0001 0.0112 0.0002 0.0032 < .0001 < .0001 

Chlorophyll        

Indian River 0.0008       

St. Martins River 0.0041 NA      

Trappe Creek/Newport Bay NA 0.0474 NA     

Chincoteague Bay < .0001 < .0001 < .0001 < .0001    

Severn River NA 0.0084 NA NA < .0001   

South River 0.0007 NA NA NA < .0001 0.0098  

combined system NA < .0001 0.0001 0.0156 0.0236 0.0063 < .0001 

dissolved oxygen        

Indian River NA       

St. Martins River 0.0052 NA      

Trappe Creek/Newport Bay NA NA NA     

Chincoteague Bay NA NA 0.0432 NA    

Severn River < .0001 < .0001 0.0013 0.0002 < .0001   

South River 0.0093 NA NA NA 0.0297 0.0454  

combined system 0.0485 NA 0.0231 NA NA < .0001 0.0064 

Siltclay        

Indian River 0.0009       

St. Martins River 0.0239 NA      

Trappe Creek/Newport Bay 0.0028 NA NA     

Chincoteague Bay NA < .0001 0.0046 0.0003    

Severn River 0.0174 NA NA NA 0.0038   
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Table 4. contd…. 

a) depth Rehobeth 

Bay 

Indian 

River 

St. Martins 

River 

Trappe Creek / 

Newport Bay 

Chincoteague 

Bay 

Severn 

River 

South 

River 

South River 0.0394 NA NA NA 0.0110 NA  

combined system NA 0.0038 NA 0.0107 NA 0.0465 NA 

benthic species        

Indian River NA       

St. Martins River NA NA      

Trappe Creek/Newport Bay 0.0052 0.0014 0.0256     

Chincoteague Bay < .0001 < .0001 < .0001 NA    

Severn River < .0001 < .0001 < .0001 < .0001 < .0001   

South River < .0001 < .0001 < .0001 < .0001 < .0001 NA  

combined system < .0001 < .0001 < .0001 NA NA < .0001 < .0001 

 NA = not significant at p = 0.05 

b) number of significant differ-

ences, p = .05 

Rehobeth 

Bay 

Indian 

River 

St. Martins 

River 

Trappe Creek / New-

port Bay 

Chincoteague 

Bay 

Severn River South River 

Indian River 3       

St. Martins River 4 0      

Trappe Creek/Newport Bay 4 2 3     

Chincoteague Bay 4 5 7 3    

Severn River 5 5 5 4 6   

South River 6 3 4 3 6 4  

combined system 3 5 6 3 2 6 5 

 

Table 5. Results of Kolmogorof-Smirnov Test for Difference in Distribution between Systems for Selected Variables. Level of Sta-

tistical Significance is p = 0.05. a) Significance of Tests. b) Number of Statistically Significant Differences between Systems 

a) Depth Rehobeth 

Bay 

Indian River St. Martins 

River 

Trappe Creek / 

Newport Bay 

Chincoteague 

Bay 

Severn River South River 

Indian River NA       

St. Martins River NA NA      

Trappe Creek/Newport Bay 0.0021 NA 0.0010     

Chincoteague Bay NA NA 0.0033 NA    

Severn River < .0001 < .0001 < .0001 < .0001 < .0001   

South River < .0001 < .0001 < .0001 < .0001 < .0001 0.0016  

combined system 0.0094 NA 0.0082 NA NA < .0001 < .0001 

Temperature        

Indian River NA       

St. Martins River 0.0443 NA      

Trappe Creek/Newport Bay NA NA 0.0010     

Chincoteague Bay NA 0.0136 0.0014 NA    
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Table 5. contd…. 

a) Depth Rehobeth 

Bay 

Indian River St. Martins 

River 

Trappe Creek / 

Newport Bay 

Chincoteague 

Bay 

Severn River South River 

Severn River NA 0.0256 0.0009 NA 0.0281   

South River NA 0.0007 < .0001 0.0423 0.0463 0.0423  

combined system NA 0.0151 0.0082 NA NA 0.0458 0.0460 

salinity        

Indian River 0.0002       

St. Martins River NA NA      

Trappe Creek/Newport Bay 0.0008 NA 0.0010     

Chincoteague Bay < .0001 < .0001 < .0001 < .0001    

Severn River < .0001 < .0001 < .0001 < .0001 < .0001   

South River < .0001 < .0001 < .0001 < .0001 < .0001 0.0382  

combined system 0.0155 0.0008 0.0082 0.0010 0.0082 < .0001 < .0001 

chlorophyll        

Indian River 0.0043       

St. Martins River 0.0001 0.0381      

Trappe Creek/Newport Bay NA 0.0120 0.0010     

Chincoteague Bay 0.0004 < .0001 < .0001 < .0001    

Severn River 0.0101 NA NA 0.0175 < .0001   

South River NA 0.0255 0.0022 NA < .0001 NA  

combined system NA < .0001 0.0082 0.0029 0.0372 < .0001 < .0001 

dissolved oxygen        

Indian River 0.0272       

St. Martins River 0.0068 NA      

Trappe Creek/Newport Bay NA NA 0.0010     

Chincoteague Bay NA 0.0325 NA NA    

Severn River 0.0003 0.0323 NA 0.0005 0.0005   

South River < .0001 < .0001 < .0001 < .0001 < .0001 0.0205  

combined system NA 0.0233 0.0082 NA NA < .0001 < .0001 

siltclay        

Indian River 0.0031       

St. Martins River 0.0048 NA      

Trappe Creek/Newport Bay 0.0054 NA 0.0010     

Chincoteague Bay NA < .0001 0.0066 0.0015    

Severn River 0.0302 NA 0.0260 NA 0.0023   

South River 0.0035 0.0145 0.0057 0.0195 0.0003 NA  

combined system NA 0.0022 0.0082 0.0464 NA 0.0148 0.0010 

benthic species        

Indian River NA       
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Table 5. contd…. 

a) Depth Rehobeth 

Bay 

Indian River St. Martins 

River 

Trappe Creek / 

Newport Bay 

Chincoteague 

Bay 

Severn River South River 

St. Martins River NA NA      

Trappe Creek/Newport Bay 0.0239 0.0014 0.0010     

Chincoteague Bay < .0001 < .0001 0.0022 NA    

Severn River < .0001 < .0001 < .0001 < .0001 < .0001   

South River < .0001 < .0001 0.0003 < .0001 < .0001 NA  

combined system < .0001 < .0001 0.0082 NA NA < .0001 < .0001 

 NA = not significant at p = 0.05 

b) Number of significant dif-

ferences at p = 0.05 

Rehobeth 

Bay 

Indian River St. Martins 

River 

Trappe Creek / 

Newport Bay 

Chincoteague 

Bay 

Severn River South River 

Indian River 4       

St. Martins River 4 1      

Trappe Creek/Newport Bay 4 2 4     

Chincoteague Bay 3 6 6 3    

Severn River 6 5 5 5 7   

South River 5 7 7 6 7 4  

combined system 3 6 5 3 2 7 7 

 
statistically significantly different except for the one variable 
noted:  

 Indian River and Trappe Creek/Newport Bay except for 
number of benthic species, 

 St. Martins River and Trappe Creek/Newport Bay except 
for chlorophyll a, 

 South and Severn Rivers except for depth, and 

 Chincoteague Bay and combined system except for salin-
ity. 

If the data were normally distributed and equally variant 
then Tables 4 and 5 would be completely redundant. Differ-
ences noted between the tables are indicative of non-
normality in the data.  

Spearman rank correlations ( ) between variables for 
each system are shown in Table 6. Severn River exhibited 
the most statistically significant correlations between vari-
ables, while Chincoteague Bay and Indian River have the 
least for the systems with a minimum of 23 sites. Not only 
did Severn River have the most significant correlations, but 
also the correlations were among the strongest. Very few 
significant correlations were exhibited in systems with small 
number of sites. Salinity and chlorophyll a were the vari-
ables with significant correlations in the most systems with a 
minimum of 23 sites, all systems except the Severn River.  

The results of the tests for difference in correlation matri-
ces between systems were that the following systems were 
not statistically significantly different at 0.05 significance 
level: Rehobeth Bay, Indian River, Trappe Creek/Newport 
Bay, Chincoteague Bay, South River, and combined system. 

The outliers were Severn River, which was not statistically 
significantly different to any of the other systems, and St. 
Martins River, which was not statistically significantly dif-
ferent from only Trappe Creek/Newport Bay and South 
River. It should be noted that we were only demonstrating a 
possible way to analyze these data. We were in fact explor-
ing the data sets for differences and were not worrying about 
experiment-wise error rates.  

Fractional area CDFs for variables with 95% confidence 
intervals for two systems (Severn River and Indian River) 
are presented in Fig. (4) as examples of the method. The 
variables with lower CVs correspond with reasonably tight 
CDFs. CDFs for bottom dissolved oxygen and number of 
benthic species for all of the systems are shown in Fig. (5). 
The CDFs in the figure can be used to pick off fractional 
area below a defined threshold for the variable that repre-
sents a biologically significant criterion. For example, values 
of 2 and 5 mg/L are commonly used as criteria for bottom 
dissolved oxygen (DO) concentrations. From Fig. (5), South 
and Severn Rivers are systems with the larger fractional area 
impacted with moderate hypoxia (DO < 5 mg/L), 55% and 
77%, respectively. CDFs appear to be an effective analysis 
tool to capture the distribution for a variable in the small 
systems, even for those with a small number of sites.  

Contours for two systems (Severn and Indian Rivers) us-
ing bivariate interpolation are shown in Fig. (6). Contours for 
bottom dissolved oxygen and number of benthic species for 
the systems with at least 23 sites are shown in Fig. (7). This 
characterization method provides information on the spatial 
distribution of the variables for the individual systems, but 
no information on uncertainty for the estimated values. 



Characterization Methods for Small Estuarine Systems The Open Hydrology Journal, 2010 Volume 4    79 

Table 6. Statistically Significant (p < 0.05) Spearman Rank Correlations ( ) between Variables in Each System. “-“ Indicates  not 

Considered Statistically Significant 

Rehobeth Bay Indian River

depth temp salin chla do sicl species depth temp salin chla do sicl species

depth 1.00 - - - - 0.51 - 1.00 - 0.37 - - 0.45 0.30

temp - 1.00 -0.55 0.41 - 0.39 - - 1.00 -0.54 0.70 - - -

salin - -0.55 1.00 -0.84 - -0.46 - 0.37 -0.54 1.00 -0.70 - - -

chla - 0.41 -0.84 1.00 0.34 0.40 -0.36 - 0.70 -0.70 1.00 - - -

do - - - 0.34 1.00 - - - - - - 1.00 - -

sicl 0.51 0.39 -0.46 0.40 - 1.00 - 0.45 - - - - 1.00 -

species - - - -0.36 - - 1.00 0.30 - - - - - 1.00

St. Martins River Trappe Creek/Newport Bay

depth temp salin chla do sicl species depth temp salin chla do sicl species

depth 1.00 - 0.64 -0.57 - - 0.48 1.00 - - - -0.42 - -

temp - 1.00 - - - - -0.36 - 1.00 -0.63 - - - -

salin 0.64 - 1.00 -0.50 0.42 - 0.76 - -0.63 1.00 -0.65 - - -

chla -0.57 - -0.50 1.00 - 0.39 -0.61 - - -0.65 1.00 - 0.44 -

do - - 0.42 - 1.00 - - -0.42 - - - 1.00 - -

sicl - - - 0.39 - 1.00 - - - - 0.44 - 1.00 -

species 0.48 -0.36 0.76 -0.61 - - 1.00 - - - - - - 1.00

Chincoteague Bay South River

depth temp salin chla do sicl species depth temp salin chla do sicl species

depth 1.00 - - - - 0.53 - 1.00 - 0.51 - -0.51 0.73 -0.70

temp - 1.00 - - -0.44 - - - 1.00 -0.67 - - - -

salin - - 1.00 -0.49 0.36 - 0.27 0.51 -0.67 1.00 -0.43 - - -

chla - - -0.49 1.00 - - - - - -0.43 1.00 - - -

do - -0.44 0.36 - 1.00 - - -0.51 - - - 1.00 -0.61 0.65

sicl 0.53 - - - - 1.00 0.43 0.73 - - - -0.61 1.00 -0.85

species - - 0.27 - - 0.43 1.00 -0.70 - - - 0.65 -0.85 1.00

Severn River combined system

depth temp salin chla do sicl species depth temp salin chla do sicl species

depth 1.00 -0.72 0.77 - -0.79 0.61 -0.66 1.00 - - - - 0.48 -

temp -0.72 1.00 -0.42 - 0.93 -0.65 0.88 - 1.00 -0.32 0.33 - - -

salin 0.77 -0.42 1.00 - -0.46 0.57 -0.37 - -0.32 1.00 -0.77 - -0.33 -

chla - - - 1.00 - - - - 0.33 -0.77 1.00 - 0.34 -

do -0.79 0.93 -0.46 - 1.00 -0.58 0.86 - - - - 1.00 - -

sicl 0.61 -0.65 0.57 - -0.58 1.00 -0.52 0.48 - -0.33 0.34 - 1.00 -  

 

 

Fig. (5a). Bottom dissolved oxygen CDFs for small estuarine systems. Dotted lines are 95% confidence limits. 
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Fig. (5b). Number of benthic species CDFs for small estuarine systems. Dotted lines are 95% confidence limits. 

 

 

Fig. (6a). Contours for Indian River using bivariate interpolation of measured values. 
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Fig. (6b). Contours for Severn River using bivariate interpolation of measured values. 
 

 

Fig. (7a). Contours for bottom dissolved oxygen from bivariate interpolation for small estuarine systems. 
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Fig. (7b). Contours for number of benthic species from bivariate interpolation for small estuarine systems. 

 
Kriging Results 

The attributes of the constructed variograms for the re-
siduals are summarized in Table 7. From the overall kriging 
process, a large portion of the variation for each variable was 
accounted for by the trend component (loess model), ex-
pressed in Table 7 by percent variance (of the total variance) 
explained by the loess model. Examples of the variograms 
are shown in Fig. (8). Variograms categorized into the 
spherical and exponential forms indicate that the variables 
had good continuity in space. Pure nugget variograms indi-
cate no spatial correlation for the residuals. For some vari-
ables, the nugget effect, representing experimental error and 
field variation within the minimum sampling spacing, was 
sometimes quite large compared to the sill, which represents 
total spatial variation. The ratio of nugget variance to total 
variance expressed in percentages can be regarded as a crite-
rion to classify the spatial dependence of the variables [16]. 
If the ratio is less than 25%, the variable has strong spatial 
dependence, between 25 and 75%, the variable has moderate 
spatial dependence, and greater than 75%, the variable shows 
only weak spatial dependence [33].  

The kriging results indicated weak spatial dependence for 
almost all variables in the individual coastal bays, while 
there was moderate and strong spatial dependence for some 
variables in South and Severn Rivers and the combined sys-
tem. Strong spatial dependence was exhibited for bottom 
temperature in both the South and Severn Rivers. For the 
coastal bays, there was weak spatial dependence in the vari-
ograms of the residuals after removal of the spatial trend 
with a loess model. There was a spatial dependence reflected 
in the trend components, although a spatial correlation does 

not appear in the variograms for the residuals. The variables 
with pure nugget variograms were indicative of little or no 
spatial dependency. Therefore, kriging has no significant 
advantage for interpolating these variables. 

Effect of Sample Size on Kriging Estimates 

The RMSE was used to express the extent of agreement 
between the actual and kriged estimate values from the ran-
domization simulations for evaluation of the effect of sample 
size. Spearman rank correlation coefficients indicated the 
degree that spatial information was maintained when fewer 
samples were used for estimation compared to values of es-
timates from the maximum sample size. The RMSE and cor-
relation coefficients for the variables from the three systems 
as a function of sample size are listed in Table 8. Results 
indicated strong correlations for reduced sample sizes greater 
than 25, with comparable RMSE for all three systems. Below 
25 samples, the results began to deviate (correlation below 
0.8). Reduced sample size, as long as NS > 25, seemed to 
have minimal effect on the characterization results. Sample 
sizes of 25-30 were adequate to spatially characterize the 
individual estuarine systems. It should be noted that the sys-
tematic grid sampling used is optimal sampling for spatial 
estimation. This contributes to the good results for small 
sample sizes.  

Evaluation of Interpolation Methods 

The results of the comparison of interpolation methods 
are shown in Table 9. Results were expressed as mean square 
error (MSE) of prediction. The kriged MSEs were much 
lower than the bivariate interpolation MSEs for the com-
bined system, which exhibited the most spatial correlation. 



Characterization Methods for Small Estuarine Systems The Open Hydrology Journal, 2010 Volume 4    83 

Table 7. Summary of Variogram Attributes for Residuals of Variables in Each System with Spatial Trend Removed with Loess 

Model. Fitted Variogram Parameters: Range = r, Sill or Total Variance = C0+C1, and Nugget Variance = C0 

System Variable 
Variogram 

model 

r (km) 
C0+C1 C0 

Spatial dependence †  Loess/total ‡
 

depth  linear   0.13 ND 0.50 

bottom temperature  pure nugget  3.53 3.53 Weak 0.85 

bottom salinity  spherical 8.47 1.09 0.77 Moderate 0.37 

surface chlorophyll a  pure nugget  211.9 211.98 Weak 0.84 

bottom oxygen  pure nugget  1.45 1.45 Weak 0.68 

sediment silt-clay  exponential .58 477.8 188.41 Moderate 0.48 

Rehobeth Bay 

benthic species pure nugget  19.63 19.63 Weak 0.57 

depth  pure nugget  0.13 0.13 Weak 0.35 

bottom temperature  pure nugget  5.84 5.84 Weak 0.45 

bottom salinity  linear   0.37 ND 0.68 

surface chlorophyll a  pure nugget  15.36 15.36 Weak 0.94 

bottom oxygen  pure nugget  0.48 0.48 Weak 0.24 

sediment silt-clay  pure nugget  455.2 455.23 Weak 0.41 

Indian River 

benthic species pure nugget  21.85 21.85 Weak 0.63 

depth  pure nugget  0.02 0.02 Weak 0.63 

bottom temperature  pure nugget  1.58 1.58 Weak 0.72 

bottom salinity  pure nugget  0.35 0.35 Weak 0.46 

surface chlorophyll a  pure nugget  9.04 9.04 Weak 0.96 

bottom oxygen  pure nugget  0.47 0.47 Weak 0.33 

sediment silt-clay  pure nugget  379.9 379.92 Weak 0.42 

St. Martin River 

benthic species pure nugget  22.01 22.01 Weak 0.71 

depth  linear   0.02 ND 0.70 

bottom temperature  pure nugget  2.43 2.43 Weak 0.92 

bottom salinity  pure nugget  1.17 1.17 Weak 0.37 

surface chlorophyll a  pure nugget   14.96 14.96 Weak 0.65 

bottom oxygen  pure nugget  0.37 0.37 Weak 0.46 

sediment silt-clay  pure nugget  492.5 492.51 Weak 0.46 

Trappe Creek/Newport Bay 

benthic species linear   5.14 ND 0.72 

depth  pure nugget  0.07 0.07 Weak 0.69 

bottom temperature  pure nugget  5.45 5.45 Weak 0.37 

bottom salinity  pure nugget  1.71 1.71 Weak 0.12 

surface chlorophyll a  pure nugget  10.96 10.96 Weak 0.66 

bottom oxygen  pure nugget  0.60 0.60 Weak 0.15 

sediment silt-clay  pure nugget  460.1 460.11 Weak 0.47 

Chincoteague Bay (MD) only) 

benthic species pure nugget  40.12 40.12 Weak 0.38 
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Table 7. contd…. 

System Variable 
Variogram 

model 
r (km) C0+C1 C0 Spatial dependence † Loess/total ‡

 

depth  spherical 4.57 2.07 0.89 Moderate 0.41 

bottom temperature  exponential .90 0.60 0.00 Strong 0.68 

bottom salinity  exponential 17.70 1.16 0.22 Strong 0.69 

surface chlorophyll a  pure nugget  104.1 104.12 Weak 0.49 

bottom oxygen  pure nugget  2.78 2.78 Weak 0.60 

sediment silt-clay  pure nugget  1258 1258.48 Weak 0.34 

sediment pb pure nugget  340.8 340.89 Weak 0.36 

South River 

benthic species  linear   2.82 ND 0.42 

depth  exponential 4.37 5.81 1.84 Moderate 0.39 

bottom temperature  exponential 3.02 1.02 0.09 Strong 0.40 

bottom salinity  pure nugget  1.23 1.23 Weak 0.42 

surface chlorophyll a  pure nugget  16.74 16.74 Weak 0.68 

bottom oxygen  exponential 1.06 5.69 0.95 Strong 0.46 

sediment silt-clay  pure nugget  1218.84 1218.84 Weak 0.22 

sediment pb pure nugget  558.29 558.29 Weak 0.40 

Severn River 

benthic species spherical 3.68 34.42 12.70 Moderate 0.38 

depth  exponential .67 0.07 0.00 Strong 0.20 

bottom temperature  pure nugget  4.12 4.12 Weak 0.11 

bottom salinity  spherical 7.56 2.33 2.07 Weak 0.21 

surface chlorophyll a  exponential .74 30.76 0.00 Strong 0.62 

bottom oxygen  pure nugget  0.55 0.55 Weak 0.07 

sediment silt-clay  exponential .48 519.21 0.00 Strong 0.26 

Combined system 

benthic species exponential 1.08 38.27 0.00 Strong 0.49 

ND = not determined for linear variogram 
† = ratio of nugget variance to variance: strong, < 25%; moderate 25-75%; weak, > 75% 

‡ = fraction of variance explained by loess model 
 

 
Fig. (8). Examples of variograms for the Severn River. (contd…..) 
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Fig. (8). contd…. 

 

 

Fig. (8). Examples of variograms for the Severn River. 

 

Table 8. Results from Evaluation of Sample Size (NS) on Kriged Estimates for Indian River, Chincoteague Bay, and Combined 

System. Median Results of 100 Randomizations for Relative Mean Square Error (RMSE) and Spearman Rank Correla-

tion. RMSE and Correlation are between Actual Values and Estimated Values for Reduced Sample Size 

 RMSE    Correlation   

Indian River NS=32 NS=27 NS=22  NS=32 NS=27 NS=22  

depth  0.70 1.29 1.48  0.93 0.80 0.70  

bottom temperature  0.41 0.46 0.71  0.97 0.92 0.83  

bottom salinity  0.09 0.09 0.13  0.99 0.99 0.98  

surface chlorophyll a  0.69 1.02 1.13  0.95 0.90 0.79  

bottom oxygen  1.02 1.02 1.48  0.91 0.83 0.66  

sediment silt-clay  0.86 1.09 1.17  0.91 0.79 0.69  

benthic species 0.56 0.67 0.73  0.94 0.85 0.77  
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Table 8. contd…. 

 RMSE    Correlation   

Chincoteague Bay NS=31 NS=26 NS=21  NS=31 NS=26 NS=21  

depth  0.38 0.44 0.55  0.97 0.93 0.89  

bottom temperature  1.51 1.79 2.08  0.89 0.77 0.56  

bottom salinity  0.44 0.70 0.82  0.97 0.91 0.84  

surface chlorophyll a  0.87 1.02 0.94  0.93 0.85 0.76  

bottom oxygen  1.33 1.61 1.98  0.88 0.75 0.59  

sediment silt-clay  0.66 0.86 1.03  0.95 0.89 0.80  

benthic species 0.99 1.16 1.43  0.91 0.82 0.68  

Combined system NS=53 NS=43 NS=33 NS=23 NS=53 NS=43 NS=33 NS=23 

depth  0.71 0.72 0.79 0.93 0.94 0.89 0.82 0.72 

bottom temperature  1.24 1.38 1.45 1.76 0.88 0.74 0.60 0.41 

bottom salinity  0.33 0.36 0.36 0.45 0.97 0.94 0.90 0.83 

surface chlorophyll a  0.39 0.39 0.52 0.55 0.96 0.89 0.82 0.69 

bottom oxygen  1.13 1.20 1.39 1.60 0.88 0.74 0.56 0.39 

sediment silt-clay  0.78 0.81 0.82 1.07 0.94 0.87 0.80 0.68 

benthic species 0.91 1.12 1.08 1.26 0.90 0.79 0.67 0.50 

 

Table 9. Mean Square Error (MSE) Comparison of Kriging and Linear Interpolation Methods. MSE Determined by Cross-

Validation 

System Variable Kriging MSE Linear interpolation MSE Kriging MSE / linear MSE 

depth  0.25 0.40 0.63 

bottom temperature  11.22 9.07 1.24 

bottom salinity  1.87 1.80 1.04 

surface chlorophyll a  30.10 47.26 0.64 

bottom oxygen  1.01 2.16 0.47 

sediment silt-clay  908.95 1281.75 0.71 

Rehobeth Bay 

benthic species 43.40 62.60 0.69 

depth  0.42 0.52 0.81 

bottom temperature  7.70 13.60 0.57 

bottom salinity  3.35 6.05 0.55 

surface chlorophyll a  462.64 534.07 0.87 

bottom oxygen  2.54 2.49 1.02 

sediment silt-clay  1027.17 925.15 1.11 

Indian River 

benthic species 33.87 58.74 0.58 

depth  0.09 0.08 1.19 

bottom temperature  4.19 3.90 1.07 

St. Martin River 

bottom salinity  0.76 1.05 0.73 
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Table 9. contd…. 

System Variable Kriging MSE Linear interpolation MSE Kriging MSE / linear MSE 

surface chlorophyll a  37.02 37.98 0.97 

bottom oxygen  4.09 1.68 2.44 

sediment silt-clay  1686.46 1015.23 1.66 

 

benthic species 93.99 73.34 1.28 

depth  0.13 0.12 1.09 

bottom temperature  7.81 5.18 1.51 

bottom salinity  4.10 25.16 0.16 

surface chlorophyll a  58.03 59.18 0.01 

bottom oxygen  1.84 6.13 0.30 

sediment silt-clay  1852.41 1284.38 1.44 

Trappe Creek/Newport Bay 

benthic species 35.66 34.72 1.03 

depth  0.10 0.18 0.57 

bottom temperature  8.63 10.47 0.82 

bottom salinity  3.60 4.75 0.76 

surface chlorophyll a  21.20 33.16 0.64 

bottom oxygen  1.26 1.52 0.83 

sediment silt-clay  817.61 948.98 0.86 

Chincoteague Bay (MD) 

benthic species 71.96 74.67 0.96 

depth  2.74 2.73 1.00 

bottom temperature  1.17 2.90 0.40 

bottom salinity  0.65 0.64 1.02 

surface chlorophyll a  278.20 256.73 1.08 

bottom oxygen  5.65 4.78 1.18 

sediment silt-clay  1339.92 2166.51 0.62 

sediment pb 547.07 485.43 1.13 

South River 

benthic species 23.70 24.34 0.97 

depth  10.27 11.68 0.88 

bottom temperature  2.03 1.87 1.09 

bottom salinity  2.26 2.68 0.84 

surface chlorophyll a  41.39 37.99 1.09 

bottom oxygen  11.82 11.08 1.07 

sediment silt-clay  2638.48 2570.15 1.03 

sediment pb 1286.10 1614.96 0.80 

Severn River 

benthic species 72.28 77.89 0.93 

depth  0.10 0.16 0.65 

bottom temperature  5.87 7.89 0.74 

Combined system 

bottom salinity  3.06 4.61 0.66 
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Table 9. contd…. 

System Variable Kriging MSE Linear interpolation MSE Kriging MSE / linear MSE 

surface chlorophyll a  58.44 98.29 0.59 

bottom oxygen  0.91 1.16 0.78 

sediment silt-clay  896.44 1129.83 0.79 

 

benthic species 60.06 65.38 0.92 

 
The other systems exhibited limited spatial correlation. 

The differences in MSE indicate little difference between the 
interpolation methods for these systems. 

DISCUSSION 

Strobel et al. [8] used data for the intensively sampled 

mid-Atlantic small estuarine systems in Table 1 that were 

visited in 1997. Their intent was to provide information on 

spatial variability within these small systems for use in de-

signing future monitoring programs to describe conditions in 

individual systems as well as across broad geographic areas. 

Their results suggest that five sites per system represented a 

reasonable compromise between the need to characterize an 

individual system and to keep costs and logistics within ex-

pected constraints. Five sites per system were at the low end 

of the number of sites used in the analyses in this study. 

However, the results of this study are not inconsistent with 

those of Strobel et al. [8]: basic characterization methods 

(except for contouring) provide estimates of condition with 

acceptable uncertainty using a small number of samples. The 

use of a systematic grid in the selection of sampling sites 

contributed to the ability to characterize the systems with a 

small number of sites. 

The spatial model used in the kriging analysis consisted 

of three components: a spatial component for the trend, ac-

counted for with a nonparametric regression model; a ran-

dom but spatially correlated component, determined by krig-

ing with the modeled variogram; and a random noise repre-

senting residual error. The accounting for the trend compo-

nent was important if the stationarity assumption for kriging 

was to be met. For moderate and strong spatial correlation 

generally less than 50% of the variance was accounted for by 

the trend component, indicating importance of the kriged 

component. For weak spatial correlation, the trend compo-

nent accounted for up to over 90% of the variance. Kriging 

does not provide for improved interpolation when the spatial 

correlation is weak; an obvious conclusion but worth restat-

ing. Mean square errors computed by cross-validation also 

indicated that kriging was not advantageous over bivariate 

interpolation for systems with weak spatial correlation of 

residuals (trend component removed).  

The results for the combined system (63 discrete sites) 

indicated that more discrete sample sites provided for im-

proved kriging results. This was because of the increased 

number of lags for each separation distance used to compute 

the empirical variogram and the increase in maximum sepa-

ration distances used in the empirical variogram. Therefore, 

if at all possible, neighboring, connected systems should be 

combined to improve the kriging estimate. The number of 

sites used for kriging in this analysis (23 to 63) was compa-

rable to that used in other studies where kriging was con-

ducted for estuarine parameters: 38 to 44 in Chang et al. 

[16]; 31 in Little et al. [14]; and 39 in Poon et al. [34]. How-

ever, these numbers used for kriging in estuaries are at the 

low end of sites typically used in soil studies: 70 to 100 in 

Chien et al. [33]; and a minimum of 100 in Goovaerts [15, 

28]. Webster and Oliver [30] actually recommended a mini-

mum of 150 sites for kriging soil parameters. This number of 

discrete sites is unreasonable for kriging in estuaries strictly 

from a cost-effectiveness perspective. 

There exist circumstances when other, usually more 

abundantly sampled, data can be used to assist in predictions. 

Such data are referred to as secondary data (as opposed to 

primary data) and are assumed correlated with the primary 

data. For this situation, cokriging can be attempted 

(Goovaerts 1999). This requires one to model not only the 

variograms of the secondary and primary data, but also the 

cross-variogram between the primary and secondary data. 

The spatial variability of variables may be affected by 

both intrinsic (internal processes affecting the variables, like 

local biological processes) and extrinsic factors (external 

processes affecting the variables, like climate). Strong spatial 

dependence of variables can usually be attributed to intrinsic 

factors, and weak spatial dependence can be attributed to 

extrinsic factors. The occurrence of strong spatial depend-

ence in South and Severn Rivers for bottom temperature 

would generally be thought to be prescribed by extrinsic 

factors; however, other processes may be important in these 

systems at the intrinsic level for bottom temperature. The 

remaining variables exhibit moderate spatial dependence in 

at most one system, except for depth (three systems). 

CONCLUSIONS 

Characterization methods were applied to intensively-

sampled small estuarine systems in the mid-Atlantic region 

of the U.S. Mean values of parameters provided estimates for 

relative rankings of systems. The results of the characteriza-

tions were presented in the context of information that envi-

ronmental managers could use in their decision-making. 

Cluster analysis on mean values grouped systems with simi-

lar values. T-tests provided estimates of differences in mean 

values. Standard deviations provided estimates of uncertainty 

about the mean values. Coefficients of variation gave esti-

mates of overall relative variability. Correlations among 

variables estimated how variables are related. Empirical cu-

mulative distribution functions (CDFs) illustrated the total 
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distribution of the variables irrespective of the underlying 

statistical distribution. Thresholds of effect were combined 

with CDFs to estimate fraction of system area in undesirable 

condition. These characterization methods were valid for all 

the systems, irrespective of the number of discrete samples 

(minimum of 6 in systems studied). 

Contouring of interpolated values presented the spatial 

distribution of parameters within a system. Common interpo-

lation methods did not provide direct uncertainty estimates 

for the interpolated values. Kriging is the best linear unbi-

ased estimator for interpolation and provided direct estimates 

of uncertainty. The interpolation methods were only applied 

to systems with at least 23 spatially discrete samples. 

Kriging for small estuarine systems with 25-36 spatially 

discrete sample sites provided a reduction in overall error 

compared with bivariate interpolation of sample site data. If 

an adequate number of discrete spatial samples are not avail-

able, ordinary kriging should not be expected to be an effec-

tive alternative for spatial characterization. An alternative 

option, which has not been explored in this study but has 

been addressed in the literature, is cokriging, where one kri-

ges using secondary information for another variable to 

compute a cross-variogram. Since depth is readily available 

or is a low cost variable to obtain, cokriging with depth is an 

obvious option to explore. Kriging is not recommended for 

shallow, well-mixed small estuarine systems where little or 

no spatial correlation exists in the residuals after removal of 

trends component.  
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