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Abstract: The objective of this research is to develop a procedure that will solve, contingent on a necessary and sufficient 

optimality condition, the planar k-centra single facility location problem with Euclidean distances. The planar k-centra lo-

cation problem seeks to find a location that minimizes the sum of the Euclidean distances to the k furthest existing facili-

ties. The intrigue herein lies in the inability to define the k furthest away a priori of determining the associated median lo-

cation. Hence, an iterative procedure is developed that can lead to optimal solutions but is subject to degeneracy. Results 

suggest that this degeneracy is instantiation specific to the k-centra location problem. 

INTRODUCTION 

The objective of this study is to solve the planar k-centra 
single facility problem with Euclidean distances. The prob-
lem statement is to locate a single service point that mini-
mizes the sum of the distances to the k-farthest demand 
points out of a set of given points. A k-centra problem is a 
location analysis problem, which encloses attributes from 
both the center as well as the median approaches. However, 
this is not a linear combination. In a k-centra problem, a set 
value of k is predefined and is used in the evaluation. If k = 2 
(or possibly 3) then the corresponding problem becomes the 
associated 1-center problem and when k = n the correspond-
ing problem becomes the associated 1-median problem, thus 
enclosing both approaches. It also provides the decision 
maker with a more flexible tool. A real life example for the 
k-centra problem could be the location of a warehouse to 
satisfy distant customers. The advantage here over the mini-
max (center) solution for a similar problem is that minimax 
solutions are governed by one or two outlier locations. So, 
for example, in the case of an isolated unit located a signifi-
cant distance from, say, a cluster formation of other units, 
the minimax problem applied to service all of the units is 
reduced to the minimization of the distance of the one par-
ticular unit. The k-centra location problem, on the other 
hand, considers the k largest distances thus encompassing 
more of the available data before deciding on the solution.  

PROPOSED APPROACH 

The solution procedure proposed herein is a step-by-step 
methodology that incorporates Weiszfeld’s algorithm [1]. 
Starting with the minimax location solution, the distance 
from the radius of the solution would be reduced until k 
points lie outside the circle and (n – k) points lie inside the 
circle as demonstrated in Fig. (1) for k =12. Then,  
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Weiszfeld’s algorithm is applied to the k points outside the 
circle. The solution is then tested for optimality, and if the 
original k points are still the k furthest away from the median 
location, the solution is optimal. If not, this procedure is re-
peated again until either optimality or degeneracy is ob-
tained. This research also proposes ways for dealing with 
degenerate problem instantiations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (1). Circle containing (n – k) existing locations. 

EXAMPLE PROBLEM TYPES 

Three example problems, each of a different type are 
evaluated in this study to help validate the model as well as 
to show the efficacy of the approach. The problems were 
derived from examples in real life scenarios. The objective 
function remains the same for all the example problems, 
which is to locate a single service facility to best serve the k 
furthest away customers. The first problem considered is a 
typical unplanned city problem with random existing cus-
tomer locations as shown in Fig. (2). 

The next example problem depicted in Fig. (3) considers 
is a planned layout where customers are located in the annu-
lar region surrounding a central facility. The central facility 
could be a historic landmark or a city center. 

Minimax loca-

tion 
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Fig. (3). An annular layout problem. 

 
The final example considered herein is one where cus-

tomer settlements are bunched together in isolated clusters 
all around the city. This example, depicted in Fig. (4) below, 
holds well in an industrial city where the workforce resides 
in the few available residential areas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (4). A problem with location clusters. 
 

ORGANIZATION OF STUDY 

The organization of this research is as follows. The next 
section provides a literature review on citations specific to 
the k-centra location problem. The third section describes the 

methodology used to address the k-centra location problem. 
The fourth section concludes this paper with a brief sum-
mary as well as highlighting some open avenues for future 
research. 

LITERATURE REVIEW 

To wit, no research exists on a solution to the planar k-
centra location problem. Indeed, it was this identified gap in 
the literature that led (at least in part) to this undertaking. 
Hence, this facility location literature review is relatively 
brief and will only address citations related to the k-centra 
location problem. For a large taxonomy and literature review 
on facility location in general, the reader is referred to Bran-
deau and Chiu [2]. Francis, McGinnis, and White [3] pre-
sented a survey paper in location analysis, which defined 
four classes of location problems and described algorithms to 
optimize them. For a comprehensive taxonomy of location 
science in general the reader is referred to Drezner and Ha-
macher [4]. For a more recent review of the facility location 
landscape, see Hale and Moberg [5]. 

Halpern [6] first introduced the “cent-dian” model as a 
parametric solution concept based on the bicriteria cen-
ter/median model. Halpern modeled the problem in such a 
way that the inherent objective function characteristics of 
both the problems are considered while solving. The goal 
was to find an balance between efficiency (least-cost) and 
equity (worst-case). However, this particular method can 
sometimes fail to provide a solution to a discrete location 
problem mostly due to the limitations involved with direct 
combinations of two different functions. 

In 2008, Drezner and Nickel [7] investigated a related 
problem in the ordered 1-median problem on a plane. 
Therein the authors present a novel and ingenious big-
triangle/small-triangle approach. 

Hansen, Labbe, and Thisse [8] introduced a variation of 
the cent-dian problem in the generalized center problem, 
which minimizes the difference between the maximum dis-
tance and the average distance. This model can be extended 
to formulate solutions for multiple facility location problems 
on a plane as well as on a network. This model can also be 
applied to discrete location problems.  

To wit, the k-centra location problem was first formu-
lated by Slater [9] in a regional academic conference pertain-
ing to graph theory. The k-centra model combines both the 
center as well as the median concepts by minimization of the 
sum of the k largest distances. If k = 2 the model reduces to a 
standard center problem while with k = n it becomes a stan-
dard median problem. Slater’s work concentrated solely on 
the single facility location problem on a tree graph. 

Peeters [10] studied the k-centrum model and introduced 

a full classification of the k-centrum criteria and some solu-

tion concepts for network based problems. He proposed two 
different variations on the median and the center functions 

each. The functions considered were the upper k-median 

where the sum of the k largest distances are minimized, 
lower k-median where the sum of the k smallest distances are 

minimized, upper k-center where the k largest distances are 

minimized, and lower k-center where the k smallest distances 
are minimized.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (2). An unplanned, random problem. 
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The k-centrum model is generally reserved for un-
weighted problems. However, significant research has been 
performed to show that satisfying the above criteria is not 
always necessary. Recently, Tamir [11] solved a weighted 
multiple facility k-centrum problem on paths and tree graphs 
using simple polynomial time algorithms. In this method, 
weights are assigned to all the distances from the new loca-
tion to the existing locations and the distances are scaled 
accordingly. 

Ogryczak and Zawadski [12] first introduced the condi-
tional median method, which is an extension of the k-
centrum concept when applied to weighted problems. Their 
paper proposes that a k-centrum problem can be evaluated 
for optimality by just considering only that specific part of 
the demand, which is in direct proportion to the existing 
largest distances. Thus this concept solves the objective 
function for the entire portion of the largest distances for a 
specified portion of the demand. 

PROPOSED METHODOLOGY 

The proposed methodology incorporates the well known 
Weiszfeld’s algorithm. Weiszfeld’s algorithm iteratively 
solves for the minisum location to the Weber problem as 
shown in (1) below. 

Minimize ( ) ( ) ( )+=
22

, iii byaxwyxf                      (1) 

The solution methodology proposed in this research is an 
iterative heuristic method utilizing Weiszfeld’s algorithm. 
The proposed solution steps are delineated below: 

1. Find the minimax solution for all the existing cus-
tomer locations. This minimax solution is used as 
a starting point. 

2. The next step is to find the distances of all existing 
locations from the minimax solution. The top k dis-
tances are considered to find the k farthest location 
points. 

3. The next step is to use the minisum approach to 
evaluate the obtained k farthest points. Weiszfeld’s 
algorithm is applied to solve the minisum aspect. 
After the first iteration, a new location point is ob-
tained. 

4. The next step is to check whether the same k points 
still are the points lying farthest away. If so, the 
solution obtained is the optimal k-centra location. 
This is a necessary and sufficient optimality condi-
tion. If not, reiterate by considering the new k-
largest distances and the corresponding existing 
locations.  

The procedure is illustrated with a flowchart as shown in 
Fig. (5). Note that the algorithm may become degenerate and 
pivot between two or more non-optimal solution locations. 
This happens when the solution comes up with a different set 
of k points and this keeps repeating. Generally, it is observed 
that this degeneracy is due to a one or a few points being far 
away from the initial set of k points. The proposed solution is 
a semi-optimal solution, which neglects the coordinates of 
the rogue point(s). 

As noted above, this approach was applied to solve three 
small examples problems each of a different type influenced 

by real life problems. Excel was used as a tool to solve the 
problems manually. All of the example problems were then 
also solved in MATLAB

©
 to verify obtained solutions. 

REAL LIFE LOCATION SCENARIOS 

Three small location problems were solved to help vali-
date this research using the k-centra methodology delineated 
in the previous section. The analogy used was real life are 
planning problems in cities. There are numerous examples of 
planned and unplanned city layouts. Older cities generally 
fall in the unplanned category while newer cities are me-
thodically planned depending on population density, topog-
raphical features and business sectors. 

UNPLANNED PROBLEM: RANDOM LOCATIONS 

This is the most common layout seen in most cities all 
over the world. A single-facility planar location problem 
associated with such a layout presents one of the most com-
plex and time-consuming problems in the field of location 
analysis. However, using the k-centra approach discussed in 
this thesis, only a selective few points are evaluated out of all 
the existing locations. Thus the computing time as well as 
complexity of the problem is reduced. The problem consid-
ered is a 15 point problem as shown in Table 1. The problem 
is evaluated for different values of k (k = 1 to 15). The flow-
chart as shown in Fig. (5) is used as the solution guideline 
for evaluating the problem. The problem is first evaluated in 
Excel using manual iterations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (5). Flowchart of k-centra solution approach.  
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The graphical representation is shown in Fig. (6). The 
aim is to locate a single service facility in the plane so as to 
minimize the sum of the distances to the k farthest points. 
The data required for this problem includes the coordinates 
for existing customer locations and a value for k. Reiterating, 
a k value could depend on the nature of the problem or it 
could be based on logical reasoning and demand flow. 

Table 1. Unplanned Random Problem Coordinates 

Point Number x y 

1 2 2 

2 2 4 

3 5 2 

4 3.5 4 

5 7 4 

6 9.5 4.5 

7 10.5 2 

8 11.5 5.5 

9 9.5 8 

10 7 6.5 

11 5 6.5 

12 2 9 

13 5.5 8.5 

14 8.5 9 

15 11 9.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (6). Unplanned random problem coordinates. 

The first step in the methodology is to obtain the mini-
max location solution. Two different methods were used to 
obtain the minimax solution. The first method is a graphical 
solution based on the well known Elzinga-Hearn algorithm. 
The Elzinga-Hearn algorithm is a graphical method of solv-
ing the minimax objective function for a location problem. 
The method involved is the smallest circle covering method 
where the objective is to find the smallest possible circle 
which encompasses all the existing locations in the plane. 

The minimax solution is obtained at x = 6.5 and y = 5.75. 
Excel’s solver was also used to obtain the minimax solution 
and verify the results obtained by using the Elzinga-Hearn 
algorithm. The next step is to find the distance between the 
calculated minimax solution and the all the other existing 
location points. This provides the necessary starting point for 
the k-centra algorithm. The distances are then sorted in de-
scending order as shown in Table 2. The largest k distances 
are then considered for the particular k-centra problem of 
interest. 

Table 2. Distances from Minimax Center Location 

Point Number Distance 

1 5.857687 

15 5.857687 

12 5.550901 

7 5.482928 

8 5.006246 

2 4.828302 

3 4.038874 

14 3.816084 

9 3.75 

4 3.473111 

6 3.25 

13 2.926175 

5 1.820027 

11 1.677051 

10 0.901388 

 

For example, consider k = 6. Points P1, P15, P12, P7, P8 

and P2 are the points farthest away from the minimax solu-

tion (6.5, 5.75). Using the minimax solution as the starting 

solution, Weiszfeld’s algorithm is then used to solve for the 

minisum location for these 6 points. This solution is found to 

be at x = 7.8638 and y = 6.2836 with an objective function 
value of 32.1273. 

It is further observed that these same six points are in-

deed the six furthest away from the newly obtained minisum 

location. In this case, this solution is optimal for k = 6. Thus 

the 6-centra solution for this problem lies at x = 7.86 and  

y = 6.28. However, it was noticed that for k = 5, the algo-

rithm proceeds into a degenerate loop and the solution points 

keep jumping from one solution space to the other. This de-
generacy is investigated more fully below. 

Fig. (7) shows a scatter plot depicting the minimax solu-

tion as the diamond and the 6-centra solution as the asterisk. 

Notice the proximity between the two solutions. It is prem-

ised that in real life applications, both solutions could be 
tendered as viable locations. 

2, 2

2, 4

5, 2

3.5, 4 7, 4
9.5, 4.5

10.5, 2

11.5, 5.5

9.5, 8

7, 6.55, 6.5

2, 9
5.5, 8.5

8.5, 9
11, 9.5

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14

x Coordinate

y
 C

o
o

rd
in

a
te



46    The Open Industrial and Manufacturing Engineering Journal, 2008, Volume 1 Kotian et al. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (7). k = 6, Unplanned city, random problem. 

The solution plot for k = 5 is shown in Fig. (8). This is an 
example of a degenerate solution. The (same) minimax solu-
tion is shown with a diamond and the two, degenerate 5-
centra “solutions” are shown with asterisks. The 5-centra 
solution alternates between these two points, (10.1, 6.75) and 
(3, 4.15). To resolve this matter, the objective function val-
ues can be calculated for each of the obtained solution points 
and the lowest objective function value obtained could be 
considered as the k-centra solution. This matter could also be 
resolved by including other parameters (e.g., the weights of 
the surrounding customer locations) to decide upon the ap-
propriate location for the service facility. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. (8). k = 5, Unplanned city, random problem. 

Indeed, the entire set of solutions obtained by using the k-
centra methodology to solve the unplanned city, random 
location problem using Excel for all values of k are displayed 
in Table 3. 

It is observed (and interesting) that for all even values of 
k (k = 2, 4, 6, 8, 10, 12, and 14) as well as for k = n = 15, we 
get a singular optimal k-centra solution. An optimal k-centra 
solution implies that the point obtained after the first itera-
tion still has the original k points as the k points lying far-
thest away. For all other k values, the problem becomes de-
generate and the algorithm falls into a loop. This means that 

that the solution point obtained after all the iterations does 
not have the same k points lying farthest away as it started 
with. The solution point jumps around between 2 or 3 possi-
ble solution points never obtaining optimality. 

PLANNED PROBLEM: ANNULAR LOCATIONS 

This problem is analogous to a planned city where cus-
tomers are located around a central city landmark, be it a 
school, a big employer, or a tourist attraction. The example 
problem considered here is again a 15-point problem and the 
problem is again solved for k = 1 to k = 15. The existing lo-
cations are graphically represented in Fig. (9) and listed in 
Table 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (9). Annular layout problem coordinates. 

Table 3. Excel solutions: Unplanned City, Random Problem 

Method x y Comments 

Minimax 6.5 5.75 Optimal 

k-centra (k = 2) 6.5 5.75 Optimal 

k-centra (k = 3) 2.94573 4.87253 Degenerate 

k-centra (k = 4) 6.38474 5.61015 Optimal 

k-centra (k = 5) 10.0325 7.00555 Degenerate 

k-centra (k = 6) 6.48704 5.29013 Optimal 

k-centra (k = 7) 4.94579 4.44125 Degenerate 

k-centra (k = 8) 6.58535 5.38736 Optimal 

k-centra (k = 9) 6.99721 5.75654 Degenerate 

k-centra (k = 10) 6.53427 5.52402 Optimal 

k-centra (k = 11) 6.90182 5.39711 Degenerate 

k-centra (k = 12) 6.73221 5.77254 Optimal 

k-centra (k = 13) 6.77582 5.48388 Degenerate 

k-centra (k = 14) 6.79665 5.55367 Optimal 

Weiszfeld’s (k = n) 6.74856 5.95321 Optimal 
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Table 4. Annular Layout Problem Coordinates 

Point Number x y 

1 2 10 

2 3 6 

3 7 4 

4 11 4 

5 15 11 

6 13 16 

7 8 18 

8 4 15 

9 7 10 

10 8 9 

11 10.5 11.5 

12 9 10.5 

13 10 12 

14 8 12 

15 8 11.5 

 

The tabular results for the annular location problem 
solved in Excel are shown in Table 5 below. 

Table 5. Excel Solutions: Annular Location Problem 

Method x y Comments 

Minimax 8.45 10.8 Optimal 

k-centra (k = 2) 6.5 5.75 Degenerate 

k-centra (k = 3) 7.33482 9.35265 Degenerate 

k-centra (k = 4) 7.24849 7.97259 Degenerate 

k-centra (k = 5) 8.43329 9.62622 Degenerate 

k-centra (k = 6) 9.6051 9.87137 Degenerate 

k-centra (k = 7) 8.44544 9.89098 Degenerate 

k-centra (k = 8) 7.8258 10.6031 Optimal 

k-centra (k = 9) 8.58127 10.8565 Optimal 

k-centra (k = 10) 8.91881 11.1285 Degenerate 

k-centra (k = 11) 8.73425 10.701 Degenerate 

k-centra (k = 12) 8.41566 10.5722 Optimal 

k-centra (k = 13) 8.33592 10.8461 Optimal 

k-centra (k = 14) 8.2086 11.2759 Optimal 

Weiszfeld’s (k = n) 8.4432 11.3161 Optimal 

 

It is observed for this problem that the problem was degener-
ate for k = 2, 3, 4, 5, 6, 7, 10, and 11 and that it converged 
to a singular solution for all other values. 

PLANNED PROBLEM: LOCATION CLUSTERS 

The final example problem considered is a city problem 
with distributed location clusters. This is also a common 
layout for modern cities where the population is located in 
concentrated clusters. The concentrations could be developed 
residential areas or individual housing complexes. The exist-
ing customer locations are listed in Table 6. 

Table 6. Clustered Layout Problem Coordinates 

Point Number x y 

1 2 1 

2 3 4 

3 1 1 

4 1 4 

5 2 3 

6 9 9 

7 10 9 

8 8 10 

9 8 8 

10 10 11 

11 8 1 

12 8 3 

13 9 2 

14 10 3 

15 9 4 

 
The graphical representation for the example clustered 

location problem is depicted in Fig. (10) below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (10). Example of a clustered location problem. 

The tabular results for the clustered location problem 
solved in Excel is shown in Table 7 below. 
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Table 7. Excel Solutions: Clustered Location Problem 

Method x y Comments 

Minimax 5.4900 6.0000 Optimal 

k-centra (k = 2) 5.4955 5.9950 Optimal 

k-centra (k = 3) 4.2528 4.2198 Degenerate 

k-centra (k = 4) 5.2992 3.3207 Degenerate 

k-centra (k = 5) 6.3516 4.5916 Degenerate 

k-centra (k = 6) 7.0189 4.3006 Degenerate 

k-centra (k = 7) 9.4010 7.1000 Degenerate 

k-centra (k = 8) 5.1135 5.8244 Degenerate 

k-centra (k = 9) 6.0876 3.8864 Degenerate 

k-centra (k = 10) 6.2231 5.0577 Optimal 

k-centra (k = 11) 6.7038 5.0001 Degenerate 

k-centra (k = 12) 6.3718 6.6343 Degenerate 

k-centra (k = 13) 6.4110 4.9985 Optimal 

k-centra (k = 14) 6.9987 4.8355 Optimal 

Weiszfeld’s (k = n) 7.3000 4.3569 Optimal 

 
It is again interesting to note that the problems were de-

generate for k = 3, 4, 5, 6, 7, 8, 9, 11, and 12 and converged 
to a singular solution for the other values of k. 

CONCLUSIONS 

This objective of this thesis was to find a unique method 
to solve the planar single-facility k-centra problem with 
Euclidean distances. The method developed uses the iterative 
nature of Weiszfeld’s method to selectively solve the mini-
sum objective function for a set of predefined k-farthest 
away points. Three examples influenced by existing real-life 
location problems were solved manually in Excel and the 
results obtained were verified using a MATLAB code writ-
ten for evaluating such problems. Further experimentation 
was conducted to check the accuracy and the speed of the k-
centra solution as compared to the minisum solution.  

ACCURACY OF THE K-CENTRA  

In this research a k-centra method is proposed as an al-
ternative approach to the minisum method. So, it was neces-
sary to verify the accuracy of the solutions obtained with the 
k-centra approach. Five 15-point and 30-point problems were 
solved each for various values of k and were compared to the 
optimal minisum solution. It can be concluded that for an n-
point problem, the objective function value decreases as k is 
increased from 1 to n. However, this is not a linear decrease. 
For a particular n-point problem, the percent increase from 
optimality drops steadily until k reaches a certain threshold 
percentage of n after which the drop is very gradual until the 
solution reaches complete optimality at k = n. There is a sig-
nificant increase from optimality at lower values of k. Thus, 
the proposed k-centra approach provides the user with a good 

nearly optimal solution, provided the k value is selected ap-
propriately. 

SELECTING THE RIGHT K VALUE 

It is absolutely necessary to select a good k value so that 
solution optimality is not completely sacrificed. A few prob-
lems were evaluated for 1% increase in optimality consider-
ing various values of n to obtain a general idea on selecting 
the right value of k. From the results obtained, it can be con-
cluded that for smaller problems (n < 30), selecting a k value 
between 50% - 60% of n yields a good solution. For bigger 
problems (n > 30), a nearly optimal solution is obtained by 
selecting k between 40% - 50% of n. From the experimenta-
tion, it was also evident that the cutoff value of k (as a per-
cent of n) to obtain 101% of optimality reduces from smaller 
to larger problems. However, after reaching a certain value 
of n, 101% of optimality is consistently obtained in the same 
range (40% - 50% of n).  

COMPUTATION TIME FOR A K-CENTRA PROB-
LEM 

The aim of this thesis was to find a good alternative 
methodology to the minisum method. A good alternative 
method should provide good results preferably using less 
computational time. The proposed k-centra method provides 
the user with a near optimal solution. However, it can be 
concluded that even though there is some reduction in the 
total computational time for the proposed k-centra method as 
compared to the minisum method, the time saved is negligi-
ble. Thus, the proposed k-centra methodology is not signifi-
cantly faster than the traditional minisum method. This trans-
lates into a tradeoff between achieving complete optimality 
and computational time. The negligible reduction in compu-
tation time by using this method does not justify the devia-
tion from optimality.  

FUTURE RESEARCH 

The proposed k-centra method discussed in this thesis has 
its drawbacks in terms of the probability of achieving a sin-
gle optimal solution. Degeneracy is also an inherent problem 
with this particular method. These issues are easily handled 
by adding a few more parameters and constraints to the ob-
jective function. A few examples include addition of weights 
depending on demand, or frequency, terrain conditions, traf-
fic issues and delivery cost considerations can easily negate 
sub-optimality and provide a single feasible solution. 

Certain changes can be made to the proposed methodol-
ogy so as to ensure that the computational time is reduced 
significantly as compared to a minisum method. Changes 
can include a different method to solve the Weiszfeld’s loop, 
different selection criteria for k after every iteration, or per-
haps different software used to evaluate the problem. 

This research considers a single facility location problem. 
This method could be extended to more than a single facility 
problem depending on the size and nature of the problem. 
Another aspect is the consideration of rectilinear distance 
metric. This method can be modified to consider rectilinear 
distances by changing the objective function.  

Finally, the anti k-centra problem is to locate so as to 
maximize the sum of the distances to the k-closest points out 
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of the set of existing locations. Future research in this area 
could also be aimed at weighted or un-weighted instances of 
the anti k-centra problem. 
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