Revisiting the Role of Vacancies in Manganese Related Perovskites

Luisa Ruiz-González1, Raquel Cortés-Gil1,2, José M. Alonso2,3, José M. González-Calbet1 and María Vallet-Regí*4

1Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense, 28040-Madrid, Spain
2Instituto de Magnetismo Aplicado, UCM-CSIC-RENFE, Las Rozas, P.O. Box 155, 28230-Madrid, Spain
3Instituto de Ciencia de Materiales, CSIC, Sor Juana Inés de la Cruz s/n, 28049-Madrid, Spain
4Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain

Abstract: Oxygen engineering is an important tool for on-demand tailoring of manganese related perovskites into optimized performances. Anionic vacancies can be induced in both doped and undoped manganites by means of topotactic reduction processes under oxygen controlled atmosphere. This has given rise to the stabilization of new phases as a consequence of ordering of oxygen vacancies in which Mn3+ appears due to the reducing process. Different reduction pathways are proposed for LaMnO3 and doped systems. FM interactions remain at the octahedral layers when vacancies are long-range ordered. The peculiar magnetic behaviour of new layered perovskite superstructures is discussed.

Keywords: Manganese related perovskites, colossal magnetoresistance, oxygen non-stoichiometry, cationic vacancies, anionic vacancies.

INTRODUCTION

Ever since colossal magnetoresistance (CMR) was discovered in Ln1-xATxMnO3 (Ln=lanthanide and AT=alkaline-earth), establishing the relationship between structures and properties in this system occupies a prominent place in the landscape of solid-state science because of their intriguing potential applications [1,2]. Systems exhibiting different compositions have been studied where La1-xCaxMnO3 is probably the best known system. From the structural point of view, a solid solution with an orthorhombic perovskite structure (S.G. Pnma), a=2ac, b=2ac, c=ac√2 (where ac stands for the basic parameter of the cubic subcell) exists over the whole compositional range. In spite of this apparent simplicity, the solid solution exhibits a complex magnetic and electric behaviour depending on the x value, i.e., the calcium content [3,4]. This fact is related to the manganese oxidation state, Mn3+ for LaMnO3 (x=0) while Mn4+ appears as a consequence of the alkaline-earth substitution. The occurrence of different Mn3+/Mn4+ ratios, over the whole system, is responsible for the different magnetic behaviours observed. In this sense, Schiffer phase diagram [3] establishes ferromagnetic (FM) and metallic (M) character in the 0.2≤x<0.5 range as well as the higher CMR values at higher temperatures. For x=0.5, FM and charge ordering (CO) coexist while an antiferromagnetic (AFM) and insulator (I) character is observed for higher x values. The CO state represents the limit between the FM/M and AFM/I behaviours being controlled by the Mn3+/Mn4+ ratio. Thus, when such a ratio is in between 0.20< Mn3+/Mn4+ <1 the system is FM/M, whereas for Mn3+/Mn4+ ≥1 it turns AFM/I.

On the basis of the above mentioned diagram, it was thought that Mn oxidation state was controlled by calcium or in general by the alkaline earth. This is, in fact, a possibility but there are other chemical strategies that must be considered. In so doing, the Mn oxidation state can be modified by introducing vacancies in either of both, cation or anion, sublattices. Actually, cation vacancies are created in LaMnO3, when treated under oxidizing atmosphere, in accordance to the La1-tMn1-tO3 formula [5, 6]. This is possible because the perovskite structure does not admit interstitial oxygen and instead of that the system develops on the Mn sublattice. As a consequence, Mn4+ appears and then Mn4+-O-Mn3+ interact through a shared oxygen in the perovskite structure giving rise to double exchange interactions [7]. The Mn3+/Mn4+ ratio can be, subsequently, modified by changing the oxidizing conditions. The important conclusion is that La1-tMn1-tO3 exhibits FM and M behaviour [8-11] as observed in Ca doped manganites. It has been proposed that the cationic vacancies create Mn4+ acting as effective attractors of these holes and promoting the FM interactions with the surrounding Mn3+. In a similar fashion, these ideas can be extended to the calcium system. In fact, we have recently shown that the introduction of cationic vacancies [12, 13], at the A and B perovskite sublattice, in La1-xCaMnO3 induces a drastic increase of the magnetization in the whole range of temperatures leading to a FM. It can be explained taking into account the increase of Mn4+ concentration and formation of Mn4+-O-Mn3+ clusters which are FM and locally conductors. For low Ca2+ concentration (<20%), the clusters are isolated and the material is an insulator. The oxidation process promotes an increase of the Mn4+ concentration which is located around Ca2+ positions. The clusters are still isolated and the material preserves the insulator character but becomes FM. The metallic behaviour is attained when the clusters contact and interact. The system percolates and turns metallic. Moreover, the introduction of
vacancies only at the A position [14-15] can lead to materials with a 50% of Mn$^{4+}$ without charge ordering. Actually, La$_{0.5}$Ca$_{0.5}$MnO$_3$ shows a paramagnetic-ferromagnetic transition at T_c=223 K whereas at T=190 K the magnetization decreases and becomes AFM with charge ordering [16-18]. This situation changes when cationic vacancies are introduced at the A position leading to a drastic increase of the magnetization value in the whole temperature range. These materials do not only exhibit FM and M character without charge ordering but they also show an increase of the magnetoresistance values in the whole temperature range. On the other hand, for a fixed calcium content, such as x=0.5 for CaMnO$_2.5$ structure can be derived from the perovskite if one of each two oxygen positions in every (010) plane is eliminated. The reduction process of La$_{1-x}$Ca$_x$MnO$_3$ systems is a common strategy which applied to the control of Mn oxidation states, Mn$^{4+}$, which comprises the CaMnO$_3$ composition and then Mn$^{4+}$. The reduction process of Ca$_{0.5}$MnO$_3$-δ leads to different phases, showing mixtures of Mn$^{4+}$ and Mn$^{3+}$, built up from squared-based pyramids and octahedral intergrowths, in the 0$\leq$$\delta$$<0.5$ range [20]. For δ=0.5 a phase involving only square-based pyramids sharing corners (Fig. 1a) and Mn$^{3+}$ is attained. The CaMnO$_2.5$ structure can be derived from the perovskite if one of each two oxygen positions in every (010) plane is eliminated along the [01$\bar{1}$] direction, as schematically represented in Fig. 2a-b). The reduction process of La$_1$$_{1-x}Ca_xMnO_3$-$\delta$ (δ>1) has been by far less studied. In fact, the topotactic reduction process CaMnO$_2.5$$\rightarrow$CaMnO$_2$ [21], where CaMnO$_2$ is a rock-salt type oxide, does not lead to intermediate phases with Mn$^{3+}$ and Mn$^{4+}$. The different orientation of the consecutive tetrahedral layers gives rise to a four-fold superlattice, of the cubic perovskite, along b. It can be derived from the perovskite structure by eliminating oxygen in alternating rows along [101], direction in alternates planes along b, following the scheme depicted in Fig. (2b-c). Hansteen et al. [24] have reported LaMnO$_3$-δ (0.08$\leq$$\delta$$<0.25$) but mixtures of phases were obtained through a zircothermal reduction processes. More recently, LaMnO$_{2.75}$ (δ=0.25) has been stabilized by topotactic reduction of LaMnO$_3$ in a thermobalance [25] hence showing that further oxygen reduction can be obtained if La is partially substituted by Ca [23] or Sr [26].

These systems constitute interesting examples of how the Mn oxidation state influences on their properties. Mn can also show a more reduced oxidation state, i.e., Mn$^{2+}$ which could be, in principle, stabilized by LaMnO$_3$ (or other related systems) reduction. The introduction of Mn$^{2+}$ would lead to Mn$^{2+}$-O-Mn$^{4+}$ interactions which together with the anion vacancies creation must necessarily affect both structural and magnetic properties. Nevertheless, not many studies have been focused to compositional variations at the anionic sublattice of La$_{1-x}$Ca$_x$MnO$_3$ manganites except for x=1, which comprises the CaMnO$_3$ composition and then Mn$^{4+}$. The reduction process of Ca$_{0.5}$MnO$_3$-δ leads to different phases, showing mixtures of Mn$^{4+}$ and Mn$^{3+}$, built up from squared-based pyramids and octahedral intergrowths, in the 0$\leq$$\delta$$<0.5$ range [20]. For δ=0.5 a phase involving only square-based pyramids sharing corners (Fig. 1a) and Mn$^{3+}$ is attained. The CaMnO$_2.5$ structure can be derived from the perovskite if one of each two oxygen positions in every (010) plane is eliminated along the [01$\bar{1}$] direction, as schematically represented in Fig. 2a-b). The reduction process of La$_1$$_{1-x}Ca_xMnO_3$-$\delta$ (δ>1) has been by far less studied. In fact, the topotactic reduction process CaMnO$_2.5$$\rightarrow$CaMnO$_2$ [21], where CaMnO$_2$ is a rock-salt type oxide, does not lead to intermediate phases with Mn$^{3+}$ and Mn$^{4+}$.

The tunability of oxygen non-stoichiometry is a common strategy which applied to the control of Mn oxidation states opens new possibilities in the La$_{1-x}$Ca$_x$MnO$_3$-δ system. In this way, Kamata et al. [22] suggested the stabilization of LaMnO$_{3.8}$ in the 0.00$\leq$$\delta$$<0.05$ range with a random distribution of the oxygen vacancies, while for higher concentration it decomposed to La$_2$O$_3$ and MnO. In fact, González-Calbet et al. [25] stabilized an oxygen deficient manganese related perovskite, La$_{0.5}$Ca$_{0.5}$MnO$_{2.5}$, with the brownmillerite type. The brownmillerite structure is built up from the ordered intergrowth, along b, of octahedral and tetrahedral layers (Fig. 1b). The different orientation of the consecutive tetrahedral layers gives rise to a four-fold superlattice, of the cubic perovskite, along b. It can be derived from the perovskite structure by eliminating oxygen in alternating rows along [101], direction in alternates planes along b, following the scheme depicted in Fig. (2b-c). Hansteen et al. [24] have reported LaMnO$_3$-δ (0.08$\leq$$\delta$$<0.25$) but mixtures of phases were obtained through a zircothermal reduction processes. More recently, LaMnO$_{2.75}$ (δ=0.25) has been stabilized by topotactic reduction of LaMnO$_3$ in a thermobalance [25] hence showing that further oxygen reduction can be obtained if La is partially substituted by Ca [23] or Sr [26].

The aim of this work is to analyse in depth the reduction process of La$_{1-x}$AT$_x$MnO$_3$ (AT=Ca, Sr) focussing, mainly, on chemical and structural concerns related to the reaction. In this sense, we will concentrate on LaMnO$_{3.6}$ (x=0) and La$_{0.5}$Sr$_{0.5}$MnO$_{3.4}$ (x=0.5) systems, in which we have recently reported the stabilization of LaMnO$_{3.75}$ [25] and La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$ [26], whereas the reaction pathway as well as the stabilization of other reduced phases has not been described in detail. Moreover, the La$_{0.5}$AT$_{0.5}$MnO$_{3.4}$ system admits compositional changes at the Ln and AT sublattice while the oxygen stoichiometry is kept constant and equal to 2.5. A representative example is, as already mentioned, the La$_{0.5}$Ca$_{0.5}$MnO$_{2.5}$ compound [23] opening new expectations to the stabilization of new brownmillerite-related materials if La is substituted by another lanthanide. Moreover, as studied in the more oxidized materials (Ln$_{0.5}$AT$_{0.5}$MnO$_3$), changes on the Ln/AT ratio must lead to further changes in the Mn oxidation state of Ln$_{0.5}$AT$_{0.5}$MnO$_{2.5}$ and then to properties modification. In order to proceed with the above syntheses, it is essential to control the exact stoichiometry of the starting material because it will influence on the subsequent stabilization of the reduced materials. No accurate interpretation of the material features of manganese related perovskites can be made without precise knowledge of the oxygen content of the samples.

![Fig. 1](image1.png)

Fig. 1. Structural model along [001] of (a) Ca$_2$Mn$_2$O$_5$ and (b) Brownmillerite.

Tunability of oxygen non-stoichiometry is a common strategy which applied to the control of Mn oxidation states
MATERIALS AND METHODS

LaMnO$_3$

LaMnO$_3$ starting material was synthesized by using the ceramic method at 1400 ºC for 120 hours with several intermediate grindings and final quenching in liquid nitrogen.

Cationic composition, as determined by X-ray energy dispersive spectroscopy (XEDS), leads to La:Mn = 1:1 ratio. Oxygen content was established by thermogravimetric analysis using a Cahn D-200 electrobalance equipped with a furnace and a two-channel register, allowing the simultaneous recording of the weight loss and the reaction temperature. The sample, around 100 mg, was heated in a H$_2$ (200 mbar) and He (300 mbar) atmosphere up to 1000 ºC at 6 ºC/min rate. As can be observed, around 450 ºC the reduction process starts ending for 3-δ=2.5 (Fig. 3a). The analysis of the reduction products (La$_2$O$_3$ and MnO) and the weight loss together with the cationic stoichiometry data indicates the stabilization of a sample, in accordance with volumetric analysis, with the general formula LaMnO$_3$.

La$_{0.5}$Sr$_{0.5}$MnO$_3$

La$_{0.5}$Sr$_{0.5}$MnO$_3$ perovskite, synthesized by ceramic method from stoichiometric amounts of La$_2$O$_3$, SrCO$_3$ and MnO$_2$ at 1400 ºC for 100 hours, with several intermediate grindings followed by final quenching in air. The experimental composition, as determined by XEDS and thermogravimetric analysis, is in agreement with the nominal one. Samples with La$_{0.5}$Sr$_{0.5}$MnO$_{2.67}$ and La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$, compositions were stabilized by heating in H$_2$ (200 mbar) and He (300 mbar) atmosphere (Fig. 4). In the La$_{0.5}$Sr$_{0.5}$MnO$_{2.67}$ case, the heating rate of 6 ºC/min was maintained up to 390 ºC (temperature at which reduction starts) and once reached, the rate was decreased at 0.02 ºC/min up to 460 ºC. For La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$ the heating rate of 6 ºC/min was maintained up to 630 ºC. Once a desired weight loss was reached, the samples were treated at the same conditions described for LaMnO$_3$.

Microstructural Characterization

X-ray diffraction (XRD) patterns were obtained in a Philips X’Pert diffractometer equipped with a CuKα radiation source. Microstructural characterization was carried out on both JEOL 2000 FX and JEM-3000F electron microscopes equipped with microanalysis systems (Oxford Instruments). The magnetic properties were measured using a Quantum Design SQUID magnetometer in the temperature range from 5 to 300 K at applied fields of up to 5 T.
RESULTS AND DISCUSSION

LaMnO$_3$-

Once the optimal synthetic conditions were established three—apparently—single phases, corresponding to LaMnO$_{2.97}$, LaMnO$_{2.88}$ and LaMnO$_{2.75}$, were obtained (Fig. 3). The XRD pattern of LaMnO$_{2.97}$ and LaMnO$_{2.88}$ can be indexed, as the LaMnO$_3$ starting material, on the basis of an orthorhombic perovskite cell (Table 1), being remarkable the smaller distortion of the lower oxygen content sample.

Table 1. Lattice Parameters Corresponding to LaMnO$_{3-x}$

<table>
<thead>
<tr>
<th>LaMnO$_{3-x}$</th>
<th>a (nm)</th>
<th>b (nm)</th>
<th>c (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaMnO$_{3.0}$</td>
<td>0.554(2)</td>
<td>0.771(2)</td>
<td>0.571(2)</td>
</tr>
<tr>
<td>LaMnO$_{2.97}$</td>
<td>0.554(3)</td>
<td>0.783(3)</td>
<td>0.567(3)</td>
</tr>
<tr>
<td>LaMnO$_{2.88}$</td>
<td>0.555(3)</td>
<td>0.796(3)</td>
<td>0.556(3)</td>
</tr>
<tr>
<td>LaMnO$_{2.75}$</td>
<td>0.562(1)</td>
<td>3.200(1)</td>
<td>0.559(1)</td>
</tr>
</tbody>
</table>

A different situation was attained for LaMnO$_{2.75}$ whose XRD pattern clearly shows superlattice reflections. In fact, it can be indexed on the basis of an eightfold perovskite structure along b, isostructural to Ca$_4$Fe$_2$Ti$_2$O$_{11}$ [27, 28], characteristic of the n=4 member of the A$_n$B$_n$O$_{3n-1}$ homologous series [29] where (n-1) octahedral layers intergrow with a tetrahedral one. This homologous series responds to a systematic pathway through which perovskite compounds can accommodate oxygen vacancies as a consequence of their ordered arrangement, in accordance to the scheme depicted in Fig. (2c) which leads to tetrahedra formation. In this sense, the n=2 term (Fig. 5a) would be described from the alternation of one octahedral layer (n-1) and a tetrahedral one. Notice that this description corresponds to the brownmillerite structure, in agreement with the generic composition A$_2$B$_2$O$_5$ (ABO$_{2.5}$). For n=3 (Fig. 5b) two octahedral layers intergrow with a tetrahedral one, as described in Ca$_2$LaFe$_3$O$_8$ [30]. The n=4 term is (Fig. 5c) derived from the n=3 by adding another octahedral layer, i.e., three octahedral layers intergrow with a tetrahedral one. It should be noticed that the relative tetrahedra orientation, in consecutive layers, doubles the expected periodicity in n=2 and n=4 terms leading to four and eight fold superlattices, respectively, along b direction.

These data suggest that the oxygen content decreasing for LaMnO$_{2.97}$ and LaMnO$_{2.88}$ does not affect to the average structure of LaMnO$_3$, probably due to a random distribution of the oxygen vacancies. Further reduction results on the stabilization of an eightfold superlattice, in accordance to the model depicted in Fig. (6c) in which the tetrahedral layers are related to the oxygen vacancies formation and subsequently ordered arrangement in planes along b axis. Komorwicki et al. [31], proposed a model in order to explain the behaviour of the anionic vacancies. They hypothesized that for low anionic vacancy concentration there is a tendency for random distribution. For δ values close to 0.15, anionic vacancies start ordering along rows of different length, which are randomly distributed, developing into rows of infinite length for δ close to 0.20. When δ approach the value 0.25 the ordering is extended to the second dimension giving rise to layers of defects. At the beginning, these planes are randomly arranged leading to local disordered intergrowths but they become ordered by increasing either the annealing times or the oxygen deficiency. In this sense, the absence of superstructure in LaMnO$_{2.97}$ and LaMnO$_{2.88}$ can be understood, specially, for LaMnO$_{2.97}$ because it would involve, following the model of the homologous series A$_n$B$_n$O$_{3n-1}$, the intergrowth of one tetrahedral layer with 33 octahedral layers. It is well known that this structural type would require “geological times”, to get an ordered state as long as the required for the hypothetical n=34 term of the above series. The LaMnO$_{2.88}$ composition is in between the one characteristic to the n=8 (LaMnO$_{2.875}$), which would involve intergrowth of one tetrahedral layer with 7 octahedral ones, and the n=9 (LaMnO$_{2.89}$), involving one tetrahedral and 8 octahedral layers, members of the series, being a more plausible situation compared to the above one. Between these two extreme situations, i.e., the one comprising ordered superlattices, due to vacancy ordering, and the other of randomly arranged

Fig. (5). A$_n$B$_m$O$_{3n-1}$ homologous series polyhedra model. Notice that for simplicity reasons only half unit cells are represented for n=4 and n=6 terms.

Fig. (6). (a) orthorhombic perovskite crystal in LaMnO$_{2.88}$, (b) schematic representation of the reciprocal lattices of the two perpendicular domains (A and B) and the superposition of both (A+B) present on figure a (c) SAED pattern characteristic of average sixfold superlattice crystal in LaMnO$_{2.88}$ (d) enhanced detail showing clearly the above superlattice.
vacancies, small clusters or short range phenomena are also possible, but not detectable by means of XRD. Actually, more precise structural information can be obtained by means of SAED and HREM which are powerful tools to visualize short range order phenomena.

SAED study for LaMnO$_{2.97}$ confirms the orthorhombic perovskite cell in which vacancies must be randomly accommodated since no additional ordering has been detected. However, a more complex situation has been observed for LaMnO$_{2.88}$ since two types of crystals are present. The first one is in agreement to the orthorhombic perovskite cell, as reflected in the characteristic pattern along [101] zone axis (Fig. 6a).

This pattern could be, apparently, indexed on the basis of a double cubic cell along two perpendicular directions whereas a more plausible situation is the presence of twinning, as schematically represented in Fig. (6b). In fact, this is well known [32] and very common phenomena appearing in different orthorhombic perovskites. The second type reflects the presence of order-disorder phenomena as shown in the representative SAED pattern (Fig. 6c) in which additional diffuse reflections appear along b*. Notice that, in spite of their diffuse nature, five spots can be distinguished among the two more intense, characteristic of the basic lattice, suggesting a six-fold superlattice along b, better observed in the enhanced detail (Fig. 6d). This superstructure could be related to the hypothetical intergrowth of one tetrahedral and five octahedral layers, along b, characteristic of the n=6 term of the homologous A$_n$B$_n$O$_{3n-1}$ series (Fig. 6d) involving the LaMnO$_{2.83}$ composition.

These results indicate that LaMnO$_{2.88}$ does not only consist on a single orthorhombic perovskite cell with random oxygen vacancies, as suggested by XRD, but, additionally, exhibits short range order-disorder phenomena. At this point, it is worth remembering that the n=4 term is the highest which has been stabilized, not only in the La-Mn-O system but also in others like Ca-Fe-Ti-O [24]. Moreover, even in these favourable cases, the n=4 term stabilization takes long annealing time, 15 and 45 days for LaMnO$_{2.75}$ [25] and Ca$_2$Fe$_2$Ti$_2$O$_{11}$ [27], respectively, in agreement to Komornicki [31]. As the vacancy concentration becomes lower, the probability to find ordered regions decreases and attempts to stabilize n=6 (LaMnO$_{2.83}$) and n=8 (LaMnO$_{2.875}$) failed, leading to average perovskite structure. Nevertheless, this situation does not exclude local ordering phenomena, as happens for LaMnO$_{2.88}$. Notice that, although it is just a qualitative approximation, the average O$_3$ and O$_{2.83}$ oxygen stoichiometry fits quite well, O$_{2.9}$ to the sample one O$_{2.88}$. This would be, indeed, an ideal situation because perovskite regions are majority and probably contain oxygen vacancies randomly distributed. In any case, it is clear that the vacancy ordering processes have been, at least locally, initiated for this oxygen defective composition. Further annealing treatment did not lead to long range ordering probably because the oxygen vacancy concentration is not high enough. When this concentration increases, the LaMnO$_{2.75}$ phase is stabilized and the SAED and HREM study confirms the eight-fold superlattice [25] along b. It is worth mentioning that order-disorder phenomena has not been detected but different orientated domains are present as reflected in Fig. (7a) in which domains along [100] and [001] coherently intergrow. Notice that along [100] the 8a, periodicity is clearly observed (area A), in accordance to the sequence …OOTOOTOOT’O… (Fig. 7b) (O= octahedron, T= tetrahedron, T’= tetrahedron with different orientation), whereas just half periodicity is measured along [001] axis. This is because along this projection the different tetrahedra orientation (T and T’) cannot be distinguished (Fig. 7c).

The above results allow to propose a topotactic reduction pathway in LaMnO$_3$ through the oxygen vacancy formation randomly distributed for δ=0.03 (LaMnO$_{2.97}$) giving rise to short range ordering for δ=0.12 (LaMnO$_{2.88}$) and finally to oxygen defective layers of tetrahedra that orderly intergrow with the remaining not reduced octahedral ones.

Considering the magnetic properties, LaMnO$_{2.97}$ presents a magnetic behaviour similar to LaMnO$_3$, i.e., A-type AFM ordering with T_N~130K. LaMnO$_{2.88}$ exhibits FM behaviour, as observed in Fig. (8). It is worth recalling that TEM study indicates the presence of at least two phases related to the different observed crystals, i) LaMnO$_3$ perovskite-type and ii) related to that basic structure, but exhibiting order-disorder phenomena probably due to oxygen vacancy ordering. Since LaMnO$_3$ is an AFM material, it seems reasonable to relate the FM behaviour to the phase exhibiting order disorder phenomena. The material shows a Curie temperature ...
(Tc) around 35 K, as estimated from the derivative of the FC curve (inset Fig. 8). It is evident that the observed changes, with respect to LaMnO₃, must be related not only to the Mn oxidation state but also to the coordination environment of the Mn²⁺ and Mn³⁺ cations, as the presence of ordered patterns of anionic vacancies.

For LaMnO₂.₇₅ a magnetic transition, at 50 K, appears (inset 1 Fig. 9). This temperature is related to a Tc, since at higher temperatures, the material exhibits a clear paramagnetic behaviour (Fig. 9). It is worth stressing that the coercive field values increase more than 2 orders of magnitude, in the 50-2 K range. Actually, this fact is related to a staircase effect at low temperatures (inset 2 Fig. 9) and is due to a metamagnetic transition of non compensated A-type AFM ordering, on the octahedral layers, to FM behaviour, depending on the magnitude of the applied magnetic field.

This structural-magnetic model is proposed on the basis of the topotactic reduction process which allows assuming that the magnetic order remains in the octahedral layers. For this composition, around 50 % Mn²⁺ and Mn³⁺ is expected, and again, the new and peculiar magnetic behaviour could be related to the coordination environment of the Mn²⁺ and Mn³⁺ cations as well as the presence of anionic vacancies ordering. In order to confirm the magnetic structure, neutron diffraction measurements are in progress.

La₁₋ₓSrₓMnO₃₋₅

The reduction pathway is modified when La is partially substituted by Sr. In this case, lower oxygen content compositions La₀.₅Sr₀.₅MnO₂.₆₇ and La₀.₅Sr₀.₅MnO₂.₅ are stabilized, as apparently single phases. The XRD corresponding to La₀.₅Sr₀.₅MnO₂.₆₇ shows wide maxima characteristic of a cubic perovskite. The pattern for La₀.₅Sr₀.₅MnO₂.₅ perfectly fits with a brownmillerite cell (Ibm₂), as previously reported for La₀.₅Ca₀.₅MnO₂.₅, of lattice parameters a=0.54117(3), b=1.6761(1), c=0.54004(3) nm.

In order to get more reliable structural information SAED and HREM studies have been performed. In the case of La₀.₅Sr₀.₅MnO₂.₆₇, a more complex situation to that suggested by XRD has been found. Actually, two main types of crystals I and II have been found. Fig. (10a) shows a typical SAED pattern corresponding to type I which can be indexed on the basis of an orthorhombic perovskite cell a√2, 2a√2, a√2, along [101]. The SAED pattern depicted in Fig. (10b), corresponding to type II, can be interpreted on the basis of the different orthorhombic cell of a√2, 2√2a, a parameters, along [001], characteristic of the CaMnO₂.₅ structural type which can be described from square-pyramids sharing corners (Fig. 1a).

For La₀.₅Sr₀.₅MnO₂.₅ the SAED and HREM studies confirm the brownmillerite cell [26]. It is, again, remarkable the presence of twinned domains in each crystal as reflected in the HREM image displayed in Fig. (12a). Domains A and B corresponding to the [101] and [010] zone axes are evident, as confirmed by the corresponding Fourier Transform (FT) (Fig. 12c).

Fig. (10). SAED patterns characteristic of the two type of crystal found in La₀.₅Sr₀.₅MnO₂.₆₇ (a) type one, orthorhombic perovskite and (b) type two, Ca₂Mn₂O₅-type.

A representative HREM image of type I along [101] zone axis is depicted in Fig. (11a) where two domains are evident. Each domain A and B exhibits periodicities of 0.80×0.39 and 0.39×0.39, respectively, characteristic of the orthorhombic perovskite cell along [001] and [100] zone axes, respectively, as confirmed by the corresponding Fourier Transform (FT) (Fig. 11b-c).

Fig. (11). (a) HREM image characteristic of type I crystal of La₀.₅Sr₀.₅MnO₂.₆₇. (b) FT transform of domain A, (c) FT of domain B.

Fig. (12a) shows an image along [001] zone axis characteristic of the type II in which the observed periodicities as well as the FT (Fig. 12b) confirm the CaMnO₂.₅ type cell along this projection (Fig. 12c). For La₀.₅Sr₀.₅MnO₂.₅ the SAED and HREM studies confirm the brownmillerite cell [26]. It is, again, remarkable the presence of twinned domains in each crystal as reflected in the HREM image displayed in Fig. (13a). Domains A and B corresponding to the [101] and [010] zone axes are evident, as confirmed by the corresponding FT for each domain (Fig. 13b-c).

The above results are quite surprising because the reduction process leads to the stabilization of a brownmillerite phase for La₀.₅Sr₀.₅MnO₂.₅ through an unexpected mechanism. Actually, in this phase the oxygen vacancies are ac-
Revisiting the Role of Vacancies in Manganese Related

commodated in alternate layers along [101] due to the tetrahedra formation, as a consequence of ordered arrangement of the anionic vacancies (Fig. 2c). However, for the La$_{0.5}$Sr$_{0.5}$MnO$_{2.67}$ composition, which fits with the one expected for a n=3 term of the A$_n$B$_n$O$_{3n-1}$ homologous series, a different oxygen vacancy arrangement is observed. First of all, a single phase has not been stabilized but two phases corresponding to higher and lower oxygen stoichiometry, respectively. The lower oxygen stoichiometry phase is isos- tructural to CaMnO$_{2.5}$. The vacancy pattern in this phase is along [101] direction since only one of each two oxygen position is eliminated (Fig. 2b).

Fig. (12). (a) HREM image characteristic of type II crystal of La$_{0.5}$Sr$_{0.5}$MnO$_{2.67}$, (b) corresponding FT, (c) polyhedra model.

Taking into account these facts it seems that the reduction process starts with the square-pyramids formation but develops in the tetrahedra when the oxygen content is further decreased.

From the point of view of the magnetic behaviour, La$_{0.5}$Sr$_{0.5}$MnO$_{2.67}$ exhibits FM and AFM contributions (Fig. 14a). In this case, the FM behaviour can be related to the presence of the starting FM perovskite La$_{0.5}$Sr$_{0.5}$MnO$_3$. For this reason, it seems reasonable to assign the second contribution, i.e., AFM behaviour to the Ca$_2$Mn$_2$O$_5$ type-crystals. For La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$, neutron diffraction experiments indicate an AFM behaviour, in accordance with the G-type AFM ordering exhibited by related brownmillerite compounds [33]. In addition, SQUID measurements reveal a FM contribution (Fig. 14b). In this case, this FM contribution cannot be related to the starting material. According to previous XANES data [19], the coexistence of Mn$^{2+}$, Mn$^{3+}$ and Mn$^{4+}$ would be expected in La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$, isostructural to La$_{0.5}$Ca$_{0.5}$MnO$_{2.5}$. Based on these results, a model in which Mn$^{2+}$ is located at the tetrahedral layers while Mn$^{3+}$ and Mn$^{4+}$ and the rest of Mn$^{2+}$ occupies the octahedral ones is proposed [26]. However, the presence of Mn$^{3+}$ and Mn$^{4+}$ at the octahedral position is not enough to ensure the FM behaviour because it appears in La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$ but not in La$_{0.5}$Ca$_{0.5}$MnO$_{2.5}$. Although, both compounds exhibit brownmillerite structure, they differ on the structural distortion. The Sr-brownmillerite is less distorted involving Mn octahedral angles close to 180º. This condition is required for the existence of double exchange interactions, and for this reason, this material exhibits FM interactions [26]. Besides, this model allows proposing a bidimensional FM character because this magnetic contribution is confined in the octahedral layers.

Fig. (13). (a) HREM image characteristic of La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$, (b) FT transform of domain A, (c) FT of domain B.

Fig. (14). Magnetization curves of (a) La$_{0.5}$Sr$_{0.5}$MnO$_{2.67}$ and (b) La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$ as a function of the magnetic field.
The crystallographic structure and octahedral [MnO$_6$] distortion are essential in the magnetic properties of manganites [34], exhibiting perovskite structure, being governed by the tolerance factor, t. In this sense, for fixed oxygen content this value depends on the ionic radius of cations at the A and B perovskite positions. In this sense, small variations in the size of these cations will produce important differences in the magnetic and electric properties. The La$_{0.5}$Sr$_{0.5}$MnO$_3$, La$_{0.5}$Ca$_{0.5}$MnO$_3$ and Nd$_{0.5}$Sr$_{0.5}$MnO$_3$ perovskites corroborate this fact. Actually, all of them exhibit 50 % of Mn$^{3+}$ and 50 % of Mn$^{4+}$. However, La$_{0.5}$Ca$_{0.5}$MnO$_3$ and Nd$_{0.5}$Sr$_{0.5}$MnO$_3$ exhibit AFM with charge ordering at 190 and 150 K, respectively while La$_{0.5}$Sr$_{0.5}$MnO$_3$ presents FM behaviour. This fact is in agreement with the structural differences reflected in similar t factors for La$_{0.5}$Ca$_{0.5}$MnO$_3$ and Nd$_{0.5}$Sr$_{0.5}$MnO$_3$ but different to the one corresponding to La$_{0.5}$Sr$_{0.5}$MnO$_3$ [34], which involves less orthorhombic distortion as a consequence of the bigger Sr size. Moreover, this involves Mn-O-Mn angles around 180º, which favours FM interactions by double exchange mechanism. In a similar way, it seems interesting to evaluate the influence of the alkaline-earth and the lanthanide cations in the reduced samples. In order to do that, the O$_{2.5}$ stoichiometry was chosen because of the stabilization of brownmillerite single phases for La$_{0.5}$Ca$_{0.5}$MnO$_{2.5}$, La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$ and Nd$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$. XRD and SAED patterns can be indexed in all the cases on the basis of a brownmillerite (Ibm2) unit cell (parameters are gathered in Table 2).

Table 2. Lattice Parameters of Ln$_{1-x}$AT$_{x}$MnO$_{2.5}$

<table>
<thead>
<tr>
<th>Ln${1-x}$AT${x}$MnO$_{2.5}$</th>
<th>a (nm)</th>
<th>b (nm)</th>
<th>c (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La${0.5}$Sr${0.5}$MnO$_{2.5}$</td>
<td>0.541(3)</td>
<td>1.676(1)</td>
<td>0.540(3)</td>
</tr>
<tr>
<td>La${0.5}$Ca${0.5}$MnO$_{2.5}$</td>
<td>0.536(3)</td>
<td>1.644(9)</td>
<td>0.534(3)</td>
</tr>
<tr>
<td>La${0.67}$Ca${0.33}$MnO$_{2.5}$</td>
<td>0.523(3)</td>
<td>1.666(3)</td>
<td>0.522(3)</td>
</tr>
<tr>
<td>La${0.33}$Ca${0.67}$MnO$_{2.5}$</td>
<td>0.556(6)</td>
<td>1.618(6)</td>
<td>0.542(6)</td>
</tr>
<tr>
<td>Nd${0.5}$Sr${0.5}$MnO$_{2.5}$</td>
<td>0.538(4)</td>
<td>1.660(4)</td>
<td>0.537(4)</td>
</tr>
</tbody>
</table>

The magnetic measurements reveal similar behaviour to that observed in the starting perovskites. La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$, as mentioned before, exhibits FM while AFM ordering, with a T$_N$ around 130 K, is found for both La$_{0.5}$Ca$_{0.5}$MnO$_{2.5}$ and Nd$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$ samples. It is worth recalling, the high magnetization values for neodymium brownmillerite in spite of the AFM behaviour, probably influenced by the magnetic character of Nd. Actually, the magnetic moment, at 5 K and 5 T (Fig. 15), is higher for this composition than La$_{0.5}$Sr$_{0.5}$MnO$_{2.5}$, in spite of this material exhibits a noticeable FM contribution. The orthorhombic distortion of the perovskite starting materials remains in the corresponding brownmillerites (Table 2). It means that, again, the LaSr is less distorted than the LaCa and NdSr ones and then the FM and AFM behaviours, respectively, are maintained.

The above tendency is also observed when the La/Ca ratio is changed. In this case, La$_{0.67}$Ca$_{0.33}$MnO$_{2.5}$ and La$_{0.33}$Ca$_{0.67}$MnO$_{2.5}$ compositions show, again, in agreement with XRD (Table 2) and SAED studies, brownmillerite structure.

For La$_{0.67}$Ca$_{0.33}$MnO$_{2.5}$, the magnetic behaviour, in accordance with the structural distortion in the corresponding perovskite, is a FM, with T$_c$ around 250 K, while it is AFM for La$_{0.33}$Ca$_{0.67}$MnO$_{2.5}$ (Fig. 16).

![Fig. (15). Magnetization curve of Ln$_{0.5}$AT$_{0.5}$MnO$_{2.5}$ as a function of the magnetic field.](image)

![Fig. (16). Magnetization curves as a function of the magnetic field.](image)
CONCLUSIONS

The ensemble of these results allow proposing the stabilization of several La$_{1-x}$AT$_x$MnO$_{3+q}$ phases, with slightly different compositions, related to the perovskite, brownmillerite and Ca$_2$Mn$_3$O$_7$ structural types by means of a reduction process. For x=0, the experimental data suggest a topotactic reduction mechanism through tetrahedral layers formation. However, a more complex reduction process has been found for x=0.5 in La$_{0.5}$Sr$_{0.5}$MnO$_2.5$ and La$_{0.5}$Ca$_{0.5}$MnO$_2.5$ due to the formation of intermediate phases related to Ca$_2$Mn$_3$O$_7$, involving square-pyramids. Besides, this structural complexity linked to three and two Mn oxidation states for the x=0.5 (Mn$^{2+}$, Mn$^{3+}$ and Mn$^{4+}$) and x=0 (Mn$^{2+}$ and Mn$^{3+}$) samples, respectively, is responsible for the several magnetic behaviours observed. On the other hand, and generally speaking, the FM fraction in oxygen deficient manganites decreases for high concentration of vacancies, since anionic vacancy introduction breaks the Mn$^{4+}$-O-Mn$^{3+}$ double exchange interactions avoiding the FM ordering. On the basis of this description two situations can be attained (i) when vacancies are randomly distributed the magnetic behaviour of the starting material is lost while (ii) it is partially kept when ordering between octahedral and tetrahedral layers happens. This is possible because the FM interactions remain at the octahedral layers. It is then clear that, together with the more conventional synthetic strategies, chemical doping and more recently cationic vacancy formation, the anion vacancies can also play an important role in the intriguing structure-properties relationships in manganites. Moreover, synthesis under controlled atmosphere provides an additional chemical strategy which is the possibility to study the reduction-oxidation process simultaneously, i.e., its reversibility. In this sense, it is worth remembering that the red-ox reaction La$_{0.5}$Ca$_{0.5}$MnO$_3 \rightarrow$ La$_{0.5}$Ca$_{0.5}$MnO$_{3.5}$ undergoes different pathways, involving different Mn oxidation states as well as microstructural features at each state, as confirmed by XANES and TEM, respectively. Actually, Mn$^{2+}$ and Mn$^{3+}$ are present in the O$_3$ \rightarrow O$_{3.5}$ reduction process while Mn$^{2+}$, Mn$^{3+}$ and Mn$^{4+}$ coexist in the oxidation O$_{3.5}$ \rightarrow O$_3$ one [19]. From the structural point of view, the reduction comprises the presence of octahedral and square-pyramids unities while disorder sequence characteristic of brownmillerite and perovskites are present in the oxidation. This fact indicates that it is possible to stabilize samples with the same anionic and cationic composition but with differences in the Mn oxidation states. This situation, again, enhances the alternatives to deal with new magnetic behaviours and the possibility to design materials containing the adequate building blocks and oxidation states required for a given property. On the other hand, it is evident that the reduction mechanism was different in the LaMnO$_3$ and LaMnO$_3$ alkaline-earth doped systems. In a similar way, it has been reported that the introduction of cationic vacancies leads to different results in Ca doped or free La$_{1-x}$Mn$_x$O$_3$ systems. In this case, the introduction of calcium acts not only as Mn$^{3+}$ supplier but also influence on the magnetic and electric behaviour of the La-Ca-Mn-O. This role of Ca contrasts with the extended idea that the manganese is the only important ion in terms of magnetic and electric behaviour [35]. In this sense, the electric and magnetic phase diagram should have an additional dimension taking into account either the Ca$^{2+}$ or Mn$^{4+}$ concentration [15].

REFERENCES
