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Abstract: Klebsiella pneumoniae is a gram-negative bacillus of the Enterobacteriaceae family, commonly associated with nosocomial infections.
This pathogen is a serious public health problem as some of its strains are resistant to about 95% antimicrobials of the pharmaceutical market. This
resistance is promoted by the production of the β-lactamase extended spectrum (ESBL) enzymes, one of the major causes of therapeutic failure.
This review evaluated the incidence and distribution of resistance genes from Klebsiella pneumoniae to β-lactams worldwide. Our study was
conducted with the subject the organism K. pneumoniae and β-lactamic resistance. The most reported genes were blaSHV-12, blaCTX-M-2 and blaSHV-5;
with blaSHV-12 being the most described. The last two were present in all continents, characterizing its cosmopolitan profiles. The greatest genetic
diversity was observed in the Asian and Oceania, where 41 different genes were isolated. Additionally, our review points out the coexistence of
different classes of β-lactamases in a single bacterial isolate. Finally, knowledge of mechanisms associated with resistance of K. pneumoniae is of
great public interest and the verification of resistance genes shows a variation over time and location highlights the importance of evaluating the
mechanisms or strategies by which these variations occur.
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1. INTRODUCTION

Klebsiella  pneumoniae  is  a  microorganism  found  in
humans  and  other  mammals,  colonizing  intestine,  skin,
nasopharynx and, several environmental niches. A constituent
of the human intestinal microbiota, this bacterium, considered
harmless,  has  gained  notoriety  by  being  identified  as  an
opportunistic  pathogen.  This  is  responsible  for  a  variety  of
diseases in humans and animals, such as urinary tract infection,
pneumoniae, intra-abdominal infection, bloodstream infection,
meningitis,  pyogenic  liver  abscess  and  is  a  prominent
nosocomial  pathogen  [1,  2].  Moreover,  the  occurrence  and
global spread of hypervirulent and MDR (multidrug-resistant)
K.  pneumoniae  are  increasingly  reported  in  community-
acquired  and  nosocomial  infections  [3],  and  the  use  of
antimicrobials  in  the  treatment  of  infections  has  become
progressively more difficult [4, 5]. However, despite there has
been  an  increase  in  the  number  of  vulnerable  populations  to
MDR  pathogens,  in  addition  to  a  renewed  interest  in  the
Klebsiella pneumoniae, many questions about this pathogen are
still unknown, as to how resistance genes spread out and how
they reach humans [6].
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Over time, bacteria have developed several mechanisms by
which they can withstand antimicrobials, rendering the action
of these substances ineffective [3]. The resistance mechanisms
of a gram-negative bacterium include: efflux pump; membrane
permeability;  production  of  β-lactamases;  modification  of
antibiotic  targets;  and,  acquisition  of  alternative  metabolic
pathways to those inhibited by the antibiotic [4, 6]. One of the
most  important  mechanisms  of  resistance  in  bacteria  is  the
Extended Spectrum β-lactamase  (ESBL)  production  [7].  The
first  β-lactamase  with  the  ability  to  hydrolyze  β-lactam  was
described  in  1983  in  a  K.  ozaenae  isolated  in  Germany  and
designated as SHV-2 (Sulfhydryl variable) [8, 9]. However, the
initial outbreaks were related only in 1985 in France and the
late ‘80s in the United States. Currently, over one hundred and
fifty different ESBLs types have been identified. These classes
of enzymes have a distinct spectrum of action and are classified
as:  Extended  Spectrum  β-lactamase  (ESBL);  Metalo-β-
lactamase  (MBL);  and,  β-lactamase  Class  C  (AmpC)  [8].

The definition of ESBLs is not consensual, however, some
authors  propose  that  an  ESBL  is  any  β-lactamase,  generally
acquired and not inherent in a species, that hydrolyzes rapidly
or  confers  resistance  to  oxyimino-β-lactam  chain,  broad-
spectrum cephalosporins, penicillins, and monobactams and is
inhibited by clavulanate, sulbactam and tazobactam [10, 11].
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Since  the  discovery  of  these  enzymes,  an  increase  of  K.
pneumoniae  resistant  to  several  antimicrobials  has  been
reported such as aminoglycosides and even carbapenems [12,
13]. These latter are considered to be one of the most important
antibiotics  classes  in  the  fight  against  ESBL-producing
microorganisms  due  to  their  stability  against  the  hydrolytic
activity of this enzyme and also for the ability to penetrate the
bacterium [14].

β-lactam  antibiotics  interact  with  diverse  groups  of
bacterial enzymes. The enzymes, such as TEM-1 (Temoniera),
TEM-2  and  SHV-1,  encoded  by  plasmids  and  widely
distributed among enterobacteria, can hydrolyze a wide variety
of  penicillins  and  third  generation  of  cephalosporins,  which
were  originally  developed  as  drugs  capable  of  overcoming
bacterial resistance. These enzymes have emerged as one of the
most successful resistance mechanisms, which limit therapeutic
options  for  treating  various  human  infections,  including
Klebsiella  [15,  16].

Given  the  therapeutic  limitations  caused  by  resistance
mechanisms,  several  research  groups  have  followed  the
distribution and susceptibility profile of the genus Klebsiella
spp.,  to monitor possible outbreaks and set up the sensitivity
profile  in  different  regions  [12,  13].  Based  on  the  global
dissemination of ESBL-producing Klebsiella pneumoniae and
limitations  of  the  current  treatments,  the  implementation  of
prevention  and  control  measures  has  become  extremely
important  [13].

Considering the recognition of the genus Klebsiella spp. as
an important pathogen involved in infections, its variations in
the antibiotic resistance profile, and its emerging mechanisms
of resistance, reinforces the need to know the local or regional
characteristics  of  this  genus,  as  well  as  the  evolution  of  its
resistance. Thus, monitoring of the resistance and prevalence of
antimicrobial resistance determinants are urgently needed and
may contribute to better targeting and use of antimicrobials. In
this  context,  the  present  review  focuses  on  the  main  aspects
related  to  the  distribution  of  resistance  genes  to  β-lactam
antibiotics associated with Klebsiella pneumoniae found in the
scientific literature.

2. MATERIALS AND METHOD

The searches were conducted between February and June
of 2018 in online health databases, and date delimitation was
set  as  between  2000  and  2018.  Editorials,  letters,  and  Ph.D.
theses were excluded. The following databases were used for
the  research:  PubMed,  SCOPUS,  Science  Direct,  Latin
American  and  Caribbean  Literature  in  Health  Sciences
(LILACS), Virtual Electronic Scientific Library (SCIELO) and
Portal of Periodicals of the Coordination for the Upper Level
(Capes Newspapers). Additionally, the descriptors to perform
the  searches  were:  Klebsiella  pneumoniae,  Klebsiella
pneumoniae  resistance  factors,  Klebsiella  pneumoniae  with
resistance  to  β-lactam  antimicrobials,  broad-spectrum  β-
lactamases, and extended-spectrum β-lactamase. There was no
restriction of sample size for evaluation of publications and the
articles selected were only in the English language. Exclusion
criteria were: studies that exclusively investigated resistance to
non-β-lactam antibiotics and non-human studies. Some studies

considered essential to compose the review not included in any
of  the  research  bases  were  added  (i.e.,  articles  addressing
pathologies  in  humans,  characteristics  of  the  bacterium  and,
some studies  published earlier  than the  year  2000 due to  the
importance  of  it  to  a  specific  country  and  to  better
contextualize  a  finding).

3. RESULTS AND DISCUSSION

The  descriptors  and  databases  used  allowed  the
identification  of  84  scientific  articles  that  fully  met  the
inclusion criteria of the study. It should be noted that several
studies  found  despite  the  treatment  of  β-lactam  antibiotic
resistance  associated  with  K.  pneumoniae  did  not  present  all
relevant  information  for  our  review,  e.g.,  resistance  genes
and/or  sites  where  the  microorganism  was  isolated,  which
consequently had to be excluded. Finally, not all the countries
that  constitute the different  continents  were considered since
until  the  conclusion  of  our  review no  results  were  published
between 2000 and 2018.

3.1. Antimicrobial Resistance

Antimicrobial resistance is a growing worldwide iatrogenic
complication, which currently constitutes a major public health
problem and is responsible for a significant increase in patients'
morbidity and mortality [10, 17].

As commented above, the Enterobacteriaceae family has
several mechanisms of resistance recognized. This group has
also received special attention in recent years as being among
the  most  isolated  microorganisms  in  the  laboratory  routine
[12]. Belonging to this family, one of the important pathogens
for  humans,  with  well-known  and  powerful  mechanisms  of
resistance, is the genus Klebsiella spp [12, 13].

In  recent  years,  increased  antibiotic  resistance  in
Enterobacteriaceae  has  become a  major  concern  worldwide.
Although  β-lactam  antibiotics  have  been  widely  used  as  the
first  treatment  of  severe  infections,  resistance  to  these  drugs
due  to  the  acquisition  of  resistance  genes  has  emerged  and
spread  worldwide  since  the  early  2000s,  thus  increasing
concern about  the occurrence of  infections of  hospital  origin
where these bacteria are widespread [18].

The progression of resistance of Klebsiella pneumoniae to
antibiotics has caused great concern since the 1980s with the
emergence  of  K.  pneumoniae  ESBL-producing  [19].  Since
them,  other  β-lactamases  were  discovered,  for  example,  the
carbapenemase.  This  enzyme  was  discovered  in  the  United
States in 2001 in K. pneumoniae and has expanded remarkably,
being  able  to  confer  resistance  to  all  β-lactams,  even  those
associated with β-lactamase inhibitors [20]. Another important
β-lactamase is the MBL, which degrades all β-lactams except
aztreonam (monobactam) in vitro, whereas AmpC, in turn, can
hydrolyze penicillins, monobactams, and cephalosporins until
the third generation [21].

The β-lactamase type enzymes can be classified into two
distinct ways, the molecular classification of Ambler [22] and
the  functional  classification  Bush  &  Jacoby  [23].  The  first
classifies the β-lactamases into four classes (A, B, C, and D),
grouped  according  to  the  similarity  between  the  amino  acid
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sequences.  Classes  A,  C,  and  D  are  considered  serine  β-
lactamase  because  they  have  the  site  of  action  composed  of
serine. Class B, also called MBL, uses zinc (Zn) as a cofactor
[24].

The  most  current  classification  is  from  Bush  &  Jacoby,
based  on  the  activity  of  the  enzyme,  that  is,  on  functional
groups and correlates the properties of each enzyme with the
resistance profile of each isolate [23, 24]. In this way, enzymes
are classified into three groups: group 1, which is the group of
cephalosporinases.  Enzymes belonging to  molecular  class  C,
from  Ambler,  which  are  more  active  against  cephalosporins
and  are  not  inhibited  by  β-lactamase  inhibitors,  such  as
clavulanic acid and tazobactam. Group 2 comprises the serine
β-lactamases,  enzymes  belonging  to  group  A  and  D,  of
Ambler, represented by the largest group of β-lactamases. It is
divided  into  subgroups  (2a  and  2b)  according  to  the  action
spectrum of each enzyme. Group 3 includes the enzymes that
require the zinc ion at its site of action to produce antimicrobial
activity  (Fig.  1).  They  are  the  MBLs  that  can  hydrolyze
carbapenems and are inhibited by ion chelators, such as EDTA
[23, 24].

The  AmpC-type  β-lactamases  are  chromosomal  β-
lactamases but can be found on both the bacterial chromosome
and inserted into mobile plasmids. There are various types of
plasmid-mediated AmpC β-lactamases: the CMY, MIR, MOX,
LAT, FOX, DHA, ACT, ACC and CFE. They are capable of
hydrolyzing penicillins, monobactams, and cephalosporins of
up to the third generation, with resistance to cefoxitin being the
main marker of AmpC expression. AmpC-producing bacteria
are  commonly  also  resistant  to  non-β-lactam  drugs,  such  as
aminoglycosides, chloramphenicol, quinolones, sulfonamides,
tetracyclines and trimethoprim [21, 23].

Chromosomal  origin  AmpC  can  occur  in  two  forms:
inducible and constitutive. Thus, the exposure of bacteria to β-
lactam  antibiotics  leads  to  an  increase  in  the  production  of
enzymes.  This  stimulus  may  occur  at  different  levels  of  β-
lactamase production, depending on the type of antimicrobial.
In  both  cases,  hyperproduction  or  hyperinduction  of  the
enzyme can be attributed to a mutation in the AmpC regulatory
genes [21, 23, 25].

Another important factor to be highlighted is the ability to
transfer  genes  that  determine  antimicrobial  resistance.  The
genes encoding ESBLs are usually located on plasmids that are

Fig.  (1).  β-lactamases  of  major  clinical  importance  according to  the
classification  of  Ambler  and  Bush  &  Jacoby.  AmpC:  β-lactamases
resistant to extended-spectrum of cephalosporins. ESBLs: Extended-
spectrum β-lactamase. MBLs: Metallo-β-lactamases.

highly mobile and can harbor resistance genes to several other
unrelated  classes  of  antimicrobials  [26].  Carattoli  [27]  and
Zhang  [28]  identified  in  Klebsiella  pneumoniae  isolates,
transconjugants  of  blaCTX-M-type  antibiotic  resistance  genes,
blaSHV,  blaVIM,  blaDHA.  Of  these,  about  67.7%  of  the
transconjugants  harbored  at  least  two  resistance  classes  and
32.2% identified three classes of resistance determinants.

The  family  of  SVH-type  enzymes  appears  to  be  closely
related to Klebsiella spp. SHV-1 isthe parent of the SHV-type
enzyme class, and most of these enzymes are found in strains
of  K.  pneumoniae  [8,  29].  There  are  a  few  derivatives  of
SHV-1, and the changes that occurred in the gene to give rise
to its variations were characterized by the substitution of serine
for glycine [8].

TEM-1 enzyme is the β-lactamase most commonly found
in gram-negative bacteria. Its first derivative is TEM-2, where
the  only  difference  is  the  amino  acid  substitution  from  the
original  β-lactamase.  The  amino  acid  substitutions  occurring
within  the  TEM  enzyme  occur  in  a  limited  number  of
positions. Combinations of these amino acid changes result in
several  subtle  alterations  in  ESBL  phenotypes,  such  as  the
ability to hydrolyze specific oxyimino-cephalosporins, such as
ceftazidime and cefotaxime, or a change in isoelectric points
[30]. More than 150 different variants of TEM and SHV that
generate resistant have been described in the literature. Among
these  genes,  TEM-3  causes  a  high  rate  of  resistance
concomitant with such antibiotics, being the most reported. The
CTX-M enzymes have been recognized as the most prevalent
among  Enterobacteriaceae  and  other  ESBLs,  such  as  GES,
PER,  and  EBV,  have  been  described  as  having  a  lower
prevalence  [31].

During  the  1990s,  TEM  and  SHV  were  dominant;
however, the last decade was marked by the rapid and massive
spread of β-lactamases of the CTX-M type, which are currently
the most prevalent ESBL in Enterobacteriaceae in Europe and
other  parts  of  the  world  [32].  The  existence  of  the  CTX-M
enzyme was discovered at the end of the '80s and, more than
100 variations have been identified [33]. Its origin is different
from the TEM, and SHV enzymes, the ESBL of CTX-M were
acquired by horizontal transfer of genes from other bacteria by
translocation or conjugative plasmid, whereas TEM and SHV
ESBLs  originate  from the  substitution  of  the  amino  acids  of
parental enzymes [34, 35]. They are classified into five groups
based  on  their  amino  acid  sequence:  CTXM-1,  CTX-M-2,
CTX-M-8,  CTX-M-9,  and  CTX-M-25  [33].  The  diversity  of
CTX-M  enzymes  from  clinical  isolates,  described  today,
grossly  underestimate  the  diversity  that  exists  in  nature.  The
rapid  global  spread  of  the  CTX-M enzyme  poses  a  threat  to
current antimicrobial therapy strategies, which rely heavily on
third-generation  cephalosporins  to  control  gram-negative
bacterial  infections  [33].

3.2. Epidemiology

Our results indicate that the population of K. pneumoniae
is  highly  diversified  and  that  in  some  cases  resistant  strains
seem  to  have  spread  throughout  the  country  over  time.  In
addition,  we found evidence that  some strains  independently
acquired  antimicrobial  resistance  genes,  presumably  in
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response  to  antimicrobial  treatment  [5].

The  spectrum  of  infections  and  the  epidemiology  of  K.
pneumoniae  changed  drastically  from  the  1970s  when  this
microorganism  was  identified  in  a  hospital  environment.  In
addition  to  the  considerable  colonization  efficiency,  the
antimicrobial  resistance  allowed  K.  pneumoniae  to  spread
rapidly  in  health  care  settings  [14].  The  frequency  of  the
association of the bacteria with cases of hospital infections, as
well  as  the  high  mortality  rates  caused  by  K.  pneumoniae
justify their monitoring [36]. There are reports in the literature
of  the  increasing  number  of  genes  associated  with  the
production  of  ESBLs  in  K.  pneumoniae.  Among  these,  the
precursors of SHV and TEM enzymes, as well as CTX-M are
isolated  in  numerous  countries,  alerting  to  the  occurrence  of
more than one resistance gene in the same strain [37]. In this
study, blaCTX-M-15 and blaSHV-5 genes were identified in 4 of the 7
(57%) of the European countries that were part of this research,
both  of  which  were  identified  in  France,  Italy,  Spain,  and
Portugal. With featured on France and Spain, where the gene
blaCTX-M-15  was isolated twice in rectal swab in both countries
(Table  1).  Concomitant  with  the  use  of  antibiotic,  the
prevalence of Klebsiella pneumoniae strains producing CTX-
M-type  ESBLs  has  increased  worldwide  [46].  The  blaCTX-M-15

gene is predominantly present on the European continent due
to the spread of isolates initially identified in France and Italy,
which have spread to other countries [46].

The  β-lactamase  CTX-M-15,  first  detected  in  1999  in
India,  is  currently  recognized  as  the  most  widely  distributed
CTX-M  β-lactamase  in  the  world  [46].  CTX-M  enzymes,
especially CTX-M-15, are related to various epidemiological
situations  and  have  spread  throughout  the  continents  due  to
epidemic plasmids and/or epidemic strains [47]. Corroborating
this  statement,  in  the  present  study,  the  blaCTX-M-15  gene  was
found in K. pneumoniae in all continents evaluated Table(1-4).
Many of the emerging antimicrobial resistance problems of the
nineties have been characterized by difficulty in recognition of
resistance in the laboratory, particularly by rapid susceptibility-
test methods. The emergence of plasmid-encoded ESBLs is a
significant evolution in antimicrobial resistance. Outbreaks due
to the dissemination of ESBL-producing bacterial strains and to
the dissemination of ESBL-encoding plasmids among different
species of the family Enterobacteriaceae have been described
in hospitals and other health care facilities [46, 47].

Some authors identified antimicrobial resistance genes in
K. pneumoniae  and demonstrated the CTX-M-15 and SHV-5
domain  isolated  from  Portuguese  hospitals  [45].  The
production  of  the  SHV-type  ESBLs  in  K.  pneumoniae  is
associated with an increased tendency to invade epithelial cells
and expression of fimbrial adhesions [48]. The propagation of
these genes is influenced by the amplification of the epidemic
and international clones of K. pneumoniae and specific types of
plasmids.  The  same  authors  also  highlight  the  potential  for
antibiotic resistance and virulence plasmid dissemination [45].
The origin of the blaCTX-M-15 gene identified in K. pneumoniae in
Portugal  is  clone  ST336,  and  the  most  recent  occurrence  in
France, described in the literature, reported a clonal outbreak
involving  K.  pneumoniae  isolates  recovered  from  a  single
hospital in the Picardie region of northern France [45, 49]. This

outbreak was caused by a resistance to colistin with OXA-48
and CTXM-15 which produced K. pneumoniae type ST11 that
was susceptible only to cefoxitin. The first identification of the
ST11 clone in K. pneumoniae occurred in 1997 in France [49].
This clone has been associated to the acquisition of resistance
genes to a broad spectrum of antimicrobial agents, as well as to
the  dissemination  of  OXA-48,  in  addition  to  VIM  (Verona
Imipenemase),  NDM  (New  Delhi  Metallo-β-lactamase)  and
KPC [40, 49].

The most recent occurrence of blaCTX-M-15 in other European
countries was described by Rodrigues and Brañas [40, 45]. The
first author related finding of the increased incidence of CTX-
M-15, SHV and several other types ESBL were observed in a
Portuguese  hospital  associated  with  the  increase  of  MDR K.
pneumoniae epidemic clones, the second reported blaOXA-48 and
blaCTX-M-15  as  responsible  for  a  major  outbreak  involving  44
patients at a hospital in Madrid, Spain, 2009 to 2014 [40, 45].

In  the  United  Kingdom and  Sweden,  the  only  resistance
genes identified were NDM-type, with blaNDM-1 being isolated
in  both  countries  (Table  1).  Among  the  NDM  isolates
identified  in  the  United  Kingdom,  ST231  was  the  most
common  type  along  with  ST147  and  ST273.  In  the  case  of
Sweden, the isolates belonged to four different sequence types,
as they were imported from various regions of the world such
as  India  and  Iraq  [43].  Strains  of  K.  pneumoniae  NDM-1
positive can exhibit relatively high clonal diversity. In Sweden
and the United Kingdom clone ST14 was the most frequently
observed type. Clone K. pneumoniae ST14 has been described
as a host for the NDM-1 enzyme and is also a frequent host of
CTX-M enzymes.  In addition,  ST14 is  a single locus variant
(SLV) of ST15, which often encodes the CTX-M type ESBLs.
The production of the NDM-1 enzyme by isolates belonging to
clone  ST11  and  complex  ST147-ST273  is  very  relevant
information since clone ST11 is a frequent host of CTX-M and
KPC and is also an SLV of ST258, making it fundamental for
its dissemination [43, 50].

Of the European countries correlated in this study, Spain
stands  out  as  the  site  where  the  largest  number  of  different
genes  (15  in  total)  was  identified,  which  shows  the  genetic
diversity in relation to the occurrence of K. pneumoniae with
resistance  to  the  antibiotic  β-lactams  (Table  1).  This
characteristic, from the point of view of the therapeutic of the
infection, is a difficult factor, considering that the variation of
resistance genes decreases the antimicrobial therapy options.

The country where the lowest gene diversity occurred was
Greece,  where  the  only  isolated  gene  was  blaKPC-2  in  two
outbreak cases (Table 1). Considering that the outbreaks were
of monoclonal origin and that there was no identification of a
common  source  or  an  environmental  reservoir,  the  main
dissemination mechanism of the blaKPC-2 in these cases was the
transmission  from  patient  to  patient  [41,  42].  The  smallest
genetic  diversity  in  Greece,  identified  in  this  study,  may  be
related to a low number of publications in this country.
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Table  1.  Association between resistance  genes  to  β-lactams,  geographical  areas  of  occurrence  and clinical  isolates  in  the
European continent.

Europe

Country Genes
(N. reports)*

Isolated
(N. reports)* References

France

blaCTX-M-15 (2)

Rectal swab (2)
Catheter

Urine
Wound exudate
Respiratory tract

(Baraniak et al. 2013)38

blaCTX-M-1

blaCTX-M-40

blaSHV-5

blaSHV-12

blaSHV-2

blaTEM-3

blaCMY-2

blaOXA-48

Italy

blaCTX-M-2

Rectal swab (Baraniak et al. 2013)38

blaCTX-M-15

blaTEM-3

blaCTX-M-1

blaSHV-5

Spain

blaCTX-M-1

Bloodstream
Bronchial aspirates

Clinical isolates
Non-surgical wound

Rectal swabs (2)
Sputum

Surgical wound
Urine

Vascular catheters

(Hernández et al. 2005)39

(Baraniak et al. 2013)38

(Brañas et al. 2015)40

blaCTX-M-3

blaCTX-M-9

blaCTX-M-10

blaCTX-M-15(2)
blaSHV-2 (2)

blaSHV-2a

blaSHV-5

blaSHV-12

blaDHA-1

blaTEM-3

blaTEM-4

blaTEM-25

blaTEM-133

blaOXA-48

blaVIM-1

Greece blaKPC-2 (2)

Respiratory tract
Catheter tip surgical

site
Bloodstream (2)

Feces
Bronchial secretions

Pus
Central venous catheter

(Maltezou et al. 2009)41

(Souli et al. 2010)42

United
Kingdom

blaNDM

blaNDM-1

Urine (2)
Respiratory tract

(Giske et al. 2012)43

(Jain et al. 2014)44

Portugal

blaCTX-M-15

blaSHV-12

blaSHV-106

blaSHV-28

blaSHV-55

blaSHV-2

blaSHV-5

Urine
Bloodstream

Exudate
Sputum

(Rodrigues et al. 2014)45

Sweden
blaKPC

blaNDM-1

Urine
Respiratory tract (Giske et al. 2012)43

1*Number of times the gene was identified.
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In  Asia  and  Oceania,  41  different  resistance  gene  types
have  been  identified  in  the  literature.  Of  these,  the  greatest
diversity  occurred  in  China,  where  14  of  the  41  genes  were
described, corresponding to 41% of the total of related genes in
Table 2. The variety of genes in China can be justified by its
high population density, associated with intense migrations.

The  second  country  with  the  greatest  diversity  of  genes
was Israel (12 different genes), followed by Turkey (11 genes)
and Iran (10 genes). The lowest variety of β-lactam resistance
genes  occurred  in  Pakistan  (2  genes),  according  to  data  in

Table  2.  Despite  the  lower  diversity,  the  genes  identified  in
Pakistan,  blaKPC,  and  blaNDM-1,  are  of  great  importance  for
tracking the control of microbial resistance. The first gene is
characterized by its wide plasmodial spread, and the second has
broad  relationships  with  the  globalization  and  population
mobility [63, 64]. The blaNDM-1 gene was first identified in 2009
in a Swedish patient of Indian origin, who acquired a urinary
tract  infection  in  New  Delhi,  caused  by  a  strain  of  K.
pneumoniae that showed resistance to β-lactam antibiotics [64,
65].

Table 2. Association between resistance genes to β-lactams, geographical areas of occurrence and clinical isolates in Asia and
Oceania.

Asia and Oceania

Country
Genes Isolated

References
(N. reports)* (N. reports)*

China

blaCMY-2 Bloodstream (Giske et al. 2012) [43]
blaCTX-M Urine (2) (Ginn et al. 2014) [51]
blaCTX-M-1 Respiratory tract (Qi et al. 2015) [52]
blaCTX-M-15   
blaCTX-M-9   

blaDHA   
blaIMP-4   
blaKPC   
blaKPC-2   
blaNDM-1   
blaOXA-10   
blaSHV-12   
blaSHV-5   
blaTEM   

Israel

blaCMY-2 Swab retal (Leavitt et al. 2007) [53]
blaCTX-M-10 Urine (Baraniak et al. 2013) [58]
blaCTX-M-14 Body fluids  
blaCTX-M-2 Wounds  
blaCTX-M-39 Catheter tips  
blaKPC-2 Bloodstream  
blaKPC-3 Respiratory tracts  
blaOXA-4   
blaSHV-12   
blaSHV-27   
blaSHV-5   
blaTEM-1   
blaTEM-3   

India

blaNDM-1 SENTRY

(Castanheira et al. 2011) [54]
blaOXA-181 Antimicrobial
blaVIM-5 Surveillance Program

 (hospital patients)
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Asia and Oceania

Country
Genes Isolated

References
(N. reports)* (N. reports)*

Singapore

blaCMY-2 Bloodstream

(Ginn et al. 2014) [51]

blaCTX-M-1 Urine
blaCTX-M-9  

blaDHA  
blaSHV-12  
blaSHV-5  
blaTEM  

Australia

blaCTX-M-3

Bloodstream (Paterson et al. 2003) [55]blaSHV-2

blaTEM-1B

Turkey

blaCTX-M-2(2) Bloodstream (4) (Paterson et al. 2003) [55]
blaCTX-M-15 Urine (3) (Bali et al. 2010) [56]

blaPER-1 Sputum (Carrer et al. 2010) [57]
blaSHV-2 (2) Wound (3)  
blaSHV-5 (2) Abscesses  
blaSHV-12 (3) Catheter (3)  

blaTEM-1B Peritoneum fluid  
blaTEM-1 (2) Cerebrospinal fluid  

blaTEM-2 Endotracheal aspirate (2)  
blaOXA-48 Pus (2)  
blaOXA-9 Ascites (2)  
blaOXA-1   

Taiwan

blaCTX-M-14 Nationwide

(Ling Ma et al. 2009) [58]

blaCTX-M-15 surveillance
blaCTX-M-3 program
blaSHV-1  
blaSHV-11  
blaSHV-12  
blaTEM-31  

Iran

blaCTX-M Abscess (Nasehi et al. 2010) [59]
blaCTX-M-15 Abdominal exudates (Feizabadi et al. 2010) [60]

blaPER Bloodstream (2)  
blaSHV Bronchial  
blaSHV-1 Eyes exudates  
blaSHV-12 Sputum  
blaSHV-31 Stool  
blaTEM Trachea  
blaTEM-1 Umbilical exudates  
blaTEM-79 Urine (2)  

 Wound (2)  

Lebanon

blaCTX-M-15

Stool sample (Tokajian et al. 2015 [62])
blaOXA-1

blaSHV-11

blaTEM-1b

Pakistan

blaKPC-2 Pus

(Sattar et al. 2016) [61]
blaNDM-1 Urine

 Catheter tip
 Sputum
 Wound

1*Number of times the gene was identified.
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Of  the  isolates  of  K.  pneumoniae  from  Singapore,  the
occurrence of blaCTX type genes predominated, with the blaCTX-

M-1 group being more numerous than the others. Literature data
report  transport  of  methylase  genes  in  isolated  MDR  K.
pneumoniae strains in Chinese hospitals [52]. In most countries
of Asia and Oceania, the blaCTX-M gene, in particular, blaCTX-M-15,
was detected in K. pneumoniae, as shown in Table 2. A study
published in 2015 reported, for the first time, the isolation of K.
pneumoniae  CTX-M-15,  SHV-11,  and  KPC  belonging  to
ST336 in Lebanon [62]. The contributors to the dissemination
of the blaCTX-M-15 gene highlight the clonal complex 17, among
them  ST336  [45]  is  related  to  the  presence  of  this  gene  in
clinical isolates in several countries of the world. In the present
study, the occurrence of the blaCTX-M-15  gene is reported in all
continents evaluated, except in the African continent, revealing
its endemicity and, highlighting the dissemination of this gene
at  a  global  level  through  human  mobility.  This  clone  was
isolated for the first time from a patient (nurse), 62 years old,
with  an  abdominal  tumor  and  who  had  recurrent  urinary
infections.  The ST336 epidemic clone belongs to CG17, and
studies  revealed  the  prevalence  of  this  strain  in  France,
Germany,  Italy,  USA  and  Greece  [38,  66]

In  this  study,  K.  pneumoniae  with  the  presence  of  the
blaKPC  gene  was  isolated  in  all  the  evaluated  continents,  as
described  in  Tables  1,  2,  3  and  4.  Although  it  occurs  in  all
continents  evaluated,  the  blaKPC-2  type  gene  was  more
prominent in the Asian and American continents (Tables 2 and
3),  and  is  described  as  the  second  most  frequent  gene.  The
most prevalent β-lactamase in the family Enterobacteriaceae is
the type of KPC, which was found in Klebsiella pneumoniae,
especially in the United States, Asia, United Kingdom, Israel
and Europe [65]. The propagation of the blaKPC  gene to other
countries  is  associated  with  cases  imported  from  countries
where they are endemic [66]. Besides, population mobility is
recognized as a major factor in the spread of microorganisms
resistant  to  antimicrobial  drugs.  Thus,  the  emergence  of  K.
pneumoniae producing blaKPC in the United States in 2001 may
be associated with the onset of travel-related outbreaks in other
countries [63].

In the literature, the first identification of the blaOXA-48 gene

in  a  K.  pneumoniae  isolate  occurred  in  Istanbul,  Turkey,  in
2001,  since  then  the  β-lactamase  OXA-48  has  become  an
important  carbapenemase  associated  with  the  Entero-
bacteriaceae  family  in  Europe,  North  Africa,  and  Asia  [35,
72].

In  the  Americas,  the  highest  diversity  of  β-lactam
resistance  genes  occurred  in  Brazil,  where  12  of  the  25
different  types  of  genes  identified  on  the  continent  were
reported,  representing  48% of  the  total  genes  present  in  this
continent  (Table  3).  Secondly,  in  the  diversity  of  resistance
genes, the United States of America (USA) presented 10 of the
25  genes  identified;  followed  by  Canada  (9  different  genes)
and Argentina (6 different genes). The lowest resistance gene
diversity occurred in Mexico (3 different genes), according to
data  described  in  Table  3.  The  smallest  variety  of  genes  in
Mexico can be justified by the low number of publications on
the subject in this country.

The occurrence of β-lactamase gene diversity produced by
K.  pneumoniae  may  be  closely  related  to  the  variety  of
antimicrobials  used  in  the  treatment  of  infection  over  the
decades.  With  the  evolution  of  antimicrobial  resistance  in
bacteria,  it  is  necessary  to  continually  re-evaluate  the
laboratory detection of ESBLs and potential treatment options
for organisms that produce ESBLs [1].

Among  the  resistance  genes  identified  in  the  American
continent, blaCTX-M-2, blaSHV-1, blaSHV-5, and blaSHV-2 were isolated
from K. pneumoniae in 60% of the American countries listed in
this  study.  The  genes  blaCTX-M-15,  blaCTX-M-1,  blaSHV-11,  blaSHV-12,
blaTEM-1, blaTEM-10 and blaKPC-2 were the second most frequent in
the Americas, being found in 40% (Table 3).

TEM-10  was  ESBL type  TEM which  is  most  frequently
detected  in  K.  pneumoniae  isolates,  being  found  in  different
geographic regions (United States,  South Africa,  and Argen-
tina).  The identification of  genes encoding the production of
TEM-10 β-lactamase isolated from K. pneumoniae  in Argen-
tina in 2003 represented the first report of ESBL-type TEM-10
in South America [55].  In  Argentina,  most  ESBLs belong to
the CTX-M class, referring to a growing family of ESBLs that
shares  a  single  phenotype  that  confers  in  vitro  resistance  to
cefotaxime, ceftriaxone and many times to cefepime [74].

Table  3.  Association  between  genes  of  resistance  to  β-lactams,  geographical  areas  of  occurrence  and  clinical  isolates,  in
American continent.

America

Country
Genes                  Isolated

References
(N. reports)*                  (N. reports)*

Argentina

blaTEM-10                  Bloodstream (2) (Paterson et al. 2003) [55]
blaSHV-5                  Surgical site (Pasteran et al. 2008) [67]
blaSHV-2   
blaTEM-12   
blaCTX-M-2   
blaKPC-2   



30   The Open Infectious Diseases Journal, 2019, Volume 11 da Silva et al.

Brazil

blaKPC-2 (2) Bloodstream (3) (Peirano et al.2009) [68]
blaSHV-1 Urine (3) (Pereira et al. 2013) [69]
blaSHV-11 Abdominal fluid (Tollentino et al. 2011) [70]

blaSHV-12 (2) Respiratory tract secretion (Andrade et al. 2014) [48]
blaSHV-31 Tracheal secretion (2)  
blaSHV-38 Venous catheter  

blaCTX-M-2 (2)   
blaCTX-M-15   
blaOXA-9   

blaTEM-1(2)   
blaCTX-M-1   
blaCTX-M-8   

   

Canada

blaCTX-M-2 Bloodstream

(Denisuik et al. 2013) [71]

blaSHV-11 Urine
blaCTX-M-3 Respiratory tract
blaCTX-M-14 Secretions
blaSHV-1  
blaTEM-1  

blaCTX-M-15  
blaOXA-1  
blaSHV-2  

Mexico

blaSHV-1 Bloodstream
(Miranda et al. 2004) [73]blaSHV-2 Cerebrospinal fluid

blaSHV-5  

United States

blaCTX-M-1 Bloodstream (Ginn et al. 2014) [51]
blaCTX-M-9 Urine (Mathers et al. 2013) [72]

blaSHV Perirectal swab (2)  
blaSHV-5 Fluid from abdominal drain  
blaSHV-12   
blaTEM-10   

blaTEM (2)   
blaOXA-10   
blaOXA-48   
blaOXA-181   

1*Number of times the gene was identified.

In Brazil, the first reported case of KPC occurred in 2009.
Data  from  a  survey  published  in  2005  pointed  out  that  the
number of ESBL positive strains is increasing worldwide from
30%  to  60%  of  strains  of  Klebsiella  [37].  A  major  concern
emerged  in  Brazil  after  the  isolation  and  identification  of
Klebsiella pneumoniae  with concomitant expression of MBL
IMP-1  and  ESBL  CTX-M,  since  the  production  of  these
enzymes  together  gives  the  microorganism  resistance  to  all
antibiotics available for treatment, including carbapenems [78].
A study on the antimicrobial resistance of Klebsiella  spp., in
Brazil, reported the trend of resistance growth in most of the
antibiotics  tested,  indicating  the  need  for  new  studies  to
monitor both the evolution of resistance and the emergence of
new  resistance  mechanisms.  The  rapid  spread  of  ESBL-
producing K. pneumoniae is a major clinical and public health
concern. These broad-spectrum β-lactamases are increasing in
new  locations  around  the  world,  indicating  this  to  be  a
continuous  process  [79].

The literature data are still scarce in reporting the problem
of ESBLs produced by K. pneumoniae in Africa, especially in
sub-Saharan Africa [65, 80]. In the present study, the presence
of  K.  pneumoniae  presenting  blaNDM-1  resistance  gene,  as
described  in  (Table  4),  was  identified  in  Kenya  and  South
Africa.  NDM-1  is  a  type  of  MBL  whose  denomination  is
related  to  the  city  of  origin,  being  a  common practice  in  the
case  of  transferable  MBLs  [81].  Isolates  from  the
Enterobacteriaceae  family  harboring  the  blaNDM-1  gene  are
responsible for causing a variety of infections including urinary
tract  infections,  septicemia,  pulmonary  infections,  diarrhea,
peritonitis,  device-associated  infections,  and  soft  tissue
infections [82]. The blaNDM-1 gene is a genetic element found in
different  plasmids.  This  gene  is  characterized  by  a  large
capacity of duplication migrating from bacterium to bacterium,
which explains  its  rapid  dissemination [64].  Also,  blaNDM-1  is
easily  disseminated  between  different  bacterial  species  by
lateral  transfer.  These  characteristics  make  globalization  a

(Table 3) contd.....
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favorable aspect of gene dissemination, where travel represents
a high risk of a global pandemic among Enterobacteriaceae.
Since these plasmids also harbor genes that confer resistance to
almost  all  antibiotics,  making rapid  their  spread in  clinically
relevant  bacteria  a  serious  threat  to  therapy  [64,  81].  The
results  of  the  present  study  report  the  occurrence  of  the  K.
pneumoniae isolated blaNDM-1 gene in all continents, except in
the Americas (Table 3).

Although the blaNDM-1 gene isolated from K. pneumoniae in
the  American  continent  was  not  related  to  the  present  study
(because the articles found did not meet the inclusion criteria),
a study identified the first isolate of this gene in South America
[83]. However, data from the literature mainly demonstrate the
presence  of  the  gene  in  the  Americas  isolated  from  other
enterobacteria  other  than  K.  pneumoniae.  This  occurrence
demonstrates  the  ease  of  dissemination  of  this  gene  among
different bacterial species by lateral transfer, especially in the
Enterobacteriaceae family, as previously described [84].

The propagation of NDM-1 shows some problems related
to  the  occurrence  of  MBLs,  which  include:  the  absence  of  a

routine  standardized  phenotypic  test  for  MBL  detection;  the
consequent  high  prevalence  of  unrecognized  asymptomatic
carriers, allowing international dissemination of these bacteria;
the  scarcity  of  effective  antibiotics  available  today;  and  the
possibility  of  their  spread  in  many  different  gram-negative
bacteria  [81].  In  addition  to  NDM-1  β-lactamase,  other
resistance genes have been identified in South Africa, namely:
blaSHV-5, blaSHV-2, blaTEM-10, blaTEM12, blaCTX-M-2 and blaKPC-2, as
described  in  (Table  4).  In  2012,  the  occurrence  of  K.
pneumoniae  in  South  Africa  with  reduced  susceptibility  to
carbapenems due to ESBL CTX-M was reported. In this study,
the  blaCTX-M-2  gene  was  identified  in  South  Africa  [55,  76].
However, there was no isolation in Kenya (Table 4), as well as
other types of CTX-M, originating from K. pneumoniae were
not reported.

4. CONCLUSION

The  content  of  the  present  study  characterizes  the
relevance/importance of epidemiological knowledge   related
to mechanisms of resistance of β-lactam antibiotics   associated

Table 4. Association between genes of resistance to β-lactams, geographical areas of occurrence and clinical isolates in Africa.

Africa

Country    Genes
   (N. reports)*

Isolated
(N. reports)* References

Kenya blaNDM-1
Urine

Urethral pus (Poirel et al. 2011) [75]

South Africa

blaTEM-10

blaSHV-5

blaSHV-2

blaTEM-12

blaCTX-M-2

blaNDM-1

blaKPC-2

Bloodstream
Urine

Sputum

(Paterson et al. 2003) [55]
(Brink et al. 2012) [76]

Tanzania

blaCTX-M-15

blaTEM-104

blaSHV-11

blaTEM-176

Bloodstream
Wound swab

Urine
Pus

(Mshana et al. 2013) [77]

1*Number of times the gene was identified.

with  the  microorganism  Klebsiella  pneumoniae  from  the
analysis  of  scientific  production.  One  of  the  results  of  great
importance in this study is the coexistence of different classes
of  β-lactamases  in  the  same  strain,  representing  not  only  a
therapeutic challenge but also a challenge in the diagnosis of
infectious  disease.  Among  the  microbial  resistance  genes
originating  from K.  pneumoniae  and  identified  in  this  study,
blaSHV-12 – which codes one of the most prevalent ESBLs - was
the  most  frequent  in  Americas,  Europe,  and  Asia,  except  in
Africa. Otherwise, blaCTX-M-2 and blaSHV-5 genes, the second most
reported,  were  found  in  all  continents,  characterizing  their
cosmopolitan  distribution.  The  highest  genetic  diversity  was
observed in Asian and Oceania continents, where 41 different
types of genes were reported. Additionally, the verification of
resistance  genes  shows  a  variation  over  time  and  location,
which highlights the importance of evaluating the mechanisms
or  strategies  by  which  these  variations  occur.  Finally,
understanding the occurrence and distribution of  these genes

may generate possibilities of future interference in this process
with the production of new drugs which are more efficient and
specific,  thereby  providing  results  that  allow  assisting  the
health  team  in  the  most  appropriate  therapy.
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