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Abstract: Angiotensin II increases the NAD(P)H-dependent superoxide anion production and the intracellular generation 
of reactive oxygen species in cardiac fibroblasts and apocynin, a NAD(P)H oxidase inhibitor, abrogates this rise. The 
membrane associated NAD(P)H oxidase complex is the predominant source of superoxide anion and reactive oxygen 
species generation in angiotensin II-stimulated adult cardiac fibroblasts. Inhibition of this NAD(P)H oxidase complex 
with apocynin completely blocks the angiotensin II-stimulated collagen production, collagen I and III protein and mRNA 
expression. 

Superoxide anion production is also increased by the Cu,Zn-superoxide dismutase (SOD) inhibitor diethyldithiocarbamic 
acid (DETC) and decreased by the superoxide scavenger tempol in control and ANG II-treated fibroblasts. ANG II and 
DETC stimulate the collagen production and the collagen I and fibronectin content in fibroblasts. The SOD mimetics 
tempol and EUK-8 as well as polyethyleneglycol-SOD reduce the collagen production.  

ANG II also decreases the activity and mRNA and protein expression of the mitochondrial antioxidants Mn-SOD and 
peroxiredoxin-3. Upon phosphorylation of Akt by ANG II, P-Akt is translocated from the cytoplasm to the nucleus and 
nuclear phosphorylation of FOXO3a by P-Akt leads to relocalisation of FOXO3a from the nucleus to the cytosol, 
resulting in a decrease in its transcriptional activity and in Mn-SOD expression. These data indicate that ANG II 
inactivates FOXO3a by activating Akt and this leads to a reduction in the expression of the antioxidant Mn-SOD. A role 
of SOD and the formed reactive oxygen species in the regulation and organization of collagen in cardiac fibroblasts is 
suggested. 

Keywords: Cardiac fibroblasts, angiotensin II, reactive oxygen species, collagen, superoxide dismutases, peroxiredoxins, 
FOXO3a. 

1. INTRODUCTION 

 Increased oxidative stress has been shown in the pericar-
dial fluid formed by the myocard of patients and animals 
with heart failure [1,2] and antioxidants attenuate the deve-
lopment of myocardial failure [3]. Hypertension is also 
associated with an elevation of reactive oxygen species 
(ROS) and frequently with an impairment of endogenous 
antioxidant mechanisms [4-6]. The elevation of blood 
pressure by oxidants and its amelioration by antioxidants 
strongly supports a role of ROS in hypertension [6]. During 
the development of hypertension, ROS are generated by 
endogenous sources, notably the NAD(P)H oxidase enzyme 
family and uncoupled nitric oxide synthase [6]. 
 In hypertension there is a mutual reinforcement between 
ROS and angiotensin II (ANG II) [6]. Effects of ANG II are 
related to the oxidative stress. Indeed, oxidative stress is 
increased in mice after infusion of ANG II [7, 8]. ANG II 
also induces oxidative stress in vitro, increasing ROS in 
various types of cultured cells such as vascular smooth mus-
cle cells from rat thoracic aorta [9], adult cardiac microvas-  
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cular endothelial cells [10], neonatal rat cardiac myocytes 
[11,12] and human hepatic stellate cells [13]. It has also been 
extensively demonstrated that ANG II markedly increases 
vascular NAD(P)H oxidase activity [9,14-18]. 
 Antioxidant enzymes such as superoxide dismutase 
(SOD), catalase and peroxidases regulate reactive oxygen 
species by maintaining superoxide anion (.O2

-) and hydro-
gen peroxide (H2O2) at low levels. A chronic increase in 
ROS in the myocard, possibly due to impairment of SOD or 
other antioxidant pathways, could contribute to myocardial 
remodeling and failure [2, 19]. SODs, catalase, glutathione 
peroxidases and peroxiredoxins constitute the principal com-
ponents of the antioxidant defense system and their defi-
ciencies can cause oxidative stress. In mammalian tissue 
three isoforms of SOD have been identified and differ in 
their location. Cu/Zn-SOD constitutes 90% of total tissue 
[20] and is localized in the cytosol, Mn-SOD in the 
mitochondria and extracellular SOD in the interstitial fluid 
[21]. Inhibition of endogenous SOD by the specific inhibitor 
diethyldithiocarbamic acid (DETC), a copper chelator, 
increases basal O2

- production in aorta rings of normal and 
spontaneously hypertensive rats [22] and in rings of rabbit 
thoracic aorta [23]. An enhancement of .. O2

- generation by 
DETC is also shown in neonatal rat cardiac myocytes [12] 
and fibroblasts [24]. The angiotensin II- induced NADPH 
dependent. O2

- production is higher in DETC-treated vascular 
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smooth muscle cells than in control cells [25]. In skin fibro-
blasts SOD reduces transforming growth factor-β1 and 
collagen type I mRNA expression [26]. SOD also strongly 
colocalizes with type I collagen in the extracellular matrix of 
blood vessels [27]. Human aortic SOD also binds collagen 
type I [28]. Its association with collagen is important in 
protecting it from oxidative fragmentation [29]. 
 Both, ANG II and oxidative stress induce collagen in 
vivo and in vitro. Oxidative stress induces remodeling of the 
myocard [7, 11, 12, 30] and regulates collagen metabolism in 
a variety of noncardiac cells, such as lung and skin fibro-
blasts and human venous endothelial cells [31-33]. In addi-
tion to oxidative stress infusion of ANG II induces severe 
cardiac fibrosis [34]. Moreover, an ANG II-induced increase 
in collagen production has also been demonstrated in various 
types of cultured cells such as rat vascular smooth muscle 
cells [35], murine mesangial cells [36, 37], rat glomerular 
cells [38] and adult rat cardiac fibroblasts [39-42]. 
 In this review paper we will discuss if inhibition of the 
catalytic and regulatory subunits of NAD(P)H oxidase with 
apocynin or diphenyleneiodonium chloride (DPI) affects the 
collagen production and expression in adult rat cardiac 
fibroblasts and if ANG II stimulates NAD(P)H oxidase in 
these cells through a redox sensitive mechanism. The contri-
bution of the activity of SOD in the . O2

- generation and 
intracellular ROS production in control and angiotensin II-
stimulated cardiac fibroblasts from adult rats will also be 
discussed as well as its involvement in the induction of 
protein and mRNA expression of collagen type I and III and 
fibronectin. SOD is irreversibly inhibited by the copper 
chelator DETC and its effect is compared with tempol, a 
stable membrane-permeable metal-independent SOD mime-
tic that is specific for . O2

- and with 4-carboxy-tempol, a 
structural related and inactive compound of tempol who has 
minimal . O2

- scavenging activity. 

2. ANG II-INDUCED COLLAGEN PRODUCTION 
AND DEGRADATION DURING INHIBITION OF 
CARDIAC FIBROBLAST SUPEROXIDE GENERA-
TION 

 ANG II dose-dependently increases collagen production 
in adult rat cardiac fibroblasts in culture (Fig. 1) and this 
effect is blocked by the ANG II AT1-receptor antagonist 
telmisartan, but not by the AT2-receptor antagonist, P-186 
[43]. 
 Besides the stimulation of collagen synthesis, ANG II 
also increases mRNA levels of collagen type I, type III, pro-
α1(III) collagen and fibronectin in cultured cardiac fibro-
blasts [40,41,43-45]. The ANG II-induced expression of type 
I collagen mRNA is also completely abolished by AT1-
receptor antagonism but is unaffected by AT2-receptor 
antagonism [40,44,46,47]. In vivo, ANG II infusions at 
pressor or subpressor doses in rats also induces an increase 
in collagen and fibronectin [48, 49]. 
 The presence of high numbers of ANG II AT1-receptors 
on neonatal and adult rat cardiac fibroblasts has been 
documented [40, 41, 50-52]. AT1-receptors exhibit saturable, 
reversible and high-affinity binding of ANG II, that is 
competed for by nonpeptide AT1 receptor antagonists, ANG 
I and ANG III. Competitive binding studies employing 
nonpeptide antagonists for AT2-receptors fail to detect their 
presence in either neonatal or adult cardiac fibroblasts [40, 
41, 51] although ANG II inhibition of collagenase activity in 
adult rat cardiac fibroblasts is attenuated only by AT2-
receptor blockade [42]. 
 Of the two AT1-receptor subtypes expressed in the rat, 
cardiac fibroblasts express much higher mRNA levels for the 
AT1A than the AT1B receptor [52]. Adult rat cardiac fibro-
blasts express higher mRNA levels for the AT1-receptor than 
do neonatal cardiac fibroblasts. The expression of ANG II 

 
Fig. (1). Concentration-response curve for ANG II-induced changes in collagen production in adult rat cardiac fibroblasts. 
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receptors by left ventricular fibroblasts exhibits, however, 
marked species dependence. Cultured rat fibroblasts express 
43,000 ± 15,000 ANG II (AT1-specific) receptors per cell, 
whereas rabbit and neonatal human cardiac fibroblasts 
express fewer such receptors [53]. However, in isolated 
human cardiac fibroblasts, ANG II itself does not increase 
collagen I mRNA directly but through indirect pathways that 
may involve TGF-β1 and osteopontin [54]. 
 The ability of ANG II to induce collagen synthesis and 
expression of collagen in rat cardiac fibroblasts may be 
mediated by an increased TGF-β1 production in an autocrine/ 
paracrine fashion. Indeed, cardiac fibroblasts are the prin-
cipal cellular origin of TGF-β1 and in cultured rat adult car-
diac fibroblasts ANG II stimulates TGF-β1 gene expression, 
increases total TGF-β1 production and promotes the con-
version of latent TGF-β1 to the active form [50,55-59]. 
Simultaneous treatment of cardiac fibroblasts in vitro with 
ANG II and a neutralizing antibody to TGF-β1 reduces type I 
and type III collagen mRNA expression [59] and collagen 
production (Fig. 2). 

 
Fig. (2). Collagen production, assessed as 3H-proline incorporation, 
in cardiac fibroblasts treated with(out) ANG II (1 µmol/l) and a 
neutralizing antibody to transforming growth factor-1 (anti-TGF-1, 
10 µg/ml) for 24 hours. xx p<0.01 compared to control; ++ p<0.01 
compared to ANG II. 

 ANG II-stimulated TGF-β1 secretion is greatly attenuated 
by a AT1-receptor antagonist [60]. We [61] have also dem-
onstrated that TGF-β1 induces the differentiation of cardiac 
fibroblasts to myofibroblasts and this differentiation is 
accompanied by an increase in angiotensin converting 
enzyme (ACE) activity and protein and by a profound 
modification of the fibroblast phenotype, which consists of a 
change in cell morphology, an enlargement of cell volume 
and an increase in cell protein content [62]. Moreover the 
effects of ANG II and TGF-β1 are also complimentary in 
vivo. Both of them induce cardiac fibrosis which, inde-
pendent of the primary stimulus, is accompanied by high 
tissue concentrations of both ANG II and TGF-β1 [63-65]. 
Both TGF-β1 and ACE, as a means of ANG II synthesis, are 
thus involved in the enhancement of cardiac tissue fibrosis 
and these factors can create a vicious circle in the fibrotic 
tissue [66].  

 The ANG II-stimulated soluble collagen production in 
cultured adult rat cardiac fibroblasts is completely blocked 
by the NAD(P)H oxidase inhibitors apocynin and DPI (Fig. 
3) [67]. 

 
Fig. (3). Effect of apocynin (APO, 100 µmol/l) and 
diphenyleneiodonium chloride (DPI, 2 µmol/l) on soluble collagen 
production in cardiac fibroblasts treated with(out) Ang II (1 µmol/l) 
for 24 hours. xx p<0.01 compared with control without ANG II, 
APO and DPI; ++ p<0.01, + p<0.05 compared with samples with 
ANG II and without APO and DPI. 

 Apocynin is considered an inhibitor of the association of 
p47phox and p67phox with a gp91phox (or Nox2) homologue 
subunit within the membrane NAD(P)H oxidase complex 
[68]. DPI inhibits NAD(P)H oxidase by binding to the 
cellular flavoprotein moiety of the complex [69]. It should 
however be taken into consideration that DPI is a flavo-
enzyme inhibitor and not specific for NADPH oxidase, 
inhibiting other flavoenzymes as well. In addition, it can not 
be said that apocynin is specific for NADPH oxidase since 
apocynin has also antioxidant effects. Because the hemo-
dynamic stress of hypertension can be excluded in these in 
vitro culture conditions, it can be assumed that the presence 
of ANG II and associated ROS generation is the basis of 
enhanced collagen synthesis by cardiac fibroblasts. 
 In vitro, inhibition of a membrane as well as a cytosolic 
component of the NAD(P)H oxidase complex suppresses the 
ANG II-stimulated collagen production in adult rat cardiac 

 

 



4    The Open Hypertension Journal, 2011, Volume 4 Lijnen et al. 

fibroblasts in culture [67]. In contrast, inhibition of xanthine 
oxidase, cyclooxygenase, lipoxygenase, the respiratory 
chain, cytochrome P450 mono-oxygenase and NO synthase 
has no effect on ANG II-induced collagen production in 
cardiac fibroblasts [67]. The demonstration that apocynin 
and DPI block the ANG II-stimulated collagen production 
suggests that the predominant source of cardiac fibroblast 
superoxide generation is the membrane-associated NAD(P)H 
oxidase complex. 
 ANG II-stimulated collagen production is also associated 
with an increase in both the mRNA and the protein expres-
sion of collagen type I and III [67]. The synthesis of collagen 
in cardiac fibroblasts is thus regulated at the transcriptional 
and posttranslational level.  
 However, the extracellular matrix collagen content 
depends not only on its production but also on its degra-
dation by enzymes such as MMP-1. In adult rat cardiac 
fibroblasts ANG II stimulates collagen production and regu-
lates collagen degradation by attenuating MMP-1 and 
through enhancing TIMP-1, the tissue inhibitor of MMP-1 
[67]. The decrease in MMP-1 and the increase in TIMP-1 
induced by ANG II in cardiac fibroblasts would result in less 
collagen degradation and favors collagen synthesis, explain-
ing at least partly the profibrotic effect of ANG II on the 
myocard in various pathophysiological conditions where the 
renin angiotensin system is activated. Brilla et al. [42] first 
showed that ANG II decreased the collagenase activity in 
adult rat cardiac fibroblasts. In TNFα-stimulated neonatal rat 
cardiac fibroblasts, ANG II increases TIMP-1 expression and 
decreases MMP-2 activity [70]. 
 However, ANG II affects MMP expression/activity diffe-
rently in various cell types. An enhanced MMP activity and 
expression is reported in endothelial cells [71], cardiac 
myocytes [72] and in skin fibroblasts [73]. In cardiac fibro-
blasts the effect of ANG II on collagen synthesis, MMP-1 
and TIMP-1 content is completely blocked by apocynin 
suggesting that ROS generated through the membrane-
associated NAD(P)H-oxidase are involved in the fibrotic 
process. 
 In vivo experiments have shown that apocynin reduces 
systolic blood pressure and prevents the increase in media/ 
lumen ratio, endothelial dysfunction and collagen deposition 
in the media of mesenteric resistance arteries from ANG II-
infused mice [74]. ANG II also increases significantly 
cardiac collagen content in wild type but not in gp91phox-/- 
mice [11], indicating that in vivo deletion of Nox2 reduces 
ANG II-induced cardiac fibrosis. Indeed, Nox2 is required 
for ANG II-induced cardiac fibrosis in rodents [11]. 
 In salt-loaded, aldosterone-infused rats apocynin prevents 
collagen deposition in the perivascular regions of the left 
ventricle, decreases the aortic mRNA level of procollagen I, 
procollagen III and p22phox, inhibits NAD(P)H oxidase 
activity, normalizes cardiac hypertrophy and reduces systolic 
blood pressure [75-77]. Inhibition of NAD(P)H oxidase 
activity by gp91ds-tat, a chimeric peptide that inhibits 
p47phox association with gp91phox in NAD(P)H oxidase, 
attenuates blood pressure increase, regresses cardiac and 
vascular remodeling and improves endothelial function in 
ANG II-infused rodents, as does apocynin [20,78]. The 
increased collagen volume fraction of the ventricles of 

aldosterone-treated rats is also prevented by cotreatment with 
the antioxidant N-acetyl cysteine or pyrolidine dithiocar-
bamate which also abrogates the aldosterone-induced 
NAD(P)H oxidase and NF-κB activation [79]. Iglarz et al. 
[80] have shown that aldosterone infusion induces a 
significant increase of interstitial cardiac fibrosis in terms of 
collagen deposition in the mid-myocard which is prevented 
by the superoxide dismutase mimetic tempol. The pro-
fibrotic action of aldosterone is mediated, at least in part, by 
ROS generation and involves an interaction with the renin-
angiotensin system. Inhibition of ANG II-induced ROS 
generation in cardiac fibroblasts by the peroxisome-activated 
receptor-γ ligand, pioglitazone, is also associated with a 
concomitant inhibition of ANG II-stimulated collagen 
production [81]. In hypertensive rats with activation of the 
renin-angiotensin system, apocynin also attenuates hyper-
tension and increases the antioxidant defenses glutathione 
peroxidases and glutathione-S-transferase [82]. 
 Taking these in vitro and in vivo data together suggest 
that myocardial accumulation of collagen and/or the depo-
sition of collagen in cardiac fibroblasts is, at least partly, 
mediated by activation of NAD(P)H oxidase and that 
blockade of ROS at the level of NAD(P)H oxidase may exert 
beneficial effects on the heart as well as large arteries in 
hypertension associated with oxidative stress. 

3. ANG II-INDUCED ROS GENERATION AND 
MODULATION BY APOCYNIN 

 Quiescent rat cardiac fibroblasts treated with ANG II for 
24 hours demonstrate NAD(P)H oxidase activity that was 
180 ± 11% of vehicle control; this activity is inhibited by 
coincubation with apocynin [67]. These findings are in 
accordance with the stimulation (165 ± 19%) of NAD(P)H 
oxidase by ANG II in quiescent rat aortic fibroblasts and the 
reduction by gp91ds-tat [78]. 
 In cultured adult rat cardiac fibroblasts the specificity of 
the oxidase is found for NADH and not for NADPH [67]. In 
human fetal lung fibroblasts [83] NADH is also reported to 
be a better substrate than NADPH for superoxide-generat-
ing oxidases. A superoxide-generating system, primarily 
NADPH dependent, is however demonstrated in rabbit aorta 
adventitial fibroblasts [23], in mouse thoracic aorta vascular 
smooth muscle cells [84] and in cultured rat aortic smooth 
muscle cells [35]. The preferred substrate for oxidases in 
macrophages and neutrophils is also NADPH rather than 
NADH [35]. A similar NADH- and NADPH-dependent 
activity is found in human skin fibroblasts [85], neonatal rat 
cardiac myocytes [86] and in human embryonic kidney cells 
[87], while in rat liver plasma membranes the activity with 
NADPH is approximately 80% that of NADH [88]. The 
substrate preference of the superoxide-generating oxidase is 
thus highly cell type dependent with specificity to NADH 
oxidase in adult rat cardiac fibroblasts. Since NAD(P)H does 
not cross plasma membranes their consumption rates 
measured in the extracellular medium are likely to represent 
oxidation by NAD(P)H oxidase on the outer aspect of the 
membrane. 
 The activation of NAD(P)H oxidase by ANG II in adult 
rat cardiac fibroblasts leads to a resultant increase in super-
oxide anion production, assessed as SOD-inhibitable cyto-
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chrome c reduction [67]. The intracellular generation of ROS 
such as hydrogen peroxide, hydroxyl radical and hydro-
peroxides, assessed with the fluorescent probe 2’,7’-dichloro-
fluorescein diacetate , is also increased by ANG II in adult 
[67, 79] and neonatal [89, 90] rat cardiac fibroblasts. This 
increase is completely blocked by DPI, apocynin and 
polyethyleneglycol-catalase (Fig. 4).  
 These data indicate that ANG II increases oxidative 
stress and NAD(P)H oxidase activity in adult rat cardiac 
fibroblasts and that the enhanced generation of ROS is 
blocked by inhibition of the NAD(P)H oxidase complex with 
apocynin or DPI. 
 ANG II activates NAD(P)H oxidase to generate ROS via 
the angiotensin subtype 1 receptor and those ROS are , at 
least partly, involved in the activation of ERK, JNK and 
p38MAPK pathways in cardiac fibroblasts [89]. p38 MAPK 
activated protein kinase is indeed a critical component of the 
redox-sensitive signaling pathway activated by ANG II [91]. 
However, ERK1/2 and JNKs, but not p38kinase, are 
involved in ROS-mediated induction of osteopontin gene 
expression by angiotensin II in adult rat cardiac fibroblasts 
[92]. Osteopontin, expressed in the myocard co-incident with 
heart failure, plays an important role in post myocardial 
infarction remodeling by promoting collagen synthesis and 
accumulation. 
 ANG II also activates the transcription factors AP-1 and 
NF-κB, the best characterized transcription factors to be 
influenced by the cellular redox state [89, 93]. In addition to 
influencing tyrosine kinases, protein phosphatases and 
MAPkinases, ROS modulate intracellular Ca2+ signaling in 
endothelial and vascular smooth muscle cells [68]. ROS 
increase intracellular Ca2+ by stimulating inositol 1,4,5-

triphosphate-mediated mobilization of intracellular Ca2+, by 
increasing cytosolic Ca2+accumulation through inhibition of 
sarcoplasmic/endoplasmic reticulum Ca2+-ATPase and by 
stimulating Ca2+:influx through voltage-dependent Ca2+-
channels in these cells [91]. ROS also influence contractile 
processes by stimulating Rho/Rho kinase cascades [94]. 
 In cardiac fibroblasts the reduction in intracellular 
calcium levels results also in enhanced endogenous 
superoxide anion production, which underscores a possible 
link between extracellular calcium and superoxide anion 
production [95]. In hypomagnesemia, serum factors may 
stimulate cardiac fibroblast proliferation via a superoxide 
anion-mediated mechanism and contribute to the fibrogenic 
response in the heart, even when cardiac tissue levels of 
magnesium are well preserved [96]. The exact mechanism, 
either direct or indirect, by which ANG II affects ROS in rat 
cardiac fibroblasts and especially the NOX-subunit of the 
NAD(P)H oxidase complex involved in the production of 
ROS need , however, to be further elucidated. In human 
cardiac fibroblasts Cucoranu et al. [97] provided recently 
compelling evidence that Nox-4 and Nox-5 are the primary 
Nox subunits. 
 In rat aortic smooth muscle cells Nox4 is responsible for 
the basal production of H2O2, while Nox1 is required for 
ANG II-stimulated .O2

- production [98]. 

4. ANG II-INDUCED EFFECT ON SUPEROXIDE 
DISMUTASE ACTIVITY IN CARDIAC FIBRO-
BLASTS 

 ANG- II decreases total SOD, CuZn-SOD and Mn-SOD 
activity in rat cardiac fibroblasts [99]. No EC-SOD activity 

 
Fig. (4). Intracellular reactive oxygen species (ROS) generation, assessed in cardiac fibroblasts treated with(out) ANG II (1 µmol/l) for 24 
hours after preincubation with apocynin (APO, 100 µmol/l), diphenyleneiodonium chloride (DPI, 2 µmol/l) or polyethylene glycol-catalase 
(PEG-CAT, 350 Units/ml) for 1 h, and incubated with 2’,7’-dichlorofluorescein diacetate (20 µmol/l) for 30 min. xx p<0.01, x p<0.05 
compared with control without ANG II and APO, DPI and PEGCAT; ++ p<0.01 compared with samples with ANG II and without APO, 
DPI and PEG-CAT. 
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was however detectable in adult rat cardiac fibroblasts [99]. 
Marklund [100] reported that the CuZn-SOD content in the 
rat heart was much higher than the Mn-SOD content (on 
average 15,100 versus 2,125 Units/g wet weight), whereas 
the EC-SOD content was very low (35 U/ g wet weight). In 
ANG II-treated rats an increased mRNA expression of Mn-
SOD, p22phox and Nox1 and a decreased mRNA level of EC-
SOD and Nox4 is found in the kidney cortex compared to 
controls [101]. ANG II infusion in mice also reduces the 
total SOD activity in plasma, aorta and kidney cortex as well 
as the mRNA and protein expression for EC-SOD [102]. 
Compared to the normal rat heart, gp91phox mRNA is largely 
increased within the perivascular and microscopic injury in 
both ventricles in ANG II-treated rats and cells expressing 
gp91phox at these sites were primarily inflammatory cells; 
cardiac Mn-SOD and catalase protein levels, however, 
remain unchanged in ANG II-infused rats [103]. In ANG II-
infused mice the aorta mRNA and protein expression of EC-
SOD as well as the EC-SOD activity is increased, while the 
CuZn-SOD protein expression is unchanged [104]. ANG II 
also increases aortic EC-SOD protein expression in mouse 
organoid cultures and enhances the mRNA EC-SOD level in 
cultured human aortic smooth muscle cells [104]. EC-SOD 
activity in mouse aorta and in human aortic smooth muscle 
cells is also strongly induced by ANG II [105]. Incubation of 
mouse aortic homogenates with ANG II had no effect on 
total SOD activity in either wild type or CuZn-SOD deficient 
mice [106]. Taking these in vitro and in vivo data together 
indicate that the effect of ANG II on SOD is highly cell 
specific. 

5. DOWN-REGULATION OF MN-SOD BY ANGIO-
TENSIN II IN CARDIAC FIBROBLASTS 

 In cultured rat cardiac fibroblasts ANG II decreases the 
mRNA and protein expression of the mitochondria-specific 
antioxidant Mn-SOD (Fig. 5), but without influencing Cu, 
Zn-SOD, catalase or glutathioneperoxidase mRNA and 
protein expression [107]. 

 Discordant findings are reported on the in vivo effect of 
ANG II on Mn-SOD activity, protein and mRNA expression 
in various animal tissues. In ANG II-infused rat kidney a 
50% decrease in Mn-SOD activity is observed [108], while 
Chabrashvili et al. [101] reported an increased mRNA 
expression of Mn-SOD in the kidney cortex of ANG II-
treated rats. An unchanged Mn-SOD protein expression is 
found in cardiac [103] and kidney [108] tissue of ANG II-
infused rats, while a reduced renal Mn-SOD protein level is 
found in ANG II-treated rats [109]. In ANG II-infused mice, 
the aortic protein level Mn-SOD is unchanged, but declines 
in extracellular SOD deficient mice [110]. In Dahl salt-
sensitive rats, characterized by an up-regulated angiotensin 
system [111], renal Mn-SOD protein expression is decreased 
and increased by the angiotensin converting enzyme 
inhibitor, trandolapril [112]. In spontaneously hypertensive 
rat (SHR) kidneys, chronic ANG II-blockade with losartan 
prevents the decrease in Mn-SOD activity and the increase in 
H2O2 production observed in untreated SHR [113]. Losartan 
also inhibits the ANG II-induced Mn-SOD mRNA down-
regulation in cardiac fibroblasts [107]. A reduced Mn-SOD 
gene and protein expression is also observed in the infarcted 
myocard of rats [114, 115] and this fall is partially prevented 
by losartan [115]. The diminished Mn-SOD mRNA levels 
are not related to changes in Mn-SOD mRNA stability. The 
down-regulation of Mn-SOD is linked to a down-regulation 
of its mRNA levels, thus indicating that the alterations in 
Mn-SOD expression result from an altered gene expression 
rather than from alterations in post-transcriptional regulation. 
Moreover, the protein expression of α-smooth muscle actin, 
a marker of the differentiation of fibroblasts into myofibro-
blasts, is not affected by ANG II, indicating that the effects 
of ANG II on Mn-SOD expression do not result from 
changes in the phenotype of the cultured fibroblasts [107]. 

6. MITOCHONDRIAL ROS PRODUCTION AND 
ANGIOTENSIN II IN CARDIAC FIBROBLASTS 

 In quiescent cells most of ROS are produced through an 
univalent reduction of molecular oxygen to .O2

- by electrons 

 
Fig. (5). ANG II-induced decrease in activity, mRNA and protein expression of manganese superoxide dismutase (Mn-SOD) and 
peroxiredoxin-3 (Prx-3) in cardiac fibroblasts treated with(out) ANG II (1µmol/l ) for 24 hours. xx p<0.01, x p<0.05 compared to control. 
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that leak from complex I and III of the mitochondrial 
electron transport chain. The mitochondrial electron trans-
port system consumes approximately 85% of the oxygen 
utilized by cells, and about 5% of that oxygen is converted to 
ROS [116, 117]. The burden of .O2

- is largely countered by 
the mitochondrial enzyme Mn-SOD. Although Mn-SOD 
relieves oxidative stress in mitochondria caused by .O2

-
 , it 

generates H2O2 a mild oxidant which is readily converted to 
the more powerful oxidant .OH. 
 Chronic increases in mitochondrial ROS production can 
lead to a catastrophic cycle of further oxidative stress and 
ultimate cellular injury [118]. This deleterious process may 
play an important role in the development and progression of 
myocardial remodeling and failure [119]. Indeed, recent 
findings [120] have demonstrated that ANG II stimulation 
induces opening of mitochondrial KATP channels and further 
amplifies ROS formation from mitochondria. ROS produced 
initially in the mitochondria have been shown to act in a 
positive feedback, where mitochondria can respond to 
elevated ROS by increasing their own ROS production in a 
process known as ROS-induced ROS release [121]. ANG II 
stimulation activates NADPH oxidase to generate ROS 
which activates mito KATP channels to induce a ROS burst in 
the mitochondria to activate downstream signaling pathways, 
such as activation of p38 and JNK MAPK involved in cell 
apoptosis, hypertrophy and differentiation [120]. ANG II 
binds to ANG type 1 receptors (AT1-R), activates protein 
kinase C (PKC) which activates NADPH oxidase to induce 
.O2

- generation (Fig. 6). Mitochondrial KATP channels can be 
activated by .O2

- to produce more generation of ROS to 

induce activation of MAPK, which mediates ANG II-
induced cell proliferation, apoptosis and differentiation 
[120]. 
 Exposure of cardiac fibroblasts to ANG II can thus lead 
to increased oxidative stress because of down-regulation of 
antioxidant enzymes such as manganese superoxide dismu-
tase. The Mn-SOD mimetic tempol [122] on the contrary 
completely abolishes the ANG II-induced increase in .O2

- 
production in cardiac fibroblasts [67].  
 It has indeed been shown that lack of Mn-SOD in mice 
results in dilated cardiomyopathy [123], induces progressive 
heart failure with excess formation of superoxide and trans-
criptional alterations of genes associated with heart failure 

[124] and leads to severe impaired vasorelaxation, high 
levels of mitochondrial ROS formation and mitochondrial 
DNA damage [125]. Decreased Mn-SOD activity promotes 
also atherosclerotic lesion development and increases aortic 
mtDNA damage in apoE-/- mice [126, 127]. Miller et al. 
[128] reported that chronic increases in oxidative stress, 
produced by mitochondrial Mn-SOD deficiency in mice, 
impair vascular function via a H2O2-dependent, cyclooxy-
genase 1-dependent endothelium-derived contracting factor. 
 On the contrary, mice over-expressing Mn-SOD has 
reduced infarct size compared to wild type [129] and dimi-
nished severity of diabetic cardiomyopathy [130]. In rats, 
over-expression of Mn-SOD in carotid arteries results in 
reduced .O2

- production in response to endothelin-1 [131] and 
in the rostral ventrolateral medulla it attenuates the ANG II-
induced pressor response and suppressed ANG II-induced 

 
Fig. (6). Potential signaling pathways in ANG II-stimulation. ARB Angiotensin II receptor blocker, AT1-R angiotensin II subtype 1 receptor; 
PKC protein kinase C; PKC inhibitor (GFX1092303X), NADPH oxidase inhibitor (apocynin), Mitochondrial KATP channel inhibitor (5-
hydroxydecanoate, 5-HD), ERK inhibitor (PD98059), JNK inhibitor (SP600125), p38 inhibitor (SB203580). Reprinted from [120] with 
permission from Oxford University Press, Oxford, U.K. 
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ROS production [132]. Transgenic mice with increased Mn-
SOD expression in the liver have 23% fewer bromodeoxy-
uridine-positive cells and a marked attenuation of prolifera-
tive cell nuclear antigen expression, leading to delayed entry 
into S phase [133]. The increase in Mn-SOD activity also 
leads to an increase in the mitochondrial thioredoxin-2, but 
not in other peroxidases, suggesting the importance of 
thioredoxin-2 in maintaining redox balance in mitochondria 
with elevated levels of Mn-SOD [133]. Studies with fibro-
blasts have shown that increased Mn-SOD expression 
prolongs cell type transition time in G1/S and favors entrance 
into the quiescent state [134, 135]. 
 Mitochondrial oxidative stress and damage seems also to 
play a major role in the development and progression of left 
ventricular remodeling and failure after myocardial infarc-
tion [136, 137]. In the failing ventricular myocard from 
patients with end-stage heart failure a marked decline in 
mitochondrial Mn-SOD protein and activity is detected 

[138]. Mitochondrial biogenesis is also severely impaired as 
evidenced by reduced mtDNA replication and depletion of 
mtDNA in the human failing heart [139]. 
 Both acute (24 hours) and chronic (14 days) ANG II 
treatment in mice results also in decreased expression of 
mitochondrial metabolic genes, notably those for the electron 
transport chain and Krebs-TCA cycle [140]. Chronic ANG II 
treatment also results in decreased expression of genes 
involved in fatty acid metabolism [140]. In contrast, genes 
involved in protein translation and ribosomal activity 
increase expression following both acute and chronic ANG 
II administration [140]. It has also been demonstrated by 
Kienhöfer et al. [141] that mtDNA is associated with an 
antioxidant system in mammalian cells with Mn-SOD 
binding directly to mtDNA. Mn-SOD is thus essential to 
protect mitochondrial genome from oxidative damage. 

7. DOWN-REGULATION OF PEROXIREDOXIN-3 
EXPRESSION BY ANGIOTENSIN II IN CARDIAC 
FIBROBLASTS 

 Cardiac fibroblasts are protected from oxidative stress, 
triggered by inflammation after myocardial injury or induced 
by ANG II or growth factors, by expressing potent anti-
oxidant defenses such as superoxide dismutases, catalases, 
glutathione peroxidases and peroxiredoxins [142, 143]. 
 Multiple peroxiredoxins or thioredoxin peroxidases, 
(Prx-1 through -6) are identified in mammalian cells in diffe-
rent intracellular locations and protect cells and tissues from 
damage caused by ROS [144-147]. All six peroxiredoxins 
are present in cardiac fibroblasts. Prx-1, -2 and -6 are 
localized in the cytosol, Prx-3 in mitochondria, Prx-4 in the 
extracellular space and Prx-5 is localized intracellularly to 
cytosol, mitochondria and peroxisomes [148, 149]. Prx-3 is 
found exclusively in the mitochondria [143] and uses 
mitochondrial thioredoxin (Trx-2) as the electron donor for 
its peroxidase activity [150]. Prx-3 functions not only by 
removing H2O2 formed after the SOD-catalysed dismutation 
but also by detoxifying peroxynitrite [151]. 
 ANG II decreases the mRNA and protein expression of 
the mitochondrial specific antioxidant Prx-3 (Fig. 5), while 
the cytosolic Prx-1 fraction is unaffected [152]. 

 A down-regulation of Prx-3 has been described in 
various experimental models that are characterized by an 
increased cellular oxidative stress [153-155]. In human heart 
failure Brixius et al. [156] have also reported a selective 
down-regulation of the mitochondrial Prx-3 and Prx-5 as 
well as that of the extracellular Prx-4 isoform and that of the 
cytosolic Prx-6, while the cytosolic Prx-1 and Prx-2 isoforms 
are unaffected by the enhanced ROS production. 
 Thus reducing Prx-3 sensitizes cells to oxidative stress 
[157]. Furthermore, Prx-3 knockdown by siRNA increases 
mitochondrial ROS [158] and Prx-3 knock-out mice are 
more susceptible to lipopolysaccharide-induced oxidative 
stress than their wild-type littermates [159]. Higher levels of 
ROS are detectable in macrophages derived from these mice 
and they release increased amounts of TNFα [160]. Taken all 
data together suggest that the loss of Prx-3 results in 
increased susceptibility to oxidative stress. Thus, it may be 
concluded that an increase in cellular oxidative stress seems 
also to be paralleled by a down-regulation of mitochondrial 
Prx-3. 
 Chronic increases in mitochondrial ROS production can 
lead to a catastrophic cycle of further oxidative stress and 
ultimate cellular injury [161]. This deleterious process may 
play an important role in the development and progression of 
myocardial remodeling and failure [162]. 
 Given that mitochondria contain Prx-3 30 times more 
abundant than glutathione peroxidase and that they lack 
catalase [157], Prx-3 is thought to be a primary line of 
defense against H2O2 produced by the mitochondrial 
respiratory chain, as Mn-SOD does against .O2

-
 . 

 The specific localization of Prx-3 in the mitochondria 
suggests that mitochondrial oxidative stress plays an 
important role in the development and progression of heart 
failure and the antioxidant localized specifically within the 
mitochondria provides a primary line of defense against the 
disease process [143]. 
 Indeed, over-expression of Prx-3 protects the heart 
against post-MI remodeling and failure in mice [161]. It 
reduces LV cavity dilatation and dysfunction as well as 
myocyte hypertrophy, interstitial fibrosis and apoptosis of 
the non-infarcted myocard. These beneficial effects of Prx-3 
gene over-expression are associated with the attenuation in 
oxidative stress, mtDNA decline and dysfunction [163]. Prx-
3 over-expression has also been shown to improve glucose 
homeostasis, with transgenic mice displaying resistance to 
diet-induced elevations in blood glucose and increased 
glucose clearance [164]. 
 Prx-3 is thus an important candidate for therapy against 
LV failure after MI, in which ROS production has been 
found to be increased within the mitochondria [161]. 
Recently it has been shown that an elevated cytosolic Na+ 
increases mitochondrial formation of ROS in failing cardiac 
myocytes of guinea pigs [165]. 

8. REGULATION OF MN-SOD EXPRESSION BY 
FOXO3A IN CARDIAC FIBROBLASTS 

 In human cardiac fibroblasts the Forkhead box class o 
transcription factor FOXO3a mediates the expression of 
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peroxiredoxin-3, which functions to protect mitochondria 
against oxidative stress by scavenging H2O2 [166]. 
 FOXO transcription factors may be important in the 
regulation of the antioxidant defense in many species [163]. 
It has indeed been shown that FOXO3a interacted with the 
promoter of the rat Mn-SOD gene at a specific binding site, 
located 1272 bp upstream of the coding region of the rat Mn-
SOD promoter [167]. In rat cardiac fibroblasts ANG II also 
reduces the binding of FOXO3a to the Mn-SOD promoter 
[107]. Inhibition of FOXO3a transcription with small 
interfering RNA leads to a reduced FOXO3a binding to the 
Mn-SOD promoter and a concomitant reduction in Mn-SOD 
gene expression in control cardiac fibroblast [107], implying 
that FOXO3a does up-regulate Mn-SOD. Specific activation 
of FOXO3a by 4-hydroxy-tamoxifen, a modified ligand of 
the estrogen receptor, increases Mn-SOD mRNA expression 
in control fibroblasts and reverses the ANG II-induced 
reduction in Mn-SOD gene expression [107]. In FOXO3a 
depleted fibroblasts the reduced Mn-SOD expression is also 
associated with an increased .O2 

_ production [105]. Our data 
suggest thus that FOXO3a may be the transcription factor 
responsible for the ANG II-induced down-regulation of Mn-
SOD in cardiac fibroblasts. ANG II-stimulated Akt (protein 
kinase B) activity might thus responsible for the phosphor-
rylation and inactivation of FOXO3a which in turn down-
regulates Mn-SOD transcription in adult rat cardiac fibro-
blasts. In DL23 cells FOXO3a also increases the expression 
of Mn-SOD [167] and a lower Mn-SOD protein and activity 
in vascular smooth muscle cells from old rats is also 
paralleled by a reduction in FOXO3a transcriptional activity 

[168]. Although FOXO3a is able to regulate mRNA and 
protein levels of catalase in neonatal rat cardiomyocytes 

[168], no changes in activity, mRNA and protein expression 
of catalase are found in adult rat cardiac fibroblasts [107]. 
This has to be further elucidated in various cardiac cell types 
of neonatal and adult rat hearts. It should however taken into 

account that catalase has been detected in mitochondria from 
rat heart [169,170], but this is at low nanomolar concen-
trations (0.025% of rat heart mitochondrial protein) and 
therefore probably not regarded to play a significant role in 
mitochondrial ROS detoxification in rat heart mitochondria 
[171]. 
 ANG II is thus linked with increased Akt phosphor-
rylation in cardiac fibroblasts and consequent reduction in 
FOXO3a transcriptional activity leading to downregulation 
of Mn-SOD gene expression. Upon phosphorylation of Akt 
by ANG II P-Akt is indeed translocated from the cytoplasm 
to the nucleus and nuclear phosphorylation of FOXO3a by 
P-Akt leads to relocalization of FOXO3a from the nucleus to 
the cytosol [107], thus resulting in a decrease in its trans-
criptional activity and in Mn-SOD expression. Inhibition of 
PI3K with wortmannin and LY294002 and Akt inhibition 
leads to a decrease in P-Akt, to an increased Mn-SOD 
mRNA expression and a reduced .O2

- production [107]. This 
shuttling mechanism contributes to the down-regulation of 
Mn-SOD gene expression. In adult rat cardiac fibroblasts 
ANG II also provides protection against NO-stimulated 
apoptosis by activating a PI3kinase-Akt-mediated survival 
signaling pathway [172]. ANG II inactivates thus FOXO3a 
by activating Akt and this leads to a reduction in the 
expression of the antioxidant Mn-SOD contributing to the 
ANG II-induced ROS production. ANG II may thus cause an 
increased oxidative stress by inhibiting the expression and 
activity of the mitochondrial enzyme Mn-SOD engaged in 
ROS breakdown. 

9. ANG II-INDUCED OXIDATIVE STRESS AND 
MODULATORY EFFECT OF DETC 

 The irreversible CuZn-SOD inhibitor DETC increases, 
while the .O2

- scavenging agent tempol inhibits completely, 

 
Fig. (7). Intracellular reactive oxygen species (ROS) generation, assessed in cardiac fibroblasts treated with(out) ANG II (1 µmol/l) for 24 
hours after preincubation with diethyldithiocarbamic acid (DETC, 100 µmol/l), tempol or 4-carboxy-tempol (4-CT, 1 µmol/l) for 1 h, and 
incubated with 2’,7’-dichlorofluorescein diacetate (20 µmol/l) for 30 min. xxx p<0.001, xx p<0.01 compared with control without ANG II 
and DETC, tempol and 4-CT; +++ p<0.001 compared with samples with ANG Ii and without DETC, tempol and 4-CT. 
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the .O2
- production in control and ANG II-treated adult rat 

cardiac fibroblasts (Fig. 7) [97].  
 An enhanced .O2

- generation by DETC in rats has been 
reported in various cell types such as neonatal cardiac 
fibroblasts [24] and myocytes [12], aortic rings [22,173], 
renal medullary tissue [174], vascular smooth muscle cells 
[26], aortic adventitial fibroblasts [175] and intact middle 
cerebral and basilar arteries [176]. DETC also causes a dose-
dependent increase in levels of .O2

- in rings of rabbit aorta 
[23]. Besides an increase in .O2

- production in cardiac 
fibroblasts DETC also reduces the intracellular ROS 
production in control and ANG II-treated cardiac fibroblasts 
[97]. Colston et al. [177] also reported a decreased ROS 
production by DETC in adult rat cardiac fibroblasts, while in 
adult rat cardiac myocytes an increased ROS generation is 
found [178]. These data indicate that in adult rat cardiac 
fibroblasts oxidative stress is increased by ANG II, partially 
through down-regulation of antioxidant enzymes as SOD, 
and that DETC enhances .O2

- production and decreased 
intracellular ROS formation as a consequence of inhibition 
of CuZn-SOD. 

10. ANG II-INDUCED COLLAGEN PRODUCTION 
AND DEGRADATION DURING INHIBITION OF 
CARDIAC FIBROBLAST SUPEROXIDE DISMU-
TASE 

 Inhibition of SOD by DETC and the subsequently inc-
reased .O2

- production induces an increase in collagen 
production and fibronectin level in adult cardiac fibroblasts, 
while inhibition of .O2

- generation by the SOD mimetics 

tempol and EUK-8 lowers the collagen production and 
fibronectin content (Fig. 8) [95]. 
 The antioxidant tempol is a cell permeant scavenger of 
superoxide anion. In diabetic rats tempol administration also 
inhibits the mesangial expression of fibronectin and matrix 
expansion [179]. The increased cardiac collagen content as 
well as the collagen type I mRNA expression in chronic iso-
proterenol infused rats is reversed by tempol treatment [180]. 
In mice subjected to pressure overload, EUK-8 also ate-
nuates cardiac hypertrophy and fibrosis, prevents myocardial 
oxidant stress and improves LV end-systolic dimensions and 
fractional shortening [181]. 
 In neonatal rat cardiac fibroblasts however DETC 
inhibits collagen synthesis and increased total MMP activity 
[24], while in neonatal cardiac myocytes DETC reduces 
cardiac hypertrophy through a ROS-dependent mechanism 
[12]. 
 Administration of PEG-SOD to cardiac fibroblasts 
induces however a decrease in collagen deposition [95]. In 
pig skin fibroblasts in a three-dimensional model, SOD 
administered as liposod CuZn-SOD also significantly lowers 
the level of the extracellular matrix components α1(I) 
collagen and tenascin-C and of the myofibroblast marker α-
smooth muscle actin [26]. In ANG II-induced hypertension 
in rats, both hypertension and the impairment of vasodilator 
responses to acetylcholine and calcium ionophores are 
improved by treatment with liposome-encapsulated SOD 
[15], In ANG II-treated rats liposome-entrapped SOD inc-
reases total SOD activity by 30 % in vascular homogenates, 
normalizes vascular .O2

- production and reduces blood 

 
Fig. (8). Soluble collagen production in cardiac fibroblasts treated with(out) ANG II (1 µmol/l) for 24 hours after preincubation with 
diethyldithiocarbamic acid (DETC, 100 µmol/l), tempol or 4-carboxy-tempol (4-CT, 1 µmol/l) for 1 h. xxx p<0.001 compared with control 
without ANG II and DETC, tempol and 4-CT; +++ p<0.001 compared with samples with ANG II and without DETC, tempol and 4-CT. 
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pressure [182]. In vivo administration of lecithinized SOD in 
rats inhibits oxidative stress and improves outcomes after 
focal cerebral ischemia [183]. An inhibitory effect of 
phosphatidylcholine-SOD on bleomycin-induced pulmonary 
fibrosis in mice is also reported [184]. SOD is indeed already 
successfully used as an antifibrotic agent in the treatment of 
cutaneous fibrosis both in clinical trials [185, 186] as in 
animal experimental studies [187]. 
 The stimulation of the collagen production by SOD 
inhibition with DETC and the inhibition of the collagen 
production by PEG-SOD and by the SOD mimetics tempol 
and EUK-8 [95] suggest a vital role of SOD and the formed 
ROS in the regulation and organization of collagen in 
cardiac fibroblasts. Indeed, over-expression of SOD in 
mouse aortic adventitial fibroblasts inhibits the ANG II-
induced type I procollagen α-I protein expression and .O2

- 

generation [188]. 
 In adult rat cardiac fibroblasts DETC and ANG II stimu-
late collagen production and TIMP-1 and TIMP-2 synthesis 
[97] which inhibits collagen degradation by MMPs and leads 
to collagen accumulation. Indeed, ANG II decreases MMP-1 
activity in adult rat cardiac fibroblasts [42,67,79] and 
increases TIMP-1 and TIMP-2 levels (Fig. 9) [97], with a 
more pronounced effect on TIMP-2 than on TIMP-1, but no 
effect on MMP-2 and MMP-9 level. 
 It has indeed been shown that adenovirus-mediated over-
expression of TIMP-2 but not of TIMP-1, TIMP-3 or TIMP-
4 in cardiac fibroblasts increases collagen synthesis [189]. In 
TNFα-stimulated neonatal rat cardiac fibroblasts ANG II 
also increases TIMP-1 expression and decreases MMP-2 
activity [70]. Bergman et al. [190] on the contrary reported 
that ANG II moderately increased MMP-2 secretion in 
neonatal rat cardiac fibroblasts. 
 Compared with left ventricle hypertrophy, MMP-2 but 
not MMP-9 activity level in LV myocardium is increased 
with congestive heart failure (CHF) and inhibited by the 
ANG II-receptor blocker telmisartan, while the mRNA 
expression of MMP-2, MMP-9, MMP-13, TIMP-1 and 
TIMP-2 was increased with CHF and blocked by telmisartan 
[191]. 

 At first glance MMP-2 expression should result in a 
decreased level of cardiac interstitial collagen. However, 
significant increases in interstitial collagen volume fraction 
are noted in MMP-2 transgenic mice compared with age-
matched littermate controls [192]. Analysis of cardiac tissue 
from patients with idiopathic dilated cardiomyopathy also 
shows a large increase in gelatinase activity associated with 
increased total collagen content [193]. Similarly, Matsusaka 
et al. [194] reported increased cardiac collagen content in 
mice with intact levels of MMP-2 as opposed to MMP-2 
knockout mice. In MMP-1 transgenic mice Kim et al. [195] 
showed that cardiac expression of MMP-1 produced a net 
loss of cardiac interstitial collagen coincidence with a 
marked deterioration of both systolic and diastolic function. 
However, it has also to be taken into account that the more 
collagen is degraded the more is synthesized [196]. 
Consequently, synthesis exceeds degradation and leads also 
to accumulation of collagen [196]. It has also demonstrated 
that under physiological relevant conditions interstitial 
collagen is not efficiently cleaved by MMP-2 [197, 198]. 

11. CONCLUSIONS 

 The ANG II-stimulated collagen production, collagen 
type I and III protein and mRNA expression as well as the 
ANG II-enhanced superoxide anion and intracellular ROS 
production in adult rat cardiac fibroblasts are completely 
blocked by the membrane-associated NAD(P)H oxidase 
inhibitor apocynin. The ANG II-decreased MMP-1 activity 
and increased TIMP- activity are also reversed by apocynin. 
The collagen production in cardiac fibroblasts is however 
stimulated by SOD inhibition with DETC and inhibited by 
the SOD mimetics tempol and EUK-8 and by PEG-SOD 
administration. These data suggest a role of SOD and the 
generated ROS in the myocardial accumulation of collagen. 

12. PERSPECTIVES 

 Superoxide anion generated by NAD(P)H-oxidase has an 
important role in the pathogenesis of cardiovascular diseases 
and scavenging superoxide anion can be considered as a 
reasonable therapeutic strategy [199,200]. In this review we 

 
Fig. (9). TIMP-1, TIMP-2 and MMP-1 level in the medium of cardiac fibroblasts treated with(out) ANG II (1 µmol/l) for 24 hours. xx 
p<0.01 compared to control (-). 
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demonstrate that scavenging superoxide anion by tempol or 
EUK-8 or administration of PEG-superoxide dismutase inhi-
bits collagen production in cardiac fibroblasts. On the con-
trary increasing superoxide anion formation by inhibition of 
superoxide dismutase stimulates collagen production. A vital 
role of superoxide dismutase and the generated reactive 
oxygen species can be suggested in the myocardial collagen 
accumulation. 
 Specific pharmacological intervention with superoxide 
dismutase mimetics can probably be an alternative approach 
for reducing myocardial fibrosis. 
 A growing body of evidence suggests that oxidative 
stress, a chronic increase in reactive oxygen species (ROS), 
in the myocard can contribute to myocardial remodeling and 
failure. Furthermore, antioxidants have been shown to exert 
protective and beneficial effects against this process. Mito-
chondria are the predominant source of ROS and miotochon-
dria antioxidants are expected to be the first line of defense 
against mitochondrial oxidative stress-mediated myocardial 
injury. Angiotensin II increases mitochondrial ROS produc-
tion in cardiac fibroblasts and decreased the protein and 
mRNA expression of the mitochondrial antioxidant Mn-SOD 
by induction of the phosphorylation of Akt and FOXO3a and 
repression of the FOXO3a binding to the Mn-SOD promoter 
gene. Exposure to angiotensin II could thus lead to increased 
oxidative stress because of down-regulation of antioxidant 
enzymes such as Mn-SOD and Prx-3. These antioxidants are 
specifically localized in the mitochondria. It could thus 
provide a primary line of defense against angiotensin II-
induced oxidative stress and myocardial injury. Therapies 
designed to interfere with mitochondrial oxidative stress by 
using antioxidants such as SOD-mimetics might be 
beneficial in hypertensive heart diseases and in preventing 
heart failure. 
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