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Abstract: This research investigates the relationship between agricultural production and the occurrence of meteorologi-

cal droughts over time. A remote sensing approach is developed to estimate the yield of cereal crops based on the re-

motely sensed data in the study area. The yield estimates from remotely sensed imageries provide a primary data source to 

measure agricultural well-being and quantify agricultural vulnerability to drought. The drought condition as the stressor to 

agricultural production systems is characterized using the standard precipitation index (SPI). The results of the study indi-

cate that crop production system in Southern Alberta is very vulnerable to drought. About half of the study area is associ-

ated with a high to extremely high vulnerability. If the drought trend in the recent past repeats itself in the near further, it 

can be expected that crop production in these areas will be seriously threatened. 
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INTRODUCTION 

Agricultural systems constitute a pivotal economic sector 
in rural Canada and worldwide. Sustainable rural systems are 
very much dependent upon the healthy development of agri-
culture. As a multi-faceted biophysical and socio-economic 
system, the agricultural system is heavily affected by varia-
tions and changes in climate conditions. Extreme climatic 
events such as severe drought can often cause devastating 
damages to agriculture and consequently to rural communities. 

This research attempts to investigate the relationship be-
tween agricultural production and the occurrence of meteoro-
logical droughts over time, and consequently to examine 
how sensitive and vulnerable agricultural production is, 
given the variability in climate conditions in Southern Al-
berta. A remote sensing approach will be developed to esti-
mate the yields of cereal crops in selected years based on 
remotely sensed data in the study area. The yield estimates 
based on the remote sensing approach will provide a primary 
data source to measure agricultural well-being and quantify 
agricultural vulnerability to drought.  

LITERATURE REVIEW 

The concept of vulnerability often refers to as “a  
potential of loss” [1, 2]. It is widely accepted in the literature 
that vulnerability reflects the interaction between the stresses 
or disturbances, which arise outside and/or inside the system, 
and the system’s inherent capacity to respond. Agricultural 
vulnerability to drought can then be understood as the poten-
tial loss of agricultural sectors or communities to dry  
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climatic conditions. For vulnerability assessment, vulnerabil-
ity may be considered as a function of three components: 
sensitivity, adaptive capacity and exposure [3-6]. However, 
quantifying vulnerability can be quite difficult due to the 
complexity of the system under analysis and the fact vulner-
ability is not a directly observable phenomenon [7-9]. The 
traditional approach of quantifying vulnerability is primarily 
based on summing or averaging a set of weighted indicators 
that are indicative of vulnerability components. The indica-
tors are always the directly observable or measurable condi-
tions of the systems’ elements and/or the characteristics of 
the disturbances that the system is exposed to. This method 
has been used to assessing vulnerability of both ecosystems 
and societies to different disturbances such as natural haz-
ards, environmental changes, and pollution [10-15]. The 
main drawback of this approach is that the value of weight-
ing factors depends to a great extent upon arbitrary deci-
sions, and this reduces the confidence of such weighting 
methods [14].  

Luers et al. developed a new measure for quantifying 
vulnerability of a system [8]. The proposed vulnerability 
metric measures sensitivity as the absolute value of the de-
rivative of well-being with respect to the stressor, exposure 
as probability of the occurrence of stressor, and adaptive 
capacity as difference in the vulnerability under existing 
conditions and under the less vulnerable condition to which 
the system could potentially shift. In the case study, they 
investigated the vulnerability of agriculture system in a sub-
tropical irrigated area of Mexico [8]. Well-being was cap-
tured by agricultural yields, while the stress of concern was 
night time temperature. It is suggested that this generalized 
function could also be used to examine the vulnerability of 
many other systems and/or places in response to various 
types of stresses.  
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Remote sensing data have been widely applied to many 
research problems and practical applications, including me-
teorology, geology, canopy and soil investigations, ocean 
research, water management, and environmental monitoring 
[16]. Compared to the traditional data collection methods, 
the capability of remote sensing techniques of providing 
timely information over a large spatial extent at a wide range 
of spatial, temporal, and spectral resolutions is appreciated 
by numerous users in different application fields [17-19].  

Agriculture is one of the major users of remote sensing 
data (Moulin et al., 1998). Numerous research efforts have 
been devoted to seeking a quantitative relation between re-
motely sensed spectral information and crop yields, and con-
sequently obtaining a robust estimation and forecasting for 
agricultural productions [8, 20-33].  

There are generally two main types of strategies used in 
the literature for estimating crop yields based on remote 
sensing data [16, 18]. The first one is based on crop growth 
models, which incorporates remote sensing data into agro-
meteorological or bio-physiological models [23, 18, 31-33]. 
For example, Doraiswamy et al. (2003) implemented the 
real-time assessment of the magnitude and variation of crop 
condition parameters into the crop model called Erosion 
Productivity Impact Calculator (EPIC) [34]. The EPIC 
model was used to estimate crop yields at regional and state 
levels. Abou-Ismail et al. (2004) developed a rice yield esti-
mation model by combining a rice growth simulation model 
with remote sensing data [35]. This method is considered 
capable in describing the complexity of plant-physiology, 
and is suitable at a field scale [18]. Ferencz et al. (2004) 
summarized several main drawbacks of this method: 1) the 
number of input parameters required for the agro-
meteorological or bio-physiological models is always consid-
erably large, 2) it needs sufficient ground reference informa-
tion which is expensive to collect, and 3) the models can be 
quite complex [16]. 

Another commonly used method is to empirically relate 
the remote sensing data to crop yields at a local or regional 
scale. These types of relations are always investigated based 
on the use of some indices generated from remotely sensed 
imagery. For example, Dadhwal and Sridhar (1997) investi-
gated the relationship of a near-infrared (NIR)/red radiance 
ratio with wheat yield using a regression model [36]. The 
relationship was then used for wheat yield estimation. In a 
study by Ferencz et al. (2004), a new vegetation index, called 
the General Yield Unified Reference Index (GYURI)), was 
proposed which uses a fitted double-Gaussian curve to 
NOAA AVHRR data during the vegetation growth period. 
The regression models were established for different crop 
types to estimate crop yields [16]. Although the relationship 
found between the remote sensing data and crop yield from 
these empirical analyses may only have a local or regional 
value, such an approach is still preferred by many research-
ers as it is simple and can be achieved without any back-
ground physiological knowledge [37-39].  

One of the primary variables used in modeling the rela-
tionship between remotely sensed information and crop yield 
is the vegetation index. Various vegetation indices have been 
generated from optical satellite sensors which can provide 
quantitative information about vegetation health and biomass 
[39-42]. One of the most commonly used vegetation indices 

for yield estimation is the normalized difference vegetation 
index (NDVI).  

The NDVI is deduced from the physiological fact that 
“Chlorophyll a and b in the palisade layer of healthy green 
leaves absorbs most of the incident red radiant flux while the 
spongy mesophyll leaf layer reflects much of the near-infra-
red radiant flux” [43, p. 7]. The NDVI reflects the relation-
ship between the amount of healthy green vegetation and the 
spectral reflectance of near-infrared and red wavelengths, 
and therefore can be used as a measure of ground green 
vegetation health and volume.  

In the literature, through the use of simple regression or 
multiple regression analysis, correlations between NDVI and 
crop yield can be derived and used in yield estimation mod-
els for different vegetation types (corn, wheat, sugar beets, 
cotton, canola and grass) in various regions [37, 38, 44-46]. 
It is found the suitability of NDVI for yield estimation varies 
depending upon the acquisition time of the remote sensing 
images [37, 38, 47]. Several studies have discovered that the 
optimal image acquisition time for the best correlation be-
tween NDVI and crop yield is late July, particularly in west-
ern Canada [37, 38]. 

In summary, it can be concluded that vulnerability of a 
system or a place can be quantified by simplifying a complex 
system as a pair or pairs of interacting well-being and 
stresses, although a comprehensive quantitative vulnerability 
assessment is difficult. The reviewed works suggest that the 
empirical regression relationship between NDVI and crop 
yield is valuable for yield estimation modeling at a regional. 
Coupled with drought indices such as standardized precipita-
tion index, it is possible to derive a sound understanding of 
crop production vulnerability to drought at a regional scale.  

STUDY AREA AND DATA 

This study is concerned with agricultural production in 
Southern Alberta (Fig. 1). The spatial extent of the Landsat 
TM scenes defines the boundary of the actual study area 
within which agricultural vulnerability assessment is con-
ducted using remotely sensed data. This area represents the 
majority of agricultural regions in Southern Alberta. 

As Canada’s second largest agricultural producer and ex-
porter, Alberta accounted for 21% of Canadian farm cash 
receipts from agriculture, and the farm cash receipts totaled 
$7.9 billion in 2005. In total, Alberta’s agri-food exports 
were $5 billion in 2005. Crop production and livestock are 
the two dominant sectors in Alberta agriculture [48]. Total 
Alberta farmland area was 52.1 million acres, with an aver-
age farm size of 970 acres. The dominant crops in the study 
area include wheat, barley, oats and rye. During the past dec-
ade, Alberta produced 28% of the nation’s wheat crop, 44% 
of the barley, and 23% of the oats [48].  

To assess agricultural vulnerability to drought at a de-
tailed level, remotely sensed imageries are employed in the 
empirical analysis. The years of 1998, 1999 and 2001 are 
selected as the years that provide a representative variation in 
precipitation conditions. Since multi-date satellite imagery 
can often generate superior land use and cover classification 
accuracy, and consequently generate better yield estimation, 
two Landsat TM/ETM+ images for each selected year are 
acquired. The determination of image date is mainly re-
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stricted by data availability: 1) the temporal resolution (the 
time between two overpass dates for a particular location) of 
Landsat satellite sensor is 16 days; and 2) large cloud cover-
age prevents some images from being usable. The study area 
is defined as the overlapping area covered by all six acquired 
Landsat TM/ETM+ scenes over path 41 and row 25 (Fig. 1). 
Each of the obtained imageries contains seven spectral bands 
of information. Six bands (band 1: 0.45-0.52 m; band 2: 
0.52-0.60 m; band 3: 0.63-0.69 m; band 4: 0.76-0.90 m; 
band 5: 1.55-1.75 m; and band 7: 2.08-2.35 m) have a spa-
tial resolution of 30 meters for each spectral pixel, and one 
thermal band (band 6: 10.4-12.5 m) has a spatial resolution 
of 60 meters, which is excluded in the image analysis. 

METHOD 

The quantitative method for assessing vulnerability de-
veloped by Luers et al. (2003) is adopted to assess the agri-
cultural vulnerability to drought in Southern Alberta. Vul-
nerability is defined as a function of three components: sen-
sitivity, well-being state relative to its damage threshold, and 
exposure. Vulnerability of the agricultural system was calcu-
lated as: 
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where: Vi is the vulnerability value for a specific year at a 
pixel i; Si is the system’s sensitivity;Yi is the crop yield in the 
year of interest (1998, 1999 or 2001) are Y0 is the average 
crop yield over the selected years (1998, 1999 and 2001); 
and Ei is the system’s exposure to stress. 

The sensitivity of crop production is defined as the 
change in the system’s well-being corresponding to a small 
change in stress. It is measured as the slope of regressing 
crop yield against standard precipitation index (SPI) value. 
The calculation of the SPI first requires fitting the long-term 
precipitation record for the interested location into an appro-
priate probability density function. This function is then 
transformed into a normal distribution, so that the mean of 

the distribution is zero [49]. SPI values above zero indicate 
wetter periods and values less than 0 indicate drier periods. 
The monthly precipitation data during the growing season 
between May to August for a period of 1964 to 2004 were 
used to derive the value of SPI for all Environment Canada 
weather stations within the study area.  

The exposure is the frequency of occurrence that the 
stress in below a threshold level. It is measured by the fre-
quency of occurrence that the value of standard precipitation 
index is below -1.0 (moderate drought).The crop yield esti-
mates were derived using the remote sensing data. Two 
Landsat images, one early and one late growing season, for 
1998, 1999 and 2001 were used to calculate NDVI. The rela-
tionship between NDVI value and the farm reported crop 
yield was modeled using regression analysis. The regression 
coefficients were then employed to estimate crop yields at 
the pixel level. Fig. (2) presents the methodological proce-
dure employed in this study.  

RESULTS 

Estimated Crop Yields 

Based on the developed methodological procedure  
(Fig. 2), the imageries from each year were first classified to 
identify crop types using a supervised classification method. 
The overall classification accuracies are 86.4% (1998), 
83.7% (1999), and 81.0% (2001). Because the cereal crop 
yields are used as a measure of agricultural wellbeing in the 
following agricultural vulnerability assessment, a relatively 
high classification user accuracy of cereal crop classes is 
needed. The user accuracies for the cereal crop class are 
94.7% (1998), 92.7% (1999), and 89.8% (2001).  

The NDVI value of the image areas classified as cereal 
crops is employed as a primary independent variable for 
yield estimation in the regression analysis. Roads, field 
edges and fallow areas are masked off. The log-transformed 
NDVI from the atmospherically corrected image shows an 
advantage in yield estimation. Multiple regression analyses 
are used for yield estimation. Variables such as field loca-

 

Fig. (1). Study Area: Southern Alberta, Canada. 
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tion, irrigation capacity and soil type are considered in the 
regression models in addition to the NDVI value. Non-
significant variables are excluded step by step. Final yield 
estimation models for three years are all statistically signifi-
cant at a 99% confidence level. All independent variables in 
the models are also significant. The R2 values of the final 
yield estimation models are 0.336 (1998), 0.466 (1999), and 
0.689 (2001). The regression residuals for all three models 
are normally distributed.  

Table 1 presents in detail the pixel percentile distribution 
of crop yield estimation accuracies in 1998, 1999, and 2001 
using the derived regression models. Overall, the 1999 crop 

model performs the best with an median accuracy of 83.7%, 
while the 2001 regression model is the least accurate one 
with an median accuracy of 76.6%.  

These models are directly employed to generate yield 
maps of cereal crops at the image pixel level. These yield es-
timates are employed directly as a measure of agricultural 
wellbeing for assessing agricultural vulnerability in the region. 
As presented in the Figs. (3 and 4), the overall estimated 
yields of 1998 and 1999 are similar. The majority of the 
mapped area has a cereal crop yield of 800 to 1600 kg/acre. 
There were more areas associated with a higher yield (above 
1600 kg/acre) in 1999 than those in 1998. 

 

Fig. (2). Methodological procedure for agricultural volnerability assessment. 

Table 1. Crop Yield Estimation Accuracies by Pixel Percentiles 

Year 10% 20% 25% 30% 40% 50% 60% 70% 75% 80% 90% Median 

2011 23.8 52.8 59.1 63.0 69.8 75.9 81.8 86.5 89.2 91.3 95.2 76.0 

1999 57.5 69.3 72.8 75.8 80.0 83.8 87.6 90.6 92.1 93.7 96.8 83.7 

1998 50.6 66.0 70.0 73.4 78.3 82.0 86.0 89.7 91.3 93.3 96.6 82.0 

 

Fig. (3). Spatial distribution of estimated cereal crop yield, 1998. 
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Fig. (4). Spatial distribution of estimated cereal crop yield, 1999. 

 

Fig. (5). Spatial distribution of estimated cereal crop yield, 2001. 

 

Fig. (6). Spatial distribution of average crop yield (1998, 1999, and 2001). 
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that produce an average yield of more than 1600 kg/acre. 
Only 7.87% of the cereal crop fields had an average yield of 
less than 800 kg/acre. As expected, the irrigated regions were 
normally associated with higher average yields in the study 
area in the selected years. 

Estimated Sensitivity of Crop Yields 

The sensitivity of crop yield is estimated for the point 
data at the centroid locations of the quarter-sections. The 
point data is then interpolated to generate a continuous sur-
face representation of crop production. The spatial distribu-
tion of sensitivity is presented in Fig. (7). The descriptive 
statistics for each sensitivity class are presented in Table 3. 
Over 30% of the study area has a sensitivity value less than 
50. Most of the areas with a low sensitivity are located 
within or close to irrigation districts (See Fig. 7). Nev-
erthless, there are some areas within irrigation districs that 
are estimated more sensitive than it is expected. This is be-
cause not all agricultural land within irrigation districts is 

actually irrigated every year. For example, the total area of 
the irrigation district east of Calgary (Western Irrigation Dis-
trict) is about half million acres, within which about 95,000 
acres are contracted on the water role and only less than 
55,000 acres actually requested for irrigation service in 2004 
[49]. The southwest corner of the study area also has a low 
value of sensitivity. This is mostly non-agricultural areas 
with mountains and hills. Slight and moderate sensitive areas 
are at central longitude areas and the southeast of the study 
area. These two classes cover about 44% of the study area. 
Most of the central-east and northeast areas are classified as 
having a high to extremely high sensitivity. About 9% of the 
study area is associated with an extremely high sensitivity 
value. A small portion of the study area is associated with a 
negative sensitivity value. In these areas, agricultural produc-
tion is more sensitive to the extremely wet condition rather 
than to the extreme dry condition might be. Due to the orien-
tation and scope of this study, agricultural vulnerability to 
the extremely wet condition will not be discussed. 

Table 2. Descriptive Statistics of Average Cereal Crop Yield (1998, 1999, and 2001) 

Yield range (kg/acre) Percentage of Area Mean (kg/acre) 

< 800 7.87% 739 

800 - 1200 59.30% 990 

1200 - 1600 21.94% 1364 

1600 - 2000 8.69% 1763 

> 2000 2.20% 2143 

 

Fig. (7). Spatial distribution of crop production sensitivity to meteorological drought in growing season. 
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Crop Production Vulnerability to Drought 

Assuming that 1998, 1999, and 2001 can be considered 
as representative crop growth years, Fig. (8) presents the 
spatial pattern of crop production vulnerability using the 
three-year average of vulnerability. On average, over the 
selected three years, almost 35% of the study area was asso-
ciated with a low vulnerability without considering exposure. 
The area with a low vulnerability was where a low sensitiv-
ity was estimated. The areas with a slight to moderate vul-
nerability value accounted for 51.7% of the study area. They 
were mainly located in the central part of the area. A total of 
13.58% of study area was estimated with a high to extremely 
high vulnerability (Table 4). 

Given the fact that a moderate drought might be harmful 
enough to cause severe damage to cereal crop production, 
crop production vulnerability to the moderate meteorological 
drought in the study area over a long run is assessed. The 
exposure to a moderate meteorological drought condition is 
calculated as the proportion of the year with the SPI value 
less than –1.0 during the period of 1965 to 2004. The spatial 
distribution of the exposure is presented in Fig. (9). In the 
study area, at least four growing seasons were considered to 
be moderately dry during the period of 1965 to 2004. Over 
80% of the study area experienced six to eight moderately 
dry growing seasons. The highest exposure to the moderate 
meteorological drought was 10 out of 40 years. 

 

Fig. (8). Crop production vulnerability to meteorological drought (1998, 1999 and 2001), without considering exposure. 
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Fig. (9). Long-term exposure to moderate meteorological drought, 1965 to 2004. 
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The spatial distribution of crop production vulnerability 
to the moderate meteorological drought condition is pre-
sented in Fig. (10). The descriptive statistics are presented in 
Table 5. A larger area was estimated as very vulnerable due 
to the higher occurrence of the moderate meteorological 
drought condition in the study area. A total of 46.92% of the 
study area was considered highly or extremely highly vul-
nerable to the moderate drought condition, particularly in the 
places outside of the irrigation districts. Only about a quarter 
of the study area was not vulnerable, most of which was 
within the boundary of the irrigation districts.  

Given the increasing intensity of recent drought occur-
rence from 1990 to 2004, it is expected that the drought oc-
currence might be expected to be more frequent in the near 
future. Fig. (11) presents the expected vulenerability of 
cropy production to the extreme drought condition if the 
recent drought frequency takes place in the near future. 
About half of the study area is expected to be associated with 
a high to extremely vulnerability. The south part of the study 
area in the vicinity of Lethbridge is expected to be very vul-
nerable to increasing drought events in the near future if the 
drought trend in the recent past repeats. The irrigation sys-

 

Fig. (10). Crop production vulnerability to moderate meteorological drought. 
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Extremely high > 20 30.25% 28.50  

 

Fig. (11). Expected agricultural vulnerability to severe meteorological drought. 
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tems will make a difference. Because of the enhanced adap-
tive capacity in the irrigation districts, not only is the current 
agricultural vulnerability in the districts relatively low, but 
also agriculture production is expected to be less vulnerable 
to the drought condition even if the propensity of the drought 
increases in the near future. 

CONCLUSIONS 

Assessing agricultural vulnerability is fundamental to 
understand interactions between agricultural systems and 
their external stresses including climatic conditions. In this 
study, an existing analytical method to quantify vulnerability 
is adopted to assess the magnitude as well as the spatial pat-
tern of agricultural vulnerability to drought conditions in 
Southern Alberta. Overall, the regions investigated in this 
study were susceptible to varying degrees of agricultural 
vulnerability to drought conditions.  

Empirically, this study generates some valuable insights 
into the extent and spatial variation of agricultural vulner-
ability to drought condition in Southern Alberta. First, the 
findings from this research indicate that there is a sharp con-
trast in agricultural vulnerability to drought between irrigated 
districts and non-irrigated areas. While non-irrigated areas 
are vulnerable to varying drought conditions, irrigated agri-
cultural areas are largely insensitive to droughts. Such find-
ings confirm the importance of irrigation practices in the 
regions. The installation of irrigation systems in the region 
has certainly elevated the adaptive capacity of agriculture 
systems to cope with drought related disturbances in the 
study area. Overall, a large area is quite vulnerable to the 
moderate level drought. Although the moderate drought may 
not cause as devastating effects to agricultural production as 
those by severe drought, it can still result in an obvious re-
duction in crop yields in the region.  

The empirical results presented in this paper also indicate 
that remote sensing data as well as the associated analytical 
approaches can be useful and powerful in assessing the spa-
tial variability of agricultural vulnerability. Since the re-
motely sensed data are readily available at a relatively lower 
cost nowadays, such approaches can be frequently employed 
to assess the changing relationship between agricultural sec-
tors and varying climate conditions in a timely manner. 
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