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Abstract: Rapid and reliable observations of soil electrical conductivity are essential in order to maintain sustainable irri-
gated agriculture. Direct measurement of the electrical conductivity of saturated soil paste (ECe), however, is tedious and 
time consuming. Therefore, there are needs to find efficient indirect methods to predict the soil salinity from other readily 
available observations. In this paper we explore the application of multiple linear regression (MLR) and artificial neural 
networks (ANN) to predict ECe variation from easily measured soil and groundwater properties under highly complex and 
heterogeneous field conditions in semiarid Tunisia. We compare two methods for dividing the data set into training and 
validation sub-sets; a statistical (SD) and a random data set division (RD), and their effect on model performance. The in-
put variables were chosen from the plot coordinates, groundwater table properties (depth, electrical conductivity, pie-
zometric level), and soil particle size at 5 depths. The results obtained with ANN and MLR indicate that the statistical 
properties of data in the training and validation sets need to be taken into account to ensure that optimal model perform-
ance is achieved. The SD can be considered as a solution to resolve the problem of over-fitting a model when using ANN. 
For the SD, the determination coefficient (R2) when using an ANN model varied from 0.85 to 0.88 and the root mean 
square error from 1.23 to 1.80 dS m-1. Because of the complexity of the field soil salinity process and the spatial variabil-
ity of the data, this clearly indicates the potential to use ANN models to predict ECe. 
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INTRODUCTION 

A shallow water table in combination with high soil sa-
linity often leads to permanent soil resource degradation. In 
arid and semiarid climates, soil salinisation constitutes a ma-
jor problem for irrigated land sustainability. Throughout the 
world, about 25% of irrigated areas are affected by salinity 
and water logging [1]. A shallow water table also constitutes 
an important soil degradation factor [2-7]. In Tunisia, 36 % 
of the irrigated areas are strongly sensitive to salinisation [8]. 
Soil salinisation over a shallow water table depends on cli-
matic conditions, soil properties, vegetation, soil manage-
ment (irrigation, fertilization, tillage, etc.), and depth to and 
salinity of the groundwater [9-13]. Evaporation from the soil 
surface creates a water potential gradient. In response to this 
gradient, water is transported from deeper levels towards the 
soil surface where it evaporates and dissolved matter in it 
increases its concentration in the top soil [14]. To reduce and 
avoid the risk of salinisation, it is important to control the 
soil salinity in order to keep it below the plant salinity toler-
ance. 

Measurement of soil salinity in laboratory, especially 
electrical conductivity of the saturated soil paste (ECe), is  
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tedious (sampling, soil preparation, and measurement). In the 
field, equipment such as time domain reflectometry (TDR) 
and other salinity sensors are used to give a quick estimate of 
the soil salinity. These methods give a good assessment of 
the soil salinity in a limited soil volume. Because of the spa-
tial variability of soil properties, however, it is difficult to 
apply these methods to larger areas. Because of these con-
straints, there are needs to infer soil salinity from other more 
easily observed variables. In the lower valley of Euphrates, 
Dosso [15] found that the soil salinity in the surface was 10 
times higher than in the groundwater. In Tunisia, Bach 
Hamba [16] found a poor correlation between surface soil 
salinity and salinity of the shallow water table. The absence 
of correlation between these parameters was attributed to the 
importance and complexity of the salinity process in the sur-
face soil (effects of evaporation and precipitation). The key 
factor controlling the amount of evaporation is the depth to 
the water table below the soil surface [17]. Another parame-
ter affecting soil salinity is the soil particle size distribution. 
Generally, capillary rise is larger in a medium-textured 
(loamy-sandy) soil than in a fine-textured (clay or loam clay) 
and sandy soil. Servant [18] observed that the surface soil 
salinity was more important in medium-textured soil as 
compared to that of fine-textured soil. The soil stratification 
also has influence on the capillarity rise. Massoumi [19] 
showed experimentally that the superposition of sand on a 
silty horizon reduces the capillarity rise as compared to su-
perposition of silt on a sandy horizon. In a field study in Tu-
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nisia, Bouksila [20] observed that the presence of a sandy 
horizon positioned between two fine-textural horizons con-
stitutes a salt reservoir. To predict field scale spatial salinity 
(ECe) from electromagnetic induction data, Lesch et al. [21] 
showed that the multiple linear regression models (MLR) are 
theoretically equivalent to and cost-effective relative to 
cokriging. To increase the prediction accuracy, the MLR 
incorporate the trend surface coordinates [21]. 

Many mathematical models have been developed to pre-
dict soil salinity [7, 22-24]. Usually these models need a sig-
nificant number of input parameters (climatic information, 
soil and water table properties, crop, irrigation water, drain-
age water, etc.). To apply these models, it is necessary to 
have an extensive observational data base to provide all input 
parameters. In many cases, however, it is difficult if not im-
possible, to supply all these input parameters. Due to this, 
parallel to the improvement of analytical and mathematical 
models, statistical techniques with ability to predict salinity 
levels with a few climatic and soil property input variables 
have also been developed. One of these techniques utilizes 
artificial neural networks (ANN). In soil science, ANN has 
been used to classify soil texture [25], to model nitrate leach-
ing [26], estimating water content and soil solution electrical 
conductivity from TDR measurements [27,28], prediction of 
soil hydraulic properties [29]), and to predict soil salinity 
[30]. However, still limited success has been attained to pre-
dict spatial variation of soil salinity using linear and/or non-
linear statistical methods. 

In this paper we explore the ability of ANN to predict the 
electrical conductivity of the saturated soil paste variation for 
highly complex and heterogeneous field conditions. In view 
of the above, the aim of this study is to predict soil salinity 
from easily measured soil and water table properties for a 
better water and soil management. We compare different 
data set divisions and effects on the model target. We also 
compare advantages of the ANN with multiple linear regres-
sion models. We close with a discussion on practical impli-
cations. 

MATERIALS AND METHODS 

Study Area 

Field experiments were conducted in the irrigated area of 
Kalaat Landalous, situated in the northern part of Tunisia (35 

km north of the capital Tunis), close to the Mediterranean 
Sea (Fig. 1). The irrigated area covers 2900 ha and the main 
crops are fodder, cereal, and market vegetables. The climate 
is Mediterranean semiarid with average rainfall of 450 
mm/year (rainy period from September to March). The po-
tential evapotranspiration is 1400 mm/year. The soil is an 
alluvial formation of the Lower Medjerda river (xerofluent), 
characterized by a fine texture (silty clay to clay). The alti-
tude varies from 2 to 6 m and the average soil surface slope 
varies from 0.05 to 2%. In 1987, a drainage and irrigation 
system using Medjerda water was constructed (Fig. 1). The 
electrical conductivity of the river water is about 3 dS m-1 and 
the sodium adsorption ratio (SAR) is about 7. Both drip and 
sprinkler irrigation is used in the system. The drainage sys-
tem is mainly composed of two primary open ditches (E1 
and E2), subsurface PVC pipes, and a pumping station that 
discharges drainage water to the sea (P4). The subsurface 
drains have a diameter of 0.08 m, are 150 m long, and a separa-
tion distance of 40 m. They follow the average slope, so that 
the drain depth begins at 1.4 m and ends at 1.7 m before dis-
charging into a secondary open drain. Before the completion 
of the drainage and irrigation system, the old Medjerda riv-
erbeds (30 to 40 m wide and 1.5 m to 3 m deep) constituted a 
natural drainage system and the Medjerda water was dis-
charged into these riverbeds during flood periods allowing 
farmers to irrigate their land. 

A 1400 ha area surrounded by two primary open ditches 
(E1 and E2) was selected within the 2900 ha irrigated area 
(Fig. 1) for experimental studies. The experiments were con-
ducted in October 1989, at the end of the summer season. 

Data Collection 

In total 144 sampling plots, spaced at about 200 by 280 
m were investigated (Fig. 1). In each plot, soil samples were 
collected at 0.1, 0.5, 1.0, 1.5, and 2.0 m depth. The soil sam-
ples were analyzed to determine soil particle size and ECe. 
Soil particle size was measured in the laboratory using the 
sedimentation method (pipette and hydrometer). In gypsum-
rich samples this standard method can not be used [31, 32]. 
For this reason, only 116 of the 144 plots present complete 
particle size data (for 0.1 m depth, 115 plots). Five fractions 
were measured, clay (d<2 μm), fine silt (2<d<20 μm), coarse 
silt (20<d<50 μm), fine sand (50<d<200 μm), and coarse 
sand (200 μm<d<2 mm). Table 1 shows a summary of the 

 

 

Fig. (1). Experimental area and sampling locations. 
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three particles sizes (clay, silt, and sand) for different depths. 
The ECe measured by the standard method according to 
USDA [33] was used to estimate the soil salinity. 

Beside soil samples, the depth to the groundwater table 
from the soil surface (Dgw) and electrical conductivity of the 
groundwater (ECgw) were measured at each of the 144 plots. 
The coordinates (x, y) and the altitude (z) of the plots were 
measured by GPS (Trimble, model 4600LS, Trimble Ltd. 
Sunnyvale, CA, USA; accuracy equal to 0.01 m for x and y 
and 0.02 m for z). The altitude was used to calculate the pie-
zometric level (PL = z – Dgw) of the groundwater table. 

Modeling Soil Salinity 

A suitable regression models is specified that relates the 
target soil properties (like ECe) to a transformed linear com-
bination of the parameters whose influence the ECe (such 
soil and water table properties) and trend surface coordi-
nates. In the statistical literature, this kind of model is com-
monly called a spatial linear regression model [34]. Two 
statistical methods were used to predict the soil salinity, the 
first is a linear model, multiple linear regression (MLR) and 

the second is non linear model, artificial neural networks 
(ANN). 

Multiple Linear Regression (MLR) 

To arrive at a best model depending on an optimal data 
set division for the MLR, the following steps were adopted: 

First step: Choosing input variable. For each plot, there 
are more than 20 input variables to chose from to predict soil 
salinity; i.e. 15 particles sizes (clay, silt, and sand for each of 
the five depths), average of particle sizes for depths above or 
below the actual depth (e.g., for 1.0 m the average particle 
sizes of 0.1 and 0.5 and 1.5 and 2.0 m), 3 variables for the 
groundwater (Dgw, PL, and ECgw), and coordinates (x, y). 
The two surface coordinate (x, y) were included at once as 
predictor to consider the spatial variation in ECe across soil 
types, landscape types, position of the drainage system, and 
farming management. The first step was to select the best 
input variable for the MLR. The software Statgraphics 5 plus 
(Manugistics Inc., USA) was used to find the best model to 
estimate soil salinity (ECe) for each depth. The software uses 
combinations of all input variables and calculates the coeffi-
cient of determination (R2) and the root mean square error 

Table 1. Summary Statistics of Soil (Particle Size (%) and Electrical Conductivity of the Saturated Soil Paste (ECe; dS m
-1

)) and 

Groundwater Table Properties (Depth (Dgw; m), Piezometric level (PL; m), and the Electrical Conductivity (ECgw; dS m
-1

 )) 

Parameter Minimum Maximum Median Mean St.Dev. CV(%) 

Clay 

Silt 

Sand 

5 

37 

1 

57 

79 

38 

33 

54 

9 

34 

55 

10 

10 

7 

8 

30 

14 

75 
0.1 

ECe 1.1 21.5 5.0 6.1 4.2 69 

Clay 

Silt 

Sand 

7 

13 

0 

62 

77 

89 

37 

51 

7 

37 

49 

12 

13 

11 

16 

35 

22 

129 

 

0.5 

ECe 1.7 18.1 5.7 6.1 3.4 55 

Clay 

Silt 

Sand 

6 

2 

0 

62 

76 

97 

30 

53 

11 

31 

50 

18 

13 

13 

19 

42 

26 

106 

 

1.0 

ECe 1.6 23.0 6.1 7.1 4.1 57 

Clay 

Silt 

Sand 

6 

4 

1 

67 

71 

87 

27 

54 

15 

28 

52 

19 

11 

12 

17 

40 

23 

88 

 

1.5 

ECe 2.1 23.0 7.0 8.2 4.5 55 

Clay 

Silt 

Sand 

5 

4 

1 

60 

71 

91 

29 

52 

14 

30 

50 

20 

12 

13 

20 

41 

26 

101 

So
il 

 D
ep

th
s 

  (
m

) 

 

2.0 

ECe 2.1 27.6 6.8 8.4 4.9 58 

Dgw  1.14 2.90 2.15 2.20 0.31 14 

PL  0.35 4.05 1.92 1.90 0.79 41 

G
ro

un
d 

W
at

er
 

ECgw  3.90 59.6 18.30 15.60 10.10 55 

St.dev. (standard deviation), CV (coefficient of variation= 100*St.Dev./Mean). 
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(RMSE). The best models will have a minimum RMSE and 
a maximum R2. In this step the entire data set was used in the 
analysis. 

Second step: Data set division. Firstly, all available data 
were randomly divided into two parts (training and valida-
tion). In total, 80% of available data were used for training 
and the remaining 20% were used for validation. Secondly, a 
trial process was used to divide the data so that the statistical 
properties of the data in each subset were as close to each 
other as possible, and thus represented the same population. 
If the validation data fall outside the range of the data used 
for training, the results obtained using the validation data can 
be worse than those obtained using the training data [35]. 
The statistical data treatment used included the minimum, 
maximum, range and t- and F-tests (at a significance level of 
0.05), see Shahin et al. [35] for details. The data set division 
that verified all statistical criteria was used to calculate the 
parameters of the MLR.  

Third step: A comparison between the results obtained 
with statistical data (SD) and random data (RD) set division 
was used to evaluate the performance of the two data han-
dling types for the MLR model.  

Artificial Neural Network (ANN) 

Artificial neural networks (ANN) are non-linear models 
that make use of a parallel programming structure capable of 
representing arbitrarily complex non-linear processes that 
relate the inputs and outputs of any system [36]. It provides 
better solutions than traditional statistical methods when 
applied to poorly defined and poorly understood complex 
systems involving pattern recognition [37]. The ANN is 
structured, similarly to the biological neural network, by 
interconnected layers composed of neurons. An artificial 
neuron is the architectural unit of the ANN. It basically con-
sists of a transfer function and two scalar numbers, a weight 
and a bias. The input is a scalar that is multiplied by the 
weight and added to the bias. The transfer function is applied 
to this result. To develop and train a ANN involve (a) choos-
ing a training set that contains input–output pairs, (b) defin-
ing a suitable network (number of layers and number of neu-
rons in each layer), (c) training the network to relate the in-
puts to the corresponding outputs by estimating the ANN 
weights, and (d) testing the identified ANN. If compared to a 
conceptual model, (b) is equivalent to the development of the 
model and (c) is the estimation of the parameters of the de-
signed model. The process of training the ANN consists of a 
self organizing learning process through a procedure that 
minimizes the error between the ANN output and the target 
values. The objective of the training is to find the weights of 
each neuron that will result in the minimum error. In the pre-
sent study, a two-layer (one hidden and one output layer) 
feed-forward ANN trained by a back-propagation algorithm 
using the Levenberg–Marquardt optimization were used 
[38]. Back-propagation can be explained as the adjustment of 
ANN weights and biases by back-propagating the differences 
between the ANN output and actual target. Prior to ANN 
application, the original input and target are standardized to 
ensure that every input receives equal attention during the 
training [39]. As for the MLR above, the data were split in to 
two parts, 80% for training and 20% for validation. Each 
node receives the weighted outputs from the node in the pre-
vious layer, which are summed to produce the node input. 

The node input is then passed through a non-linear sigmoid 
function to generate the node output, which is passed to the 
weighted input paths of many other nodes. 

Learning and training are fundamental in types of neural 
networks. Training is the procedure by which the network 
learns; learning is the end result of that procedure. Learning 
consists of making systematic changes to the weights to im-
prove the network’s response performance to acceptable 
levels. The network learns by adjusting the weights connect-
ing the layers. The network starts by finding linear relation-
ships between the inputs and the output. Weight values are 
assigned to the links between the input and output neurons. 
Once those relationships are found, neurons are added to the 
hidden layer so that nonlinear relationships can be found. 
The aim of training is to find a set of weights that will mini-
mize the error. During training, the output predicted by the 
network is compared with the target and the root mean 
squared error (RMSE) between the two is calculated. More 
detailed explanation is available in Changhui and Xuezli 
[40]. To the output layer, a pure linear transfer function was 
allocated. As mentioned before, an ANN with one hidden 
layer and one output layer with a single neuron were used.  

Before running the ANN model the following steps were 
made: 

Choice of input. The results of the MLR were not satis-
factory for the 0.1 and 0.5 m depths. Therefore, we tried to 
find other combinations of input variables for these depths. 
Here, the input for the ANN model was chosen based on (i) 
the correlation coefficient between the target and the input 
variable, (ii) the best input for the MLR, and (iii) on an ANN 
sensitivity analysis for various number of inputs (see Persson 
and Uvo [28], for details). For other depths (1.0, 1.5, and 2.0 
m), the best input found for the MLR was used in the ANN 
models. To compare the ANN and MLR, the maximum 
number of input variables in the ANN model will be less or 
equal to those in the MLR model. For the sensitivity test, we 
fixed the number of hidden neurons to 7. The best combina-
tion of input variables will display the smallest RMSE and 
highest R2.  

Optimal number of neurons in the hidden layer. We used 
the principle of constructive algorithms, which essentially 
start testing a minimum number of hidden neurons and then 
add neurons until performance ceases to increase [41]. This 
procedure was used for all soil depths. The optimal number 
of hidden neuron was then used for the final ANN model. 

Data set division. The same methodology as for the MLR 
was used to choose the data set division (RD and SD). For 
the SD model, after training each ANN 20 times, the average 
output was calculated and compared to the target ECe. The 
R2 and RMSE were then calculated for the training and vali-
dation subsets. For the RD model we used 10 different ran-
domly divided data sets when training the ANN. For each 
data set division the ANN was trained 20 times as described 
above. The average of 10 times 20 outputs were then calcu-
lated and compared to the output of the SD model. 

RESULTS AND DISCUSSION 

Soil and Groundwater Properties 

Table 1 shows a summary of soil and groundwater prop-
erties. The average fraction of clay varied from 28 to 34 % 
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and silt  from 49 to 55 %. Contrary to clay and silt, the aver-
age of sand fraction increased with depth. The maximum 
value of sand fraction explains some of the textural stratifi-
cation in the soil profile. The large variation coefficient, es-
pecially for sand, reflects the alluvial origin of soil and the 
impact of the change of the Medjerda river bed properties on 
the particle size distribution. The soil salinity varied from 1.1 
to 27.6 dS m-1. The average ECe for all depths was higher 
than 6 dS m-1, thus the soil is considered to be saline [33]. 
The maximum ECe at 0.1 m depth was 21.5 dS m-1 and at 0.5 
m depth 18 dS m-1, lower than at other depths. This is proba-
bly a result of natural soil leaching [4]. The variation coeffi-
cient for ECe is close to 60 % and this variability may be 
considered as large [42].  

At the end of the summer, the average depth to the 
groundwater table was 2.2 m (below the PVC drains) and 
varied from 1.1 to 2.9 m. The variation coefficient was 14 % 
for all depths. The variation coefficient for water table salin-
ity was considerably higher, 55 % (Table 1). The groundwa-
ter salinity varied from 4.1 to 59.6 dS m-1. The similarity 
between the chemical composition of the highest ECgw (59.6 
dS m-1) and Mediterranean Sea water indicates that this plot 
(located at the extreme east of the irrigated area) is situated 
in a maritime intrusion zone [16]. A previous geostatistical 
analysis of soil properties (particle size, saturated hydraulic 
conductivity, bulk density, and ECe), and groundwater salin-
ity and depth showed that the variograms were slightly struc-
tured and characterized by a high nugget effect, mainly due 
to the variability within the sampling distance (grid 200 m x 
280 m) [4,16]. Previous analyses of soil hydraulic parame-
ters at different spatial scales did not display a significant 
reduction of variability below this spatial scale [43]. The 
farmer practice should take into account the ECe variation in 
order to reduce the risk of soil degradation and to increase 
the crop production. Indeed, the soil salinity limits water 
uptake by plants and leads to a decrease in crop production. 
Therefore, the land use and crop rotation should take into 
account the crop tolerance to soil salinity. Also, ECe was 
used to estimate the leaching requirement (LR) [20]. An 
over-estimation of the LR would result in the use of exces-
sive amounts of irrigation water and increased salt loads in 
drainage systems, which can detrimentally impact the envi-
ronment and reduce water supplies [1]. The underestimation 
of LR could increase the ECe and the sodium exchangeable 
percentage (ESP) which could result in soil structure degra-
dation. In Kallat Landalous, a negative correlation was ob-
served between the ESP and soil saturated hydraulic conduc-

tivity [4]. For these reasons, an accurate estimation of ECe 
contributes to sustainable land planning aimed at mitigating 
soil degradation and increasing crop production. 

Prediction of Soil Salinity with MLR 

Best MLR Model 

According to the Pearson’s correlation analysis, the field 
ECe were poor correlated with the soil particle size and the 
plots coordinate (-0.39  R  0.26). The ECe were negatively 
correlated to the depth to the groundwater table and to the 
piezometric level (-0.41  R  -0.09). The best input variable 
to explain the ECe variation was the water table salinity 
(0.15  R  0.84). 

For each soil depth, about 22 000 MLR models with dif-
ferent input combinations were tested to obtain the best 
model based on RMSE and R2. Table 2 shows these results 
for each soil depth. For some depths only one spatial coordi-
nate was included in the best MLR model which may seem 
surprising. Usually two coordinates are necessary to repre-
sent the linear trend surface. In a large field study from 10 
sets of trend surface variables Lesch et al. [34] also found 
one plot coordinate in some of their best MLR models to 
predict the ECe,. As seen from Table 2 the R2 increases from 
soil surface down to the drain depth (1.5 m). Above the PVC 
drain (0.1 to 1.0 m), the sand and silt variables, characterized 
by a high variation coefficient (Table 1) were selected in the 
best MLR model. For soil depths below the PVC drain (1.5 
and 2.0 m depths), the Dgw does not appear as input in the 
best MLR model. The ECgw is found as predictor in every 
model in Table 2. For the 0.1 m depth, only 25% of the ECe 
variation can be explained by the best MLR model. This 
poor result reflects the complexity of salt distribution, espe-
cially in the surface soil. Probably soil management, irriga-
tion parameters, and climatic conditions not included as in-
put variables have a large impact on the result for the top soil 
layers. Also, several plots show textural stratification [4]. 
This stratification causes a discontinuity of the moisture con-
tent at the interface of two successive layers which affect the 
water and salt flow in the soil profile. Unfortunately, the 
pedologic sampling method can not be used on a large scale. 
With a fixed soil sampling depth this information is lost. 
These factors explain the poor MLR results for the soil salin-
ity prediction for the upper soil layers (0.1 m). For other soil 
layers (0.5 to 2 m), the correlation coefficient from the sim-
ple linear regression between the ECgw and the ECe varied 
from 0.64 to 0.84. These results reflect the importance of salt 

Table 2. RMSE and R
2
 of the Best Model to Estimate the Electrical Conductivity of the Saturated Soil Paste (ECe) (n=116 Except for 

0.1 m Depth, n=115) 

Depth (m) Input R
2
 RMSE (d S

-1
) 

 0.1 y, sand1.5, sand2.0, Dgw, ECgw   0.253 3.74 

 0.5 Dgw, ECgw, sand0.1, sand1.5   0.524 2.36 

1.0 Dgw, ECgw, silt1, silt (mean1.5 and 2.0)   0.655 2.46 

1.5 y, ECgw   0.713 2.44 

2.0 x, ECgw 0.628 3.02 

S (1.5): sand content at 1.5 m deeps (%), Silt (1.5,2.0): mean of the silt content at 1.5 and 2.0 m soil depth (%), x and y (coordinate of the plots; m); Dgw (water table depth, m); 
ECgw (water table electrical conductivity, dSm-1) 
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build-up in the soil profile from the shallow water table in 
arid climates.  

Effects of Data Set Division 

It is difficult to divide the data using SD when many in-
put variables are used. The null hypothesis of no difference 
between the variance of the validation and training subset 
was rejected by an F-test for the water table input at 0.1 m 
depth. Fig. 2 shows R2 and RMSE for the MLR using each 
subset (validation and training), data set division method 
(RD and SD), and soils depth. The global R2 and RMSE (for 
all plots) is almost identical for both RD and SD divisions. 
For the validation subset result, however, the difference is 
large. For all depths, R2 and RMSE of the SD validation sub-
set are much better than that of RD. The R2 varied from 0.14 
to 0.77 and the RMSE from 2.88 to 4.09 dS m-1 for RD. For 
SD, the R2 varied from 0.28 to 0.85 and the RMSE from 1.51 
to 3.63 dS m-1. With our field data, characterized by consid-
erable variability (Tables 1), it is evident that SD improves 
the result of the validation subset (R2 and RMSE).  

ANN Prediction of Soil Salinity 

Choice of Input Variable 

The MLR gave poor results in the root zone (0.1 and 0.5 
m soil depth). Since these depths are the most important for 
crops, we tried to improve the performance of the ANN 
model by choosing input variables using the results from the 
MLR model together with a sensitivity analysis. Table 3 
shows R2 and RMSE for the ANN models using the different 
input variables. The best input for the ANN model contained 
five variables (x, y, Dgw, PL, and ECgw) for 0.1 m and three 
variables for 0.5 m soil depth (x, Dgw, and ECgw). The per-
formance of ANN models was improved when the plot coor-
dinates (x and/or y) were added as input variables (Table 3). 
At 0.1 m depth, the R2 varied from 0.40 to 0.77 and the 
RMSE from 3.38 and 2.05 dS m-1  without and with the plot 
coordinates input (x, y) respectively. Also, at 0.5 m soil 
depth, the R2 varied from 0.74 to 0.87 and the RMSE from 
1.74 to 1.25 dS m-1 , respectively, without and with the input 

x. These best input variables for 0.1 and 0.5 m soil depths 
were further used below for the ANN modeling. For other 
soil depths (1.0, 1.5, and 2.0 m), the best combination of 
inputs found through the MLR analysis were also used for 
the ANN modeling.  

Effects of Data Set Division 

To find the optimum number of hidden neurons in the 
ANN model, the principle of constructive algorithms was 
applied. The optimal number was found to be 7 for depths 
0.1, 0.5, 1.0 m, 10 for 1.5 m depth, and 11 for the 2.0 m 
depth (Fig. 3). In Table 4, the RMSE and R2 (average output 
of 20 different networks) using RD and SD are presented. 
Using SD, the overall R2 varied from 0.85 to 0.88 and the 
RMSE from 1.23 to 1.80 dS m-1. For the validation subset, 
the R2 varied from 0.58 to 0.87 and the RMSE from 1.21 to 
3.17 dS m-1. The worst result was observed for the upper soil 
layer. At 0.1 m soil depth, R2 was 0.85 and the RMSE was 
1.8 dS m-1. For the validation subset, R2 was 0.58 and the 
RMSE was 3.17 dS m-1. For all depths the performance of 
the ANN model is better using SD as compared to RD. 
When RD is used, there is a large difference between the 
different subset results (the poorest result was observed in 
the validation subset). Therefore, it can stated that the impact 
of data set division on the ANN performance is very impor-
tant, especially for the surface soil layers (0.1 and 0.5 m) and 
below the PVC drains (2.0 m depth), where the impact of the 
drainage network is negligible. 

At 0.1 m soil depth the result of the ANN model using 
RD was characterized by over-fitting. This was in spite of 
that the method applied is used to prevent nonlinear instabil-
ity and over-fitting, that is, random data order [44] and aver-
aging the output [28]. From the 10 randomly divided inputs, 
70 % of the models had an R2 less than 0.2 for the validation 
subset and higher than 0.85 for the training subset. Conse-
quently, the model output fitted the data well for the training 
data, yet produced poor forecasts using validation data. An 
ANN model is usually capable of learning the signal from 
the data, but as training progresses, it often starts learning the 

 

Fig. (2). R2 and RMSE of the MLR for each depth, various subset (validation (Val.), training (Train.), total) and the dataset division method 
(Random (R.), statistical (S.)).  

   

0,0

0,2

0,4

0,6

0,8

1,0

0,1 0,5 1,0 1,5 2,0

soil depth (m)

R
2

R.Train. S.Train
R.Val. S.Val.
R.Total S.Total

  

0

1

2

3

4

5

0,1 0,5 1,0 1,5 2,0

soil depth (m)

R
M

S
E

 (
dS

/m
)

R.Train. S.Train
R.Val. S.Val.
R.Total S.Total

     
 



Estimating Soil Salinity Over a Shallow Saline Water The Open Hydrology Journal, 2010, Volume 4    97 

noise in the data (i.e., over-fitting). That is, the forecast error 
of the model over the validation period first decreases and 
then increases as the model starts to learn the noise in the 
training data [45]. To resolve this problem, a technique 
called early stopping is normally used. In this technique 3 

data subsets instead of 2 (training, testing, and validation 
[28]) are used when training the ANN. Another common 
technique is to reduce the number of hidden neurons [46]. 
However, using these approaches did not resolve the prob-
lem of over-fitting for the upper soil layer.  

Table 3. Results of Sensitivity Test to Predict Soil Salinity with ANN at 0.1 and 0.5 m Soil Depths 

 

Input variables for 0.1 m depth R
2
 RMSE (d S

-1
) 

ECgw, Dgw 0.312 3.55 

Dgw, ECgw, PL 0.402 3.38 

ECgw, S1.5, S2 0.508 2.99 

Dgw, Ecwt, S1.5, S2  0.585 2.83 

Dgw, Ecwt, S1.5, S2,  y (best input for MLR) 0.708 2.30 

ECgw, S1.5, S2,  x 0.733 2.26 

ECgw, Dgw, x, y 0.733 2.22 

ECgw, Dgw, x, y, z  0.746 2.16 

Dgw, ECgw, PL,  x, y 0.773 2.05 

 

Input variables for 0.5 m depth R
2
 RMSE (d S

-1
) 

ECgw 0.449 2.51 

ECgw, Dgw 0.737 1.74 

ECgw, Dgw, y 0.767 1.65 

ECgw, Dgw, PL 0.781 1.59 

ECgw, Dgw, z 0.803 1.52 

ECgw, Dgw, S0.1, S1.5 (best input for MLR) 0.827 1.42 

ECgw, Dgw, S0.1, S1.5, x, y  0.856 1.31 

ECgw, Dgw, x, z 0.873 1.26 

ECgw, Dgw, x 0.874 1.25 

ECgw, Dgw, x, y 0.875 1.24 

ECgw, Dgw, PL, x, y 0.890 1.09 

ECgw, Dgw, PL, S0.1, x, y 0.898 1.06 

S (1.5). Percentage of the soil sand particle size at 1.5 m soil depth, coordinate (x,y), altitude (z), water table (depth (Dgw, salinity (ECgw), piezometric level (PL)) 

 

Fig. (3). The average root mean square error (RMSE) of 20 neural network runs plotted against the number of neurons in the hidden layer for 
the 5 soil depths. 
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Comparison Between MLR and ANN Models 

For all soil depths, the performance of both MLR and 
ANN models was better with SD as compared to RD (Fig. 2, 
Table 4). Also, with SD the performance of ANN was better 
than the MLR, especially when the ANN best input was used 
(0.1 and 0.5 m depths). With SD, the R2 was 0.58 and 0.28 
for the ANN and the MLR model, respectively, using the 
validation subset at 0.1 m soil depth. For 0.5 m depth, the 
accuracy to predict ECe was better with the ANN (for the 
validation subset, the RMSE was 1.21 dS m-1 for ANN and 
2.14 for the MLR model) in spite of using less input vari-
ables than in the MLR. For all 5 soils depths, the accuracy of 
the predicted ECe was also better with ANN as compared to 
the MLR model (Fig. 4). With SD division, the result of the 
validation subset obtained by the MLR was usually better 
than that obtained with ANN model and RD. Also other field 
studies have shown that statistical methods (principal com-
ponent analysis, cluster analysis, self organising map etc) 
can be used to determine the best input variable and to divide 
the data into relevant subsets for ANN models [47-49]. 

Based on the above it may be stated that the ANN model 
can extract more information (related to the ECe variation) 
from the plot coordinates than the MLR. For the best MLR 
model (Table 2), the R2 varied from 0.24 to 0.25 and the 
RMSE from 3.75 to 3.74 dS m-1, respectively, without and 
with the input variable y for salinity prediction at 0.1 m 
depth. For the ANN model, the R2 varied from 0.58 to 0.71 
and the RMSE from 2.83 to 2.30 dS m-1, respectively, with-
out and with the input y (Table 4). This shows that the spatial 
dependency cannot be represented by a linear model. The 
nonlinear spatial dependency could, however, be described 
by the ANN model. In the study area, there are 540 farmers 
and the farmer’s land area varied from 0.15 to 400 ha [50]. 
The farmer’s agricultural management (irrigation, fertiliza-
tion, crop, agricultural soil practices, etc) is, however, much 
diversified [50]. This has a considerable effect on the soil 
salinity distribution, especially at the soil surface. Usually, 
farms close to each other have similar agricultural practices. 
Before the completion of the drainage and irrigation systems 
in 1988, the old Medjerda riverbed constituted a natural 

drainage system and the Medjerda water was discharged into 
this riverbed allowing farmers to irrigate their land. These 
farming plots generally have lower soil salinity [4]). Farmers 
apply organic and chemical fertilizers, plow, irrigate and 
cultivate their land during all seasons. Contrary to this, farm-
ers with land in the lower part of the irrigated area, use the 
land for rainy annual crops and grazing due to salinity and 
water logging. These management practices significantly 
affect water and salt transport in the soil [20, 51]. For the 
large study area, however, it is very difficult to quantify all 
affecting variables for the soil salinity. In any case, they all 
add up and contribute to the spatial variability of soil salinity 
with a specific spatial correlation. 

SUMMARY AND CONCLUSIONS 

An accuracy estimation of soil salinity is appreciated for 
both land planners and farmers to make appropriate deci-
sions about crop production and soil and water management 
In this paper we explored the ability of ANN to predict the 
spatial electrical conductivity of the saturated soil paste 
(ECe) variation at 5 soil depths (0.1, 0.5, 1.0, 1.5, and 2.0 m) 
under highly complex and heterogeneous field conditions in 
semiarid Tunisia.  

The input was chosen from more than 20 input variables; 
plot coordinates (x, y), altitude (z), soil particle size at 5 soil 
depths, and groundwater table properties (depth, electrical 
conductivity (ECgw), and piezometric level).  

From about 22000 models with different input combina-
tions tested, the plot coordinate (x and/or y) was selected 
among the best input for the MLR. For the ANN model, at 
0.1 m depth, the R2 varied from 0.40 to 0.77 and the RMSE 
from 3.38 and 2.05 dS m-1  without and with the plot coordi-
nates (x, y) input, respectively. Consequently, for large 
fields, the plot coordinate indirectly gives input to the statis-
tical models regarding the spatial correlation of parameters 
that has large effect on the ECe (such as farmer’s agricultural 
practices, drainage system efficiency, etc). The final number 
of input variables used in MLR and ANN are related to the 
complexity of the soil salinity process, it decreased with the 
soil depth from 5 to 2.  

Table 4. Influence of the Data Set Division Method on the ANN Model to Predict Soil Salinity (ECe) 

 

Depth Division Training Validation Total 

(m) method RMSE R2 RMSE R2 RMSE R2 

Random 1.69 0.881 4.36 0.156 2.41 0.688 
0.1 

Statistic 1.32 0.933 3.17 0.580 1.80 0.851 

Random 1.20 0.876 2.99 0.442 1.69 0.756 
0.5 

Statistic 1.25 0.879 1.21 0.867 1.23 0.875 

Random 1.33 0.898 3.18 0.450 1.81 0.810 
1.0 

Statistic 1.32 0.910 2.01 0.770 1.46 0.876 

Random 1.62 0.864 4.13 0.602 2.31 0.766 
1.5 

Statistic 1.60 0.881 1.91 0.849 1.65 0.867 

Random 1.71 0.890 4.55 0.288 2.48 0.756 
2.0 

Statistic 1.78 0.886 1.73 0.830 1.76 0.874 
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The performance of MLR and ANN models are better 
with SD as compared to RD division, especially for the vali-
dation subset. The statistical properties of the various data 
subsets (training and validation) need to be considered to 
ensure that each subset represents the same population. Also, 
for 0.1 m soil depth, in spite of applied methods to prevent 
nonlinear instability and over-fitting, the result of the ANN 
model using RD was characterized by over-fitting. However, 
with SD, the performance of the validation subset was im-
proved. Consequently, SD can be considered as a technique 
against the problem of over-fitting. However, when the 
number of inputs becomes large, it may be difficult to divide 
the data in a way so as to take statistical properties of the 
various input variables into account. In general, however, for 
all 5 soil depths and for the various subsets, the performance 

of ANN to predict the ECe was better than the MLR model. 
For the ANN model, R2 varied from 0.85 to 0.88 and the 
RMSE from 1.23 to 1.80 dS m-1. For the MLR, the R2 varied 
from 0.25 to 0.71 and the RMSE from 2.33 to 3.68 dS m-1. 
Because of the complexity of the field soil salinity process 
and the resulting spatial variability of the data (1< ECe < 28 
dS m-1 and 1< ECgw< 60 dS m-1), results clearly indicated the 
potential use of ANN models to predict the ECe. 
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