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Abstract: Precipitation analysis is embedded in a range of important hydrological studies for hydraulic works  

construction and maintenance. However, flaws and limitations in records are obstacles often encountered by researchers. 

One feasible solution for overcoming these obstacles is to generate synthetic series. The main objective of this work is to 

structure and validate a model for generating synthetic rainfall series at a daily scale. A parametric model has been  

constructed, where the occurrences are determined by a stochastic Markov process and the cumulative rainfall quantities 

are computed using a mixed exponential probability distribution. Since no previous studies using the proposed probability 

distribution in La Plata Basin were found in the literature, several significance tests and relevant criteria were applied,  

in order to verify the model accuracy. The approach was studied in 11 rainfall stations inside Parana and Uruguay rivers 

basins, located in Brazilian South and Southeast regions, obtaining good results. Additional analyses of the model  

performance related to extreme events and droughts are also present. 
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INTRODUCTION 

Synthetic precipitation series generation has been used 
for some time by a few researchers to overcome limitations 
mainly involving the size or conditions of available historical 
records. Furthermore, the Monte Carlo Method growing use 
to estimate hydrological variables statistical properties  
increased the importance in generating consistent series.  
It should be remembered, however, that this solution still 
provokes much discussion, for precipitation is a highly  
complex process. It is useful to look at Zawadzki [1] and 
Waymire et al. [2]; these studies show the complexity  
involved in the dynamic rainfall process. It is clear that  
concerns about mathematical models limitations are  
appropriate, since none can fully reproduce natural phenom-
ena. Obviously, synthetic series generation is not an  
exception, but even with restrictions it is considered a  
feasible solution for various problems. 

Srikanthan and McMahon [3] developed one of the best 
references for researchers to generate synthetic rainfall series 
on annual, monthly and daily scales. Differently from these 
authors, however, the present study highlights only daily 
scales. Various existing approaches can be classified  
according to the processes used. Brissette et al. [4] organized 
them in three large groups: semiparametric or empirical, 
non-parametric and parametric models. In common, most of 
these models simulate precipitation occurrences, applying 
stochastic Markovian processes, or alternating renewal 
events processes. The difference between them lies in the 
precipitated amounts determination. 
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Semiparametric models use histograms that are adjusted 

to the data, i.e., the process is formulated using statistical 

parameters and requires calibrations for the appropriate  

applications. Within these characteristics, the best known 

model was developed by Semenov et al. [5], and called 

LARS-WG. Boughton and Hill [6] also worked with a  

semiparametric approach.  

The non-parametric models are known for not presenting 

a defined structure and, therefore, depend exclusively on 

data available to generate estimates. Researchers interested 

in working with this type of model concentrate their efforts 

mainly on trying to reproduce physical mechanism influ-

ences in the precipitation process. Bardossy and Plate [7] 

attempted to model daily precipitation taking into account 

atmospheric circulation patterns. Young [8], Lall et al. [9] 

and Harrold et al. [10, 11] are other examples of non-

parametric models. In each study, needed parameters were 

determined by applying Kernel estimators [12]. Recently, 

Boulanger et al. [13] developed a generation model based on 

artificial neural networks, achieving good results. 

Parametric models are the best known and most widely 
used by researchers. This approach does not have the same 
detail level as those presented previously, but offers greater 
flexibility and easy adjustment, attracting scholars’ attention. 
Precipitated amounts are calculated by applying probabilistic 
distributions, mainly derived from the exponential family. 
Outstanding among them are the simple exponential  
[14-16], two-parameter exponential [17], three-parameter 
mixed exponential [18-20] and two-parameter gamma [21-
25]. Goodness of fit provided by these distributions is vari-
able, depending mainly on the region rainfall regime, where 
the model is to be applied. Anywise, some authors clearly 
prefer the two-parameter gamma distribution. 
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With the great number of existing univariate models, re-
searchers attempted to generalize their formulations in order 
to generate series in multiple locations simultaneously. This 
is a very important issue in climate change studies, or spatial 
relationship evaluation between monitoring stations, for in-
stance. However, it is not a direct process as new variables 
must be taken into account, especially those that consider 
correlations between the climatic data. In fact, the main ob-
stacle to multivariate models good performance is precisely 
the correlation structure reproduction in the study region [4]. 
Wilks [18] was successful in estimating the synthetic corre-
lation matrices and using them to generate different series by 
applying pairs of temporal independent, but spatially corre-
lated random numbers. Other examples of multivariate mo-
dels can be found in [4, 26-28], the latter in the non-
parametric field. 

The present study structures a model to generate syn-
thetic daily scale precipitation series. Apart from monthly or 
annual scales, daily record series contain many “zeros”, 
making the model to be developed much more complex. For 
this reason, researchers who choose to work with the daily 
scale generally structure the generation models in two dis-
tinct phases: occurrences determination and amounts calcula-
tion. In this study, occurrences were determined using first 
order, two states, Markov Chains and amounts were calcu-
lated with a three-parameter mixed exponential distribution. 

There are also parallel analyses to assess the used consi-
derations validity. Markovian model optimum order to be 
used or goodness of fit analyses for probability distribution 
involved, are examples. Assays of this kind, based on tests 
disseminated in specialized literature, are found throughout 
this study text. 

MATERIALS AND METHODS 

A typical parametric univariate model was structured; 
precipitation occurrences were determined by applying a 
Markovian stochastic process and accumulated quantities 
were calculated using a three-parameter mixed exponential 
distribution. The main references can be found in [16, 18 and 
21], the latter in its univariate portion. 

Precipitation Occurrences Determination 

In many studies wet or dry days are determined using 
stochastic processes. In this work, first order, two states, 
Markov Chains were applied, i. e., the current and immedi-
ately previous days are considered, under assumption of dry 
or wet state. This choice was based on the good results ob-
tained in several previous studies, like [15, 18 and 29], 
among others. 

A Markov chain is constructed mainly based on the states 
definition and on transition probabilities among them. Let X 
be the current state with indexes “0” for dry day and “1” for 
wet day. The transition probabilities are, therefore, expressed 
by: 

Pr Xt k( ) =1 | Xt 1 k( ) = 0{ } = p10 k( );

Pr Xt k( ) =1 | Xt 1 k( ) =1{ } = p11 k( )
 (1) 

This representation is interpreted as p10(k) indicating a 
dry day preceded by a wet day and p11(k) indicating a wet 
day preceded by another wet day. Further, t is the index of 

time and k represents the locality involved. Transition prob-
abilities matrix is built with the complementary probabilities 
p01(k) and p00(k), however, only the probabilities in (1) are 
sufficient to implement the model. Calculations were per-
formed by direct counting the respective events found in the 
regions of interest historical records. 

Occurrences synthetic series are obtained initially by de-
fining a critical probability p. This critical probability is re-
defined every new generated day and assumes the values 
p10(k) or p11(k) according to the process evolution. Random 
numbers, uniformly distributed on the interval (0, 1] are used 
to execute the comparisons that will define both initial state 
(corresponding to the first day) and the other states.  

During their studies, some authors realized that higher 
order Markovian models had better results when applied 
under different conditions. Chin [30] confirmed this when 
noticed that Markovian processes optimum orders can vary 
according to seasons, geographical location, or even sample 
size available. Choosing a higher dependence degree on the 
model implies the use of information from a longer sequence 
of preceding days to define the current state. Deni et al. [31], 
Jimoh and Webster [32] and Azevedo and Leitão [33] are 
examples of studies that used various orders Markovian 
chains to determine precipitation events.  

As a parallel analysis, two criteria were used to investi-
gate whether first order Markovian chains are really appro-
priate events generation in the present study interest region: 
Akaike’s Information Criterion (AIC) [34] and Bayesian 
Information Criterion (BIC) [35]. Both criteria are based on 
the principle of parsimony; the model optimum order is ob-
tained from an equation that allows compliance with the ad-
justment (through the likelihood functions Lm) and a penalty 
that increases proportionally with the number of parameters 
(or orders) to be used. The equations are defined by: 

AIC m( ) = 2Lm + 2s
m s 1( )  (2)

BIC m( ) = 2Lm + s
m ln n( ) (3)

Where m represents the order of the Markov chain to be 
tested, s the number of states, and n the sample size. 

Precipitated Amounts Determination 

The statistical distribution employed to calculate the pre-
cipitated amounts during the days considered wet was the 
three-parameter mixed exponential. According to Wilks [36] 
some physical mechanisms have more than one generating 
process, so they are incompletely represented by a simple 
statistical distribution. Furthermore, mixed distributions give 
the models a good flexibility degree, directly reflecting on 
the results to be obtained. 

The probability density function (PDF) is given by: 

fR r k( ) =
k( )

1 k( )
exp

r k( )

1 k( )
+

1 k( )

2 k( )
exp

r k( )

2 k( )

1 k( ) 2 k( ) > 0, 0 < k( ) 1

 (4) 
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Where R represents the random variable, r represents the 
value assumed by the random variable (rainfall amount, 
proper) and , 1 and 2 represent the parameters. The un-
knowns entire set is attached to a specific site k. This mixed 
distribution can also be seen as the sum of two simple expo-
nential functions (one parameter each) intermediated by a 
probability factor. 

The method used to estimate the parameters was Maxi-
mum Likelihood, acknowledged for providing good quality 
estimators, especially in samples with asymptotic tendencies. 
However, on applying the method classical form, one can 
note that the mixed exponential distribution parameters are 
implicit in the formulation, as also attested in [37]: 

Lm x; ; 1; 2( ) = ln

k( )

1 k( )
exp

r k( )

1 k( )
+

1 k( )

2 k( )
exp

r k( )

2 k( )

i=1

n

(5)

So, in order to overcome this undesirable situation, the 
EM (Expectation–Maximization) algorithm technique was 
applied. Initially developed by Dempster et al. [38], it was 
mentioned by Wilks [36] as an excellent solution for pro-
blems involving mixed statistical distributions. More appli-
cations can be seen in [27 and 39]. 

Once the distribution parameters for a given locality have 
been estimated, rainfall amounts can be generated. The pur-
pose becomes to determine the random variable R corre-
sponding to the probability function involved. One can use 
the simple exponential inverted PDF, conditioned to the 
mean : 

ri k( ) = rmin k( ) .ln vi( ) (6)

where rmin represents the minimum quantintity of precipita-
tion for a day to be considered wet and vi is a random num-
ber, uniformly distributed in the interval (0,1]. The mean 

 assumes the value 1 or 2.The choice is made by generat-
ing another uniform random number ui; if ui , the mean 1 
is chosen; if ui  the mean chosen is 2. 

The generation model is completed by equation (7): 

Yi k( ) = Xi k( ) .ri k( ) (7)

Where Xi assumes the values 0 or 1, depending on the occur-
rences results, as explained in the previous section. 

Mixed exponential distribution performance proved supe-
rior in some important studies. Roldán and Woolhiser [37] 
compared this to the simple exponential distribution and the 
gamma distribution. After careful analysis, the author’s con-
clusion determined that the mixed exponential distribution 
was much superior to the others, as it provided better results. 
This was also observed by Wilks [18] and Foufoula-
Georgiou and Lettenmaier [20]. However, this distribution 
behavior in the present study region was unknown, since no 
similar work applied to this area was found in the literature. 
For this reason, some analyses about the mixed exponential 
distribution goodness of fit were performed by constructing 
probability curves and applying classical statistical infer-

ences: Chi square, Kolmogorov-Smirnov and Filliben’s 
Probability Plot Correlation Coefficient test (PPCC) [40]. 
The distribution challenged was the two parameters gamma, 
widely used by researchers. Its parameters were also esti-
mated using the Maximum Likelihood method, with formu-
lation found in Botelho and Morais [41] and Wilks [36]. 

Model Validation 

When one works with synthetic series to be applied in 
various studies, a large number of them is always generated, 
intending to reduce the sample error. The generated series set 
must be able to reproduce the same original series statistical 
characteristics. It is also useful if they are indistinguishable, 
yet equiprobable. In agreement with these facts, a set of 1000 
synthetic series was generated for each raingauge station 
chosen. Markov Chains parameters were noted (transition 
probabilities), as well as the results of the AIC and BIC tests. 
Then dry and wet days number in the historical series was 
compared to the generated ones. 

For the precipitation amounts, several calculations were 
performed. Like in the occurrence procedure, mixed expo-
nential distribution parameters were also noted. Then the 
long term means and standard deviations, total precipitation 
and maximum daily precipitation were compared. It should 
be emphasized that for all calculations referring to precipi-
tated amounts, rainless days were ignored. The last parame-
ter calculated for validation was the cross correlation coeffi-
cient between the historical and the generated series. As 
mentioned at the beginning of this section, it is useful for the 
series to be indistinguishable from each other. Therefore, the 
result expected from this cross correlation coefficient would 
be as close to zero as possible. 

Worth mentioning that the reproduction of basic statisti-
cal characteristics reveals only that the model was correctly 
implemented. So, with the model duly refined, the validation 
process begins, focusing analyses in extreme or low fre-
quency events. It should be remembered that these events are 
not limited to high intensity rains; they also extend to longer 
than normal dry spells. Thus, the maximum dry or wet con-
secutive days sequence per period of 1 to 10 days and the 
empirical probabilities distribution for the dry day sequences 
were accounted. 

Study Area Description 

Raingauge stations located in the Parana and Uruguay 

rivers basins (Brazilian portion of the La Plata Basin) were 

chosen to apply the model. Both basins play a major role in 

the hydroelectric power scenario in Brazil. Together, they 

contain approximately 63.6% of the installed Brazilian hy-

droelectric potential, besides the potential remaining for fu-

ture facilities [43]. All this potential is a great motivational 

factor in choosing these areas. 

According to the Köppen-Geider climatic classification 

most recent form [44], both basins have a predominantly Cfa 

type climate. Types Cwa and Cwb are also found in the north 

of the Parana River basin; the northeast of the same basin is 

classified as Aw type. Finally, isolated points in the north of 

the Uruguay River basin present a Cfb type climate. More 

detailed climatic characteristics of each region can be found 

in [45]. 
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The mechanism that generates precipitations in the  

studied basins is strongly influenced by the Polar Atlantic 

Front. In the Parana River basin Center-North portion, many 

different types of weather are found during the year. The 

tendency is towards warm, moist weather in the winter, with 

an average precipitation of 2000 mm/year. Both Parana 

River basin South portion and Uruguay River basin, on the 

other hand, have a discrepancy between the temperature and 

the rainfall regimes during the year. Despite great thermal 

variability, the precipitations are regularly distributed and the 

averages are between 1250 mm and 2000 mm. In all the  

regions the snowfall records are limited to a few points in the 

mountain areas, so that the precipitation regime can be char-
acterized by rainfall alone. 

In order to test the model under the different climatic 
conditions found within the study area, it was decided to 
choose raingauge stations that are well distributed in each 
basin. Thus, the selected stations number was established as 
11, showed in Table 1 and Fig. (1). Series used in the model 
have the same length, covering the period of 01/01/1969 to 
12/31/2003, summing 35 years or 12760 recorded days for 
each raingauge. 

Table 1. Selected Raingauge Stations 

# Station Code ANA* Latitude (West) Longitude (South) Altitude (m) 

MAM Monte Alegre de Minas 01848000 18°52'20" 48°52'10" 730.00 

UCC Usina Couro do Cervo 02145007 21°20'37" 45°10'13" 813.00 

MM Monte Mor 02247058 22°57'39" 47°17'45" 560.00 

Ca Caiuá 02151035 21°50'00" 51°59'00" 350.00 

To Tomazina 02349033 23°46'00" 49°57'00" 483.00 

UV União da Vitória - 396 02651000 26°13'41" 51°04'49" 736.00 

Ta Taiamã 01655003 16°43'39" 55°31'17" 163.00 

Co Caracol 02257000 22°01'51" 57°01'45" 247.00 

PM Passo Marombas 02750009 27°19'51" 50°45'03" 829.00 

LC Linha Cescon 02753004 27°48'42" 53°01'40" 350.00 

Cq Cacequi 02954001 29°52'40" 54°49'25" 100.00 

*ANA is the acronym for Brazilian Water Agency. 

 

Fig. (1). Study area with selected raingauge. 
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APPLICATION AND RESULTS 

A few initial considerations were adopted to obtain the 

results proposed in this study objectives. First, just as in [14, 

18 and 24], it was assumed that there is a monthly seasonal-

ity with stationary historical series. For processes dealing 

with time series, stationarity appears to be a necessary pre-

requisite for a good reproduction of natural dynamic phe-

nomena, through a finite data interval. Among all the authors 

researched to develop the present work, few tried to model 

precipitations considering a non-stationary system [42]; even 

so, the model had a non-parametric connotation. In paramet-

ric models case the stationarity condition is unanimous 
among researchers. 

It is necessary to define the limit of rainfall for a day to 
be considered wet. Deni et al. [31] stressed its importance 
when noticed that different limit values can change the 
Markovian Chain optimum order to be used. The limit value 
for the present study is the same used in [4, 18 and 21]: 0.3 
mm. 

First results obtained refer to the Markov Chains transi-
tion probabilities. It is interesting to note that these probabili-
ties intrinsically provide information about each raingauge 
dry or wetspells, as well as their magnitude. To illustrate, 
two comparative graphs were prepared in which rain after a 
dry day (p10) and of rain after a wet day (p11) probabilities 
are plotted for all raingauge stations (Fig. 2). On analyzing 
these graphs, the different climatic behaviors become clear. 

Table 2 provides the general accountancy, in absolute 
and percentage terms, for AIC and BIC criteria verdict in all 
11 considered raingauge (12 seasons each). 

As to the mixed exponential distribution, it was observed 
that the estimated parameters vary considerably, even within 
a same raingauge station. As previously described, this sta-
tistical distribution has the advantage of offering flexibility 
in fitting the data. It can be measured calculating the ratio 
between the mean parameters ( 1/ 2) [18]. One can interpret 
as a differentiation degree indicator that the mixed exponen-
tial distribution can perform regarding rainfall intensity. In 
other words, on being represented by two means, the prob-
ability distribution is careful in considering events with dif-
ferent intensities. In this work, the average value found was 
3.4. As to the probability parameter ( ), the average value 
found was 0.66, while its standard deviation between all 
raingauge stations, in a pre-fixed month, presented an aver-
age value of 0.17. 

Goodness of fit analysis is shown next. Initially the two 
probability models are compared to the empirical distribu-
tion. Next the Probability-Probability graphs are plotted. 
They are expressed, respectively, By Fig. (3) and Fig. (4), 
elaborated only for large or small samples cases (many or 
few rainy days, respectively), due to the numerous results 
(11 raingauge and 12 seasons, summing 132 cases). 

As to the statistical tests applied, the mixed exponential 
distribution proved slightly superior to the gamma. In the 
case of the Chi-square test, the statistics for the calculated 
mixed exponential resulted in a value that was further away 
from the tabled limit than the gamma distribution. For the 
Kolmogorov–Smirnov test the gamma distribution was re-
jected in some cases, but the value calculated was very close 
to critical, therefore, the rejection can be considered irrele-
vant. The mixed exponential distribution presented null hy-
pothesis acceptance in all cases. 

The PPCC test [40], quoted by many authors as a simple, 
but powerful test [36] showed somewhat more rigorous than 
the others aforementioned. Among all raingauge seasons and 

 

Fig. (2). Transition probabilities behavior (upper - p11; lower - p10) 

Table 2. AIC and BIC Results 

Absolute  Percentage  

AIC BIC AIC BIC 

Optimum order 0 0 8 0% 6% 

Optimum order 1 82 119 62% 90% 

Optimum order 2 50 5 38% 4% 

Totals 132 132 100% 100% 



74     The Open Hydrology Journal, 2011, Volume 5 Detzel and Mine 

months combinations, four rejections were appointed to the 
gamma distribution and one for the mixed exponential distri-
bution. For all the tests performed in this study, the confi-
dence level adopted was 95%. 

Once the verifications had been performed and the pa-
rameters calculated, the series were generated. Compared 
with the original series, the results were positive, as one can 
see in Table 3. 

In turn, Table 4 shows results for the accumulated rain 

amounts, from 1 to 10 days spell. Results are expressed in 
errors form, calculated in absolute terms (means of maxi-

mum values obtained in each series) and in average terms 

(mean of the values obtained in each series). It should be 
pointed out that the values in each period were obtained 

through moving averages which included all elements of the 

series. 

The last item to be evaluated in this study is the empirical 

probabilities distribution for the low flow periods. As in pre-

vious plot showed, only two cases were selected due to the 
numerous results. Fig. (5) exhibits these cases referred to the 

best and worse fits, respectively. 

DISCUSSIONS 

Obtained results can be considered quite interesting, from 
the Markov Chains order determination to the mixed expo-
nential performance. On analyzing AIC and BIC criteria 
(Table 2), both indicate a clear preference for the first order. 
It is perceived, however, that the number of indications for 
each order differs. These results agree with Katz [46]; in his 
study, the author concluded that AIC criterion tends to over-
estimate the chain order to be used. BIC estimator presents 
more consistent results, and it is recommended for the model 
optimum order determination. Further, Wilks [18] empha-
sizes that, in large samples (with more than 1000 elements), 
the most recommended criterion is BIC. 

Still considering Wilks’ work, a mixed exponential dis-
tribution was fit to rainfall data in some North American 
raingauge. To evaluate the flexibility degree offered by both 

1 and 2 means, the author introduced the ratio between 
them, obtaining 4.8. As showed before, this procedure was 
also applied in the present study, obtaining 3.4. This lower 
value can be associated to the large number of raingauge 
stations in regions where frontal type precipitation predomi-
nates. 

Comparing the theoretical distributions to the empirical 
one (Fig. 3), it is noted that both distributions adjustment 
becomes worse as wet days number in the sample dimi-
nishes. Even so, comparatively, both gamma and mixed ex-

 

Fig, (3). Comparisons among probabilistic and empirical distribu-

tions. 

Table 3. Average and Maximum Errors in the Model Results 

 Average Error Maximum Error 

Means 0.3 mm 0.5 mm 

Standard Deviations 0.5 mm 1.2 mm 

Total Precipitated 82.7 mm 179.7 mm 

# Dry/Wet days 1 day 3 days 

Maximum daily 

amount 13.7 mm 52.8 mm 

Cross Correlation Null for all cases 

Table 4. Errors for the Total Amount (mm) Per Period (Days) 

Period (days) Absolute (mm) Average (mm) 

1 13.7 0,1 

2 20.3 0.2 

3 25.6 0.2 

4 27.6 0.3 

5 29.6 0.4 

6 32.5 0.4 

7 34.6 0.5 

8 34.5 0.6 

9 35.1 0.7 

10 36.8 0.7 
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ponential distributions are adequate to represent the precipi-
tated amounts in these regions. Likewise, the plots shown in 
Fig. (4) demonstrate a similar adjustment between the con-
fronted distributions. As in previous graphs, goodness of fit 
worsens as the number of elements in the sample diminishes, 
i.e., the drier the period used, more difficult it is for probabi-
lity models to reproduce the observed values. 

Generated series provided the results in Table 3 and  

Table 4. It is perceived that the model fulfilled its objectives 

very well. In agreement with theoretical goodness of fit 

analyses, the model precision was slightly inferior in dry 

seasons for all considered raingauge. This is perfectly justifi-

able, because with less rainy days, the model has fewer in-

formation to determine the parameters, which has a direct 

effect on its precisions. 

As to the total precipitations, if it is assumed that the 

mean error was uniformly distributed among the 35 years of 

the series, it would result in approximately 2.4 mm/month 

and 28.3 mm/year. Based on the presupposition that the 

study area raingauge average precipitation is above 1500.0 

mm/year, the error can be considered practically negligible. 

Model reverse appears in daily maximum precipitation 
determination. Errors magnitudes are elevated, which indi-
cates the model deficiency in reproducing high intensity 
events. Unfortunately, these failures commonly occur in 
many models [8, 14 and 24], which motivated specific stud-
ies as in [23]. Generally, heavy rainfalls are caused by ex-
traordinary atmospheric arrangements and, since most mod-
els structures are not able to consider it, extreme phenomena 
reproduction is impaired. 

As to the wet and dry days number, applying the Markov 
chains produced an excellent result. Errors showed in Table 
3 are very small compared to the sample size. In many cases, 
the model managed to reproduce precisely the same dry and 
wet days number as the original historical series. 

On the statistical long term analyses, it was noted that, in 
average terms, the model relatively kept up the good per-
formance presented previously. However, it is understood 
that obtaining excellent results for accumulated totals in ab-
solute terms may have been impaired for two reasons: first, 
theoretical, is related to the sample variability present in 
generated series. Since no bias analysis was performed in the 
estimators, there is no concise notion of its reliability. Thus, 
even presenting good values in average terms, it may be dif-
ficult for the model to reproduce values located at the sample 
interval extremities. The second reason is related to precipi-
tations physical mechanism; analyzing the historical series, 
high intensity rainfall events are found, which directly influ-
ence the obtainment of totals precipitated per period. Even 
knowing that some generated series did managed to repro-
duce these higher intensity events, results were compared 
with the series averages, for the simple reason that there is an 
excessively large number of series for individual treatment. 
Therefore, when one considers the average values among all 
series, there is an undesirable loss of information. 

In maximum events sequences in a same state evaluation, 
one might say that the model performed well, especially for 
wet days. For the low flow periods, the model was less pre-
cise, resulting in a mean error of six days. Finally, Fig. (5) 
analysis makes it clear that the model performed well in re-
producing the empirical probability distribution for drought 
periods. However, in both cases shown, the sample was rela-
tively large (high number of wet days), since the plot for 
drier seasons was jeopardized due to the extreme rainless 
days in a row. In order to overcome this situation, it would 
be necessary to have longer historical series than the ones 
used here. 

Topics About Multisite Generalization 

Once the model was tested and validated, next step 
would be a generalization for simultaneous application in 
multisite raingauges. Wilks [18] was the first successful 
author in achieving consistent results in this matter. As also 
attested by other researchers [4 and 48] the complexity lies 
on reproduce the synthetic spatial correlation structure for 
generate correlated random numbers, which will drive the 
model. The solution introduced by Wilks was to identify the 
existing monotonic relationship between generated standard 
Normal variables and sample correlation and compute, by 
trial and error, a similar synthetic correlation matrix. 

Nevertheless, Brissette et al. [4] stressed that sample cor-
relation matrix among raingauges may be non-positive defi-

 

Fig. (4). Probability-Probability plots. 
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nite, making it impossible to apply numerical technics, such 
as Cholesky decomposition, in order to create a standard 
Normal field. There are many reasons for this, but one can be 
highlighted: distance between raingauges. With long dis-
tances, sample correlation matrices become unstable, mainly 
due to climatic variability. In his study, Wilks [18] applied 
his model in rainfall stations from 10 to 500 km apart; Me-
hrotra and Sharma [47], on the other hand, used raingauges 
spaced from 20 to 340 km. 

In the present work, the multisite generalization is rather 
critical, since rainfall stations are very distant from each 
other: the shortest (MM to UCC) is 280 km away and the 
longest (Ta to Cq) is 1.450 km away. Besides, as attested 
with this work results, climatic behavior in these regions are 
distinct, leading to weak sample correlation matrix which 
would, almost certainly, result in non-positive definite corre-
lation matrices. The recommendation is, then, to limit the 
study area in smaller regions easing the multisite generaliza-
tion process. 

CONCLUSIONS AND RECOMMENDATIONS 

This paper studied a two-part model for daily precipita-
tion synthetic series generation, applying first order, two 
states, Markov Chains for occurrences determination and a 
three-parameter mixed exponential distribution for amounts 

calculation. Its predominantly parametric structure is heavily 
based on statistical concepts, using information from the 
historical series. As a main reference, Wilks [18], in its uni-
variate part, was used. Initially developed and executed for 
the New York State, United States, the model presented very 
good results, which led the author to credit its performance 
to the mixed exponential probabilistic distribution, little used 
in previous studies so far. 

Since no previous studies were found in the literature, it 
was assumed no changes in the structure of Wilks’ model, 
precisely in order to analyze its performance in a clima-
tologically distinct region. Analyzing obtained results in 
Parana and Uruguay rivers basins, it became very clear that 
the model repeated its good performance mainly in humid 
regions. Some worse results were detected in rather arid re-
gions. 

Doubts about the mixed exponential distribution per-
formance in the study region were solved after applying di-
verse analyses. Compared to the gamma distribution (which 
had, until then, been used more often for hydrological mod-
els to generate daily precipitation series), mixed exponential 
distribution proved superior in all cases. This, together with 
the AIC and BIC criteria applied to determine the Markov 
Chain optimum, supplied extra safety in applying the model. 
Even so, the less precise results obtained, related mainly to 
dry periods or seasons, lead to endorse future applications 
preferably in humid climate regions. 

Concerning the generalization for multisite raingauges, 
the authors strongly recommend to limit the study area in 
order to avoid unstable correlation matrices and, conse-
quently, non-positive definite matrices. 
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