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Abstract: The stability (or instability) of covariance structure does not ensure the stability (or instability) of correlation 

structure. However, these stability problems are usually tested using the same approach. The most common and widely 

used approach is based on likelihood ratio criterion. Unfortunately, its sensitivity is not without limitation, its computa-

tional efficiency is low and it is quite cumbersome when the number of variables is large. To overcome these obstacles in 

monitoring the stability of correlation structure, in this paper we propose a multivariate statistical process control ap-

proach by using vector variance as multivariate dispersion measure. First, we investigate the sampling distribution of vec-

tor variance of standardized variables and then we construct a control chart. Its sensitivity is very promising, its computa-

tional efficiency is high and it is practical even when the number of variables is large. The applicability of the proposed 

method in monitoring the stability of correlation structure in drive rib production process at Indonesian Aerospace Ltd. 

will be presented. 

INTRODUCTION   

The problem of how to test the stability of correlation 
structure is as old as its counterpart, i.e., the problem of test-
ing the covariance structure stability. However, unlike the 
former, the application of the latter in manufacturing indus-
try came first and it is very well accepted by experts in this 
area. It then has been experiencing a remarkable develop-
ment. See, for example, (Alt et al., 1988) [1], (Wierda et al., 
1994) [2], (Sullivan et al., 1996) [3], (Woodall et al., 1999) 
[4], (Montgomery 2001) [5], (Montgomery 2005) [6], 
(Djauhari 2005) [7] and (Sullivan et al., 2007) [8], and the 
references there in, for historical background and its devel-
opment. For an early development of the method for testing 
the stability of covariance structure one can consult the clas-
sical literature such as (Anderson 1958) [9]. 

Concerning the stability of correlation structure, we wit-
ness that only since two decades ago it has been received 
very much attention, especially in economics studies and 
finance industry. See, for example, (Lee 1998) [10] and 
(Tang 1998) [11] who study the stability of correlation struc-
ture among stock returns, (Goetzmann et al., 2002) [12] who 
concern about global market correlation structure, (Annaert 
et al., 2003) [13] who focus their work on the stability of 
covariance and correlation structures based on small sam-
ples, and (Ragea 2003) [14] and (Da Costa Jr. et al., 2005) 
[15] who show that the correlation stability is of vital impor-
tance in market risk management and asset management. See 
also (Anderson 2006) [16] for some tests, (Cooka et al., 
2002) [17] for a study on the stability of correlation matrices 
based on time series data, and (Schott 2007) [18] for a dis-
cussion of the correlation structure stability when samples 
are dependent. 
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 The two stability problems mentioned above are different 
in nature and, using likelihood ratio criterion, it is not diffi-
cult to show that the stability (or instability) of covariance 
structure does not ensure the stability (or instability) of cor-
relation structure. This is a serious limitation of any test con-
structed based on that criterion where covariance determi-
nant is used to measure the dispersion of multivariate data. 
However, if all variables are standardized, the correlation 
structure can be considered as the covariance structure. 
Therefore, we focus our attention on how to handle the limi-
tation of that measure. This is the first main issue of this pa-
per. 

The most commonly used statistical tests in literature to 
test the hypothesis of stability of correlation structure are the 
so-called Box’s M statistic proposed by (Box 1949) [19] and 
Jennrich’s statistic proposed by (Jennrich 1970) [20] which 
can be considered as a corrected Kullback’s statistic. See, for 
example, (Annaert et al., 2003) [13] for the application of 
Box’s M statistic and Jennrich’s statistic in testing that hy-
pothesis. It is important to note that the M statistic involves 
the determinant of correlation matrices while Jennrich’s sta-
tistic needs the inversion of the pooled correlation matrix. 
Furthermore, in practice, it is not rare that the number of 
variables p is large. See, for example, (Werner 2003) [21], 
(Schafer et al., 2005) [22] and (Chilson et al., 2006) [23] for 
further discussion of this case. Consequently, when p is 
large, the computation of the two statistics is quite cumber-
some and tedious. More precisely, by using Cholesky de-
composition, the computational complexity of the determi-
nant of a correlation matrix of size (p p) is of order 

  
O p

3( ) . 
Its inverse is also of that order. This order of complexity, 
which is too high even for a moderate value of p, is another 
limitation of correlation determinant as a measure of multi-
variate dispersion when all variables are standardized. This is 
the second main issue that we want to discuss in the present 
paper. 

In what follows we focus our attention on how to handle 
the limitations of the likelihood ratio criterion-based test 



Monitoring the Stability of Correlation Structure The Open Industrial and Manufacturing Engineering Journal, 2008, Volume 1    9 

which depends on the use of covariance determinant as a 
measure of multivariate dispersion. For this purpose we use 
the notion of vector variance as another measure of multi-
variate dispersion. This measure will enable us to handle the 
case when p is large and, more importantly, to have a better 
understanding on the covariance and correlation structures. 
We then recall our recent result on the properties of vector 
variance presented in (Djauhari 2007) [24]. Based on this 
result, we propose a method based on what we call vector 
variance of standardized variables (VVSV) to monitor the 
stability of correlation structure. As mentioned above, han-
dling voluminous databases or data sets with p large has re-
ceived considerable attention not only in economics and fi-
nance but also in other areas. See again (Werner 2003) [21], 
(Schafer et al., 2005) [22] and (Chilson et al., 2006) [23] for 
the case where the sample size n > p and (Ledoit et al., 2002) 
[25] for n < p. 

Our approach is based on the notions of vec operator and 
commutation matrix, and the concept of multivariate statisti-
cal process control (MSPC). As a multivariate dispersion 
measure, vector variance (VV) is proposed heuristically in 
our recent work (Herwindiati et al., 2007) [26] and analyti-
cally in our other work (Djauhari 2007) [24]. It is derived 
from the notion of vector covariance presented and used in 
(Cleroux 1987) [27], and originally introduced by (Escoufier 
1973) [28] to measure the linear relationship between two 
random vectors. The asymptotic distribution of sample VV is 
investigated using the notations in (Serfling 1980) [29]. Its 
successful application as the stopping rule in FMCD (fast 
minimum covariance determinant) algorithm can be seen in 
(Herwindiati et al., 2007) [26]. It reduces significantly the 
computational complexity of FMCD in data concentration 
step. See (Rousseeuw 1985) [30], (Rousseeuw et al., 1987) 
[31], (Rousseeuw et al., 1999) [32], (Rousseeuw et al., 1999) 
[33], and (Hubert et al., 2005) [34] for in-depth presentations 
and discussions on FMCD.  

A comprehensive discussion on vec operator and commu-
tation matrix can be found, for example, in (Muirhead 1987) 
[35], (Schott 1997) [36], (Schott 2001) [37], and (El Maache 
et al., 1998) [38]. This operator simplifies the study of ran-
dom matrix by means of random vector. Furthermore, in the 
present paper, commutation matrix is used to simplify the 
investigation of its parameters. Finally, the concept of MSPC 
is used to monitor the stability of correlation structure. This 
concept is standard in industry process quality control. Based 
on this concept, by using the approach in (Montgomery 2001 
p. 532) [5] which is represented again in (Montgomery 2005 
p. 511) [6] and by considering correlation matrix as the co-
variance matrix when all variables are standardized, monitor-
ing the stability of correlation structure is equivalent to re-
peated tests of significance of the hypothesis that the process 
correlation matrix is equal to a particular matrix of constants. 
See (Wierda 1994) [2], (Sullivan et al., 1996) [3] and (Woo-
dall et al., 1999) [4] for a general discussion and (Alt et al., 
1988) [1], (Tang et al., 1996a) [39], (Tang et al., 1996b) 
[40], (Khoo et al., 2003) [41], (Khoo et al., 2004) [42], and 
(Djauhari 2005) [7] for monitoring covariance structure.  

This paper is organized as follows. The next section dis-
cusses the notion of VVSV. It is the VV when all variables 
are standardized. In the third section its distributional proper-

ties will be explored. Later on, in the fourth section we pro-
pose a method for monitoring the stability of correlation 
structure based on MSPC. The fifth section will highlight the 
sensitivity of the proposed method as reported in our work 
(Djauhari 2007) [24]. An example with real data on the pro-
duction process of drive rib at Indonesian Aerospace Ltd. 
will be presented in the sixth section and additional remarks 
in the last section will close this presentation. 

VECTOR VARIANCE 

Let X  be a random vector which is a superposition of 

two random vectors 
(1)

X  and 
(2)

X , each of which is of p 

and q dimension. We write X  = 
  

X
(1)

X
(2)( )

t

. Let also, 

( )iμ  = 
  
E X

(i)( )  the mean of 
( )i

X ; i = 1, 2, and ij  = 

  

E X
(i) μ(i)( ) X

( j) μ( j)( )
t

 the covariance matrix of 
( )i

X  

and 
( )j

X ; i, j = 1, 2. Thus, the covariance matrix  of X  is 

equal to the following partitioned matrix 

 = 

 

11 12

21 22

. 

In order to measure the linear relationship between the 

two random vectors 
(1)

X  and 
(2)

X , (Escoufier 1973) [28] 

introduced the quantity ( )12 21Tr . Escoufier then defined it 

as vector covariance of those random vectors. It is the sum of 

all diagonal elements of 
12 21

. Accordingly, he defined 

  

Tr
11

2( )  and 
  

Tr
22

2( )  the vector variance of 
(1)

X  and 
(2)

X , 

respectively. Those who are interested in the formal and rig-

orous discussion on these definitions are suggested to consult 

(Escoufier 1973) [28]. If p = q = 1, vector covariance is sim-

ply the square of classical covariance, and vector variance is 

the square of classical variance.  

In what follows, we focus our attention on vector vari-

ance (VV). Suppose X  is a random vector of p dimension 

and its covariance matrix is . The VV of X  is then equal 

to the sum of square of all elements of . By using vec op-

erator, the VV of the random vector X  can be written as 

  
vec ( )

2

. See (Muirhead 1982) [35], (Schott 1997) [36], 

(Schott 2001) [37] and (El Maache et al., 1998) [38] for the 

details of this operator. In the present paper, we define vector 

variance of standardized variables. Let  Z  be the random 

vector where its k-th component is the standardized form of 

the k-th component of X ; k = 1, 2, … , p. The covariance 

matrix P  of Z  is the correlation matrix of X  and we call 

  
vec P( )

2

 the vector variance of standardized variables 

(VVSV). A more general presentation and discussion on 

vector variance can be found in our recent work (Djauhari 

2007) [24]. See also (Herwindiati et al., 2007) [26] for its 

application in robust estimation of location and scatter. 
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In the rest of the paper we exploit the sample version of 
VVSV and we investigate its sampling distribution. Let X1, 
X2, …, Xn be a random sample of size n drawn from a p-
variate distribution with covariance matrix . The sample 
covariance matrix is  

S  =  

  

1

n 1
X

i
X( )

i=1

n

X
i

X( )
t
 

where X  = 

  

1

n
X

i

i=1

n

 is the sample mean vector. The sample 

correlation matrix is thus R  = 1/ 2 1/ 2
D SD  where D is a 

diagonal matrix; its i-th diagonal element is equal to the i-th 

diagonal element of S. 

VVSV or VV, like correlation determinant or covariance 

determinant (CD) which is also known as generalized vari-

ance (GV), is a multivariate dispersion measure. However, 

the computational complexity of VV or, equivalently, VVSV 

is much lower than that of the latter. The former is of or-

der
  
O p

2( )  while the latter, as mentioned in the previous 

section, is of order 
  
O p

3( ) . See (Djauhari 2007) [24]. This is 

a reason why, in the present paper, we propose VVSV-based 

statistic instead of Box’s M statistic and Jennrich’s statistic. 

It is also due to this advantage that in (Herwindiati et al., 

2007) [26] we use VV to increase the computational effi-

ciency in data concentration step of FMCD algorithm. More 

precisely, we use minimum vector variance (MVV) as the 

stopping rule to substitute the minimum covariance determi-

nant (MCD) which, as mentioned above, has high computa-

tional complexity. However, in that work, our approach is 

more heuristic than analytical. An analytical approach which 

investigates the properties of sample vector variance 

( )
2

vec S  is given in our work (Djauhari 2007) [24]. In that 

work we have showed that this statistic is not only apt for 

large p but also for the condition where the covariance ma-

trix is singular. We have also showed that, when n and p are 

small or when p is large but n is not too large, it is more sen-

sitive than sample CD or, equivalently, sample GV to small 

shift of covariance structure. Their sensitivities are similar to 

large shift when n and p are large. 

Due to those commendable properties of vector variance, 

then we propose to use VVSV when the correlation structure 

stability is of our interest, especially when the database or 

data set is of high dimension. For that purpose, in the next 

section we discuss the distributional properties of sample 

VVSV. 

SAMPLING DISTRIBUTION   

Let Z  be a random vector where its k-th component is 

the standardized form of the k-th component of X ; k = 1, 2, 

… , p. The covariance matrix P  of Z  is the so-called corre-

lation matrix of X  and ( )
2

vec P  is the VVSV. We define 

  
vec R( )

2

 or, equivalently, 
  

Tr R
2( )  the sample VVSV. To 

investigate the asymptotic distribution of 
  
vec R( )

2

 we first 

recall the result given by (Schott 2007) [18]. Let ppK  be the 

commutation matrix of size
  
p

2
p

2 , i.e., 
 
K

pp
 = 

  

N
ij

N
ij
t

j=1

p

i=1

p

 and ijN  is a (p  p) matrix having all 

elements equal 0 except its (i,j)-th element equals 1. Let also 

 
p

 = 

  

e
i
e
i
t

e
i
e
i
t( )

i=1

p

 where 
i

e  is the i-th column of 
 
I

p
. In 

(Schott 2007, p. 1993) [18] the following result concerning 

the asymptotic distribution of 
 
vec R( )  is given. 

Theorem 

Let 
  
X

1
, 

  
X

2
, …, 

n
X  be a random sample drawn from p-

variate normal distribution ( ),pN μ . Then, 

  
n 1 vec R( ) vec P( ){ }

d
  ( )2 0,

p
N  where  

a.  = 
  
2M

p
M

p
 with pM  = 

  

1

2
I

p
2

+ K
pp

; 

b. = 
 
B

t
P P( ) B  with B =

2
p

I  – 
 

I
p

P( ) p
. 

Based on this result, now we investigate the asymptotic 

distribution of sample VVSV. For this purpose, we use the 

following result in (Djauhari 2007) [24]. Let the sequence of 

random vectors { }nX  
p

 c, c be a vector of constants of 

p dimension, and nX   
d

 ( ),pN c . Let also u be a real 

valued function of nX , where u’ exist and ( )0u X'  0 for 

all 0X  in the neighborhood of c. Then, the variable random  

nY = ( )nu X  
d

 
  
N μ

Y
,

Y

2( )  ……......   (1) 

where  
a. Yμ   ( )u c , and  

b. 2

Y   

 

u c( )
X

n

t

u c( )
X

n

.  

The above theorem and the result (1) have a direct con-
sequence which is formulated in the following proposition. 

Proposition 1. If in (1) we define nX  = ( )vec R , then 

( )( ) ( )( ){ }1n u vec R u vec P
d

  
N 0,

2( )  where 
2  

 
( )( ) ( )( )

t

u vec P u vec P

R R
. 
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From this proposition we get the following main result of 
this paper.  

Proposition 2. If in Proposition 1 we define random 

variable ( )( )u vec R  = ( )
2

vec R , then we have  

  

n 1 vec R( )
2

vec P( )
2 d

  
N 0,

2( )  and 2  

  ( )( ) ( )( )4
t

vec P vec P . 

The proof is straight forward because the partial deriva-

tive of 
  
vec R( )

2

 with respect to R at P is equal to 

( )( )2 vec P . This result will be exploited in the next sections 

to monitor the stability of correlation structure based on m 

independent samples. 

PROPOSED MSPC APPROACH 

Suppose m independent samples are available, each of 
which is of size n1, n2,…, and nm and drawn from a p-variate 
normal distribution with positive definite covariance matrix 

1, 2, …, and m. Let iP  be the i-th correlation matrix and 

iR  be its sample version. In this section we discuss the use 
of MSPC approach for testing the stability of correlation 
structure based on these samples.  

We are interested in testing the hypothesis H0: P1 = P2 = 
… = Pm (= say P0) versus H1: Pi  Pj for at least an i  j. In 
this circumstance, Montgomery points out that testing the 
stability of process correlation structure, H0 versus H1, is 
equivalent to a repeated tests of significance of the hypothe-
sis that the process correlation matrix is equal to a particular 
matrix of constants. See (Montgomery 2001, p. 532) [5] and 
(Montgomery 2005, p. 511) [6]. Thus, in practice, that pro-
cedure is customarily represented by means of a control chart 
where its control limits are 

UCL = μ  + / 2.z , and        ..………….. (2) 

LCL = max {0, μ  –  / 2.z } 

with μ  and 2  are given in Proposition 2, and / 2z  is the 

( )1 / 2 -th quantile of the standard normal distribution. 

0P  IS KNOWN  

In this case, the control limits in (2) become, 

UCL = 0μ  + / 2
0.

1

z

n

        ……….……. (3)   

LCL = max {0, 0μ  –  / 2
0.

1

z

n

} 

where  

a.  0μ   = ( )
2

0vec P , and 

b.  2

0  =  ( )( ) ( )( )0 0 04
t

vec P vec P , with 

     0  =  02 p pM M , 0  = ( )0 0 0 0

t
B P P B , and  

     
0B  = 

2
p

I  – 
  

I
p

P
0( ) p .  

If we plot ( )
2

ivec R ; i = 1, 2, … , m, in that chart, ac-

cording to Proposition 2, we conclude that the correlation 

structure is stable if there is no k such that ( )
2

kvec R  is 

outside the interval (LCL, UCL).  

0P  IS UNKNOWN  

In general, 0P  is unknown. In this case, the control limits 

LCL and UCL in (2) must be estimated. If μ̂  and 2
ˆ  are 

the estimators of μ  = ( )
2

0vec P  and 2 , respectively, the 

control chart is then defined by the following estimate of 

control limits (we use the same notation for control limits 

and their estimates) 

UCL = μ̂   + / 2
ˆ.

1

z

n

       ....….…………...... (4) 

LCL = max {0, μ̂   - / 2
ˆ.

1

z

n

} 

We plot ( )
2

ivec R  for all i = 1, 2, … , m in that chart 

and we conclude that the process signals unstable correlation 

structure at sample k if ( )
2

kvec R  is less than LCL or 

greater than UCL.  

In the following sub-section the estimates μ̂  and 2
ˆ  of 

μ  and 2 , respectively, will be discussed. 

PARAMETER ESTIMATION 

Let us denote pooledR  the pooled correlation matrix, 

i.e., pooledR  = 

1

1
m

i i

i

n R
N

=

, where N = 

1

m

i

i

n

=

. If all sample 

sizes are equal, then pooledR  = R  is the average of m corre-

lation matrices. To estimate the process correlation matrix 

we use Montgomery’s approach in estimating the process 

covariance matrix. See (Montgomery 2001, p. 532) [5] and 

also (Montgomery 2005, p. 511) [6]. We use then pooledR  

as an estimator of 0P . Accordingly, 

a.    μ̂  = 
  
vec Rpooled( )

2

 and  

b.    2
ˆ = 

  
4 vec Rpooled( )( )

t
ˆ vec Rpooled( )( ) ,  

where ˆ  =  ˆ2 p pM M ,  

ˆ  = 
  
B̂t Rpooled Rpooled( ) B̂  and  

B̂  = 
  
I

p2
I p Rpooled( ) p

. 

ABOUT SENSITIVITY   

Let us consider correlation matrix as the covariance ma-

trix of standardized variables. Then, the sensitivity of the 
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procedure proposed in the previous section can be consid-

ered as the sensitivity of the procedure of testing the stability 

of covariance structure based on vector variance. In 

(Djauhari 2007) [24] we have compared the power of vector 

variance-based test with likelihood ratio criterion-based test 

in testing the hypothesis 
  
H

0
:  = 

 0
 versus 

  
H

1
:  = 

  
k

0
 where 0  is a specified positive definite matrix and k > 

1. This is equivalent to testing the hypothesis 0H :  = pI  

versus 1H :  = pkI . 

We have showed in that article that, when the sample size 
n and the number of variables p are small or when p is large 
but n is not too large, vector variance-based test is more sen-
sitive than likelihood ratio criterion-based test to small shift 
of covariance structure. Their sensitivities are similar to large 
shift when n and p are large. In the next section we illustrate 
how the proposed method in the previous section works by 
using real data and compare it with the methods of Box’s M 
statistic and Jennrich’s statistic. 

A CASE STUDY   

In this case study, P0 is unknown. Then, we use the pro-
posed VVSV chart (4) for testing the stability of correlation 
structure. The process that we want to investigate its correla-
tion structure stability is the production process of drive rib, 

a component of aircraft wing, at Indonesian Aerospace Ltd. 
located in Bandung, the capital of West Java. As a supplier 
of an international aircraft industry, the process quality is of 
primary concern at Indonesian Aerospace Ltd. It must fulfill 
the requirement. The goal is to ensure that there is no shift of 
correlation structure during the process. Due to its confiden-
tiality, the name of the aircraft is kept undeliverable. 

For drive rib1-inboard (left wing) production process, m 
= 22 independent samples were collected during the produc-
tion process, each of which is of size n = 4, and the number 
of important quality characteristics is p = 3. The sample co-
variance matrices are presented in Table 1 (A,B), where s(i,j) 
is the covariance between the i-th and the j-th variables.  

Based on these data, in this section we discuss how to 
test the stability of correlation structure of that process. First, 
we use the MSPC approach mentioned in the previous sec-
tion. Then we compare the result with that given by Box’s M 
statistic and Jennrich’s statistic. 

MSPC APPROACH 

From Table 1 we compute the corresponding correlation 
matrix and the results are presented in Table 2 where r(i,j) is 
the correlation coefficient between the i-th and the j-th vari-
ables. In this table only the non-diagonal elements of R  are 
presented. All diagonal elements equal 1. 

Table 1 A. Diagonal Elements of Sample Covariance Matrices 

Sample s(1,1) s(2,2) s(3,3) 

1 1.96E-04 3.17E-02 2.60E-04 

2 1.19E-03 2.56E-02 2.87E-05 

3 2.35E-03 9.44E-03 2.36E-05 

4 5.15E-04 2.12E-02 3.40E-05 

5 8.00E-04 2.05E-02 4.16E-05 

6 1.06E-03 1.17E-02 7.03E-05 

7 3.81E-04 4.70E-03 8.23E-05 

8 1.90E-04 1.78E-03 6.93E-05 

9 5.17E-04 3.41E-02 5.17E-05 

10 1.29E-03 2.03E-02 3.27E-05 

11 1.51E-03 3.86E-03 1.33E-04 

12 1.17E-03 6.61E-03 2.94E-04 

13 8.69E-05 8.78E-03 1.48E-04 

14 9.40E-04 2.41E-03 5.58E-06 

15 2.72E-04 2.88E-02 2.57E-05 

16 3.07E-03 9.69E-02 1.77E-05 

17 5.17E-04 3.41E-02 5.17E-05 

18 1.29E-03 2.03E-02 3.27E-05 

19 9.17E-07 2.26E-02 1.40E-05 

20 7.59E-04 2.71E-02 2.12E-04 

21 5.61E-04 3.13E-02 5.17E-05 

22 4.74E-03 2.47E-02 1.90E-05 

Table 1 B. Non-Diagonal Elements of Sample Covariance Ma-
trices 

Sample s(1,2) s(1,3) s(2,3) 

1 -7.17E-04 -5.34E-05 -1.44E-03 

2 -1.93E-03 -1.23E-04 5.24E-04 

3 -9.39E-04 -1.41E-04 -1.08E-04 

4 -1.82E-03 -4.53E-05 5.91E-04 

5 -7.70E-04 -7.93E-05 -5.13E-05 

6 -1.28E-03 5.75E-05 -4.74E-04 

7 -5.28E-04 8.71E-05 1.11E-04 

8 3.95E-05 -6.45E-05 -1.22E-04 

9 -1.93E-03 -9.25E-05 3.43E-04 

10 -1.79E-03 -9.75E-06 -2.46E-04 

11 -9.03E-04 -3.26E-04 2.64E-04 

12 -1.99E-03 -1.67E-04 1.62E-04 

13 -2.98E-04 5.17E-05 2.20E-04 

14 -8.49E-04 4.33E-05 -8.56E-05 

15 -1.80E-03 6.88E-06 -3.15E-04 

16 -5.08E-03 -1.68E-05 -7.97E-04 

17 -1.93E-03 -9.25E-05 3.43E-04 

18 -1.79E-03 -9.75E-06 -2.46E-04 

19 5.69E-05 1.25E-06 7.50E-05 

20 -5.54E-04 9.33E-05 -4.16E-04 

21 -2.13E-03 -9.60E-05 3.29E-04 

22 -4.83E-03 -1.30E-04 2.02E-04 
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Table 2. Non-Diagonal Elements of Sample Correlation Matrices 

Sample r(1,2) r(1,3) r(2,3) 

1 -0.2879 -0.2368 -0.5018 

2 -0.3498 -0.6633 0.6113 

3 -0.1994 -0.5973 -0.2291 

4 -0.5515 -0.3420 0.6956 

5 -0.1901 -0.4349 -0.0555 

6 -0.3652 0.2108 -0.5235 

7 -0.3945 0.4919 0.1788 

8 0.0679 -0.5626 -0.3469 

9 -0.4604 -0.5661 0.2586 

10 -0.3483 -0.0475 -0.3021 

11 -0.3746 -0.7292 0.3686 

12 -0.7148 -0.2847 0.1160 

13 -0.3413 0.4564 0.1936 

14 -0.5632 0.5970 -0.7376 

15 -0.6429 0.0822 -0.3655 

16 -0.2941 -0.0719 -0.6086 

17 -0.4604 -0.5661 0.2586 

18 -0.3483 -0.0475 -0.3021 

19 0.3952 0.3489 0.1333 

20 -0.1222 0.2326 -0.1740 

21 -0.5076 -0.5640 0.2589 

22 -0.4455 -0.4314 0.2946 

Based on data in Table 2 we first compute the estimates 
μ̂  and 2

ˆ , and then determine LCL and UCL. Later on we 
compute the VVSV of each sample. From that table we ob-
tain the pooled sample correlation matrix, written in triangu-
lar form, 

pooledR  = 

 

1

0.3156 1

0.1752 0.0394 1

 

and the VVSV of the pooled correlation matrix is 

  
vec Rpooled( )

2

 = 3.2637. This is the estimate μ̂ . To com-

pute the estimate 2
ˆ , we need the following matrices, each 

of which is of size 2 2
p p ,  

a. B̂  = 
2

p
I   – ( )p pooled pI R , 

b. ˆ  =  ( )ˆ ˆt
pooled pooledB R R B , and 

c. ˆ  =  ˆ2 p pM M , 

An algebraic manipulation on those matrix operations 
will give us,  

2
ˆ = 

  
4 vec Rpooled( )( )

t
ˆ vec Rpooled( )( )   

      = 2.5462. 

Thus, for the level of significance  = 5 %, the esti-
mated control limits in (4) are UCL = 5.0694 and LCL = 
1.4580. Now we compute the VVSV of each sample. The 
result is in Table 3. 

Table 3. Sample VVSV 

Sample VVSV Sample VVSV 

1 3.7815 12 4.2108 

2 4.8721 13 3.7245 

3 3.8980 14 5.4353 

4 4.8097 15 4.1074 

5 3.4568 16 3.9242 

6 3.9038 17 4.1987 

7 3.8590 18 3.4297 

8 3.8828 19 3.5914 

9 4.1987 20 3.1986 

10 3.4297 21 4.2855 

11 4.6159 22 3.9427 

In Fig. (1) we present the VVSV chart where all sample 
VVSVs in Table 3 are plotted. The vertical axis is the value 
of sample VVSV and the horizontal axis is the sample num-
ber. From this figure we learn that at sample 14, VVSV is 
greater than UCL. Thus, sample 14 signals a change in corre-
lation structure. We then reject the hypothesis of stability of 
correlation structure. 

 

Fig. (1). VVSV chart. 

BOX’S M STATISTIC APPROACH 

To test the hypothesis of the stability of correlation struc-
ture, (Tang 1998) [11], (Annaert et al., 2003) [13], and (Da 
Costa Jr. et al., 2005) [15], among others, use Box’s M sta-
tistic 



14    The Open Industrial and Manufacturing Engineering Journal, 2008, Volume 1 Djauhari and Herdiani 

M = 

1

ln ln

m

pooled i i

i=

N R n R .  

If the stability is true, then eM  
d

,a dF  where 

a.    a  = 
( )( )1 1

2

p p m+
; 

b.    b  = 
( )( )

2

1

2 3 1 1 1

6 1 1
=

+

+

m

ii

p p

p m n N
; 

c.    c  = 
( )( )

( ) 2 2
1

1 2 1 1

6 1
=

+ m

i i

p p

m n N
; 

d.    d  = 
( )

( )2

2+a

c b

; 

e.    e  = 
( )1

a

d
b

a
. 

 

The stability is rejected if eM  > ; ,a dF , the ( )1 -th 

quantile of F distribution with a and d degrees of freedom. 

For m = 22, n = 4, and p = 3, we obtain the summary of im-

portant quantities a, b, c, d and e needed to compute the 

critical point and the statistic eM . 

Table 4. Important Quantities  

a  b  c  d  e  

126 0.2831 0.1091 4421.990 0.0055 

From this table, for significance level  = 5 %, the criti-

cal point ; ,a dF  = 1.2199. On the other hand, the 22 correla-

tion matrices in Table 2 give us M = 41.5567 and hence we 

obtain eM  = 0.2270. Thus, eM < ; ,a dF , which means that 

the hypothesis of the stability of correlation structure is ac-

cepted. 

JENNRICH’S STATISTIC APPROACH 

Jennrich in (Jennrich 1970) [20] proposes to test the hy-
pothesis of the stability of correlation structure by using the 
following statistic, 

J = ( )
2 1

1

1

2

m

t

i i i

i=

vec Z H  

where  

a.   iZ  = 
  

ni Rpooled
1 Ri Rpooled( ) ; 

b.  
i
 is the column vector where its elements are equal to 

the diagonal elements of iZ ; 

c. H  = 
1

+p pooled pooledI R R   where  is the Hadamard 

product of two matrices. See (Schott 1997) [36] for the 

notion of this product. 

Under the hypothesis that the correlation structure is sta-

ble, (Jennrich 1970) [20] shows that J 
d 2

df  where the 

degree of freedom df = 
  

m 1( ) p p 1( )
2

. The hypothesis of 

stability is then rejected if J  > 
2

;df , the ( )1 -th quantile 

of chi-squared distribution with df degree of freedom. Fur-

ther computation based on data in Table 2 gives us J = 

37.8530 and, for significance level  = 5 %, the critical 

point is 
2

;df  = 82.5287. Thus, J < 
2

;df . We conclude that 

the hypothesis of the stability of correlation structure is ac-

cepted.  

We learn from the above example that Jennrich’s statistic 
and Box’s M statistic might give the same result which is 
different from the result given by MSPC procedure (4).  

ARL COMPARISON 

In the previous section, we have mentioned the sensitiv-

ity of vector variance-based test compared with that of like-

lihood ratio criterion-based test. In what follows, in order to 

compare the ARL of VVSV and that of Jennrich’s statistic, 

their power (1 – ) will be studied under 0H : P = 0P  and 

1H : P = 
  
P
10

 where 10P  = pI +
  
k P

0
I p( ) ; 0P  is given and 

0 < k < 1. Let us denote ARL1(C) the ARL of control chart C 

when 1H  is true. It is equal to 1/(1 – ) with  = P(accept 

0H | 1H  is true). After a long and tedious mathematical deri-

vation, ARL1(VVSV) is given by the following proposition. 

Proposition 3. Let QD  be a diagonal matrix where its k-

th diagonal element is equal to the k-th diagonal element of a 

matrix Q. Then,  = P(LZ < Z < UZ) where Z ~ ( )0,1N  

and  

a. LZ = 2

A z Bμ
 and UZ = 2

A z B+μ
;  

b. μ  = ( )
2

0
vec P  and 

2
 = 

  

8

(n 1)
Tr P

0
4( ) 2Tr D

P0
2 P

0
3 +Tr D

P0
2 P

0

2

;  

d. A = 
  
p(1 k2 )+ k2Tr P0

2( ) ; 

e. B
2
 = 

  

8

(n 1)
Tr P

10
4( ) 2Tr D

P10
2 P

10
3 +Tr D

P10
2 P

10

2

.  

In Proposition 4 we present the value of  from which we 

can derive ARL1(J), i.e., the ARL of Jennrich’s statistic 

when 1H  is true. 

Proposition 4.  = P(J < b) where J 
d

 
( )

2

1
1

2
p p

 

and  
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a. b =  
( )

2
1

1 ; 1
2

p p
 – ( )

21

2
vec A  – 1

1 1 1

t
H ; 

b. A = ( )1

10 0 10. .n P P P ; 

c. 1  is the vector where its k-th component is the k-th di-

agonal element of A; 

d. 1H = pI  + 10P * 1

10P ; * is the Hadamard product. 

Those who are interested in the proofs of the above 
propositions are pleased to contact the authors. 

By using the last two propositions, based on simulation 
experiment for several values of p and n, and k runs from 0.1 
until 1 in Step 0.1, in Tables (5 – 7) we present the value of 
(1 – ) of VVSV and Jennrich’s statistic (J), respectively. 
To obtain those tables, we generate random data from p-
variate normal distribution with zero mean vector and corre-
lation matrix P0 where all non-diagonal elements are equal to 
0.5. For each selected value of p, n and k, we use 1000 repli-
cation and the final value of (1 – ) is defined as the aver-
age of all replications. In this experiment, we use n = 5 and 
15 for p = 2 and 5; n = 50 and 100 for p = 15; with = 5%. 

Table 5. Values of (1 – ) for p = 2 

n = 5 n = 15 
k 

VVSV J VVSV J 

0.1 0.8338 0.0929 0.9024 0.3745 

0.2 0.6723 0.0820 0.7949 0.2379 

0.3 0.5214 0.0736 0.6724 0.1660 

0.4 0.3877 0.0671 0.5377 0.1232 

0.5 0.2765 0.0619 0.4014 0.0958 

0.6 0.1905 0.0578 0.2778 0.0775 

0.7 0.1288 0.0546 0.1787 0.0651 

0.8 0.0877 0.0522 0.1093 0.0568 

0.9 0.0628 0.0506 0.0680 0.0518 

1 0.05 0.05 0.05 0.05 

We learn from those tables that, in general, VVSV is better 
than Jennrich’s statistic in the sense that:  

a. If p is small, ARL1(VVSV) is less than ARL1(J). 

b. If p is large and k is small, ARL1(VVSV) and ARL1(J) 
have similar performance. But, if p and k are large, the for-
mer is less than the latter. 

THE STABILITY OF COVARIANCE STRUCTURE 

In what follows we discuss the use of MSPC approach 
for testing the stability of covariance structure. First, we use 
the VV chart, i.e., the chart constructed based on VV as mul-
tivariate dispersion measure. Second, the chart based on GV. 
The results will show that, as mentioned in Introduction sec-
tion, the stability (instability) of covariance structure does 
not necessarily ensure the stability (instability) of correlation 

structure. Those who are interested in a more general discus-
sion on the material of this section are suggested to see 
(Djauhari 2005) [7] and (Djauhari et al., 2008) [43].  

We start with VV chart. Let 
1

X , 
2

X , …, 
n

X  be a ran-

dom sample of size n from a random vector X  which is dis-

tributed as a p-variate normal distribution
  
N

p
μ,( ) . We 

recall ( )
2

vec  the vector variance (VV) of the random 

vector X . In (Djauhari 2007) [24] we have showed the fol-

lowing proposition which gives us the asymptotic distribu-

tion of sample VV.  

Proposition 5. ( )
2

vec S  
d

 ( )2
N ,  where  = 

( )
2

vec , 2  = ( ) ( )
4

1

t
vec vec

n
 and  = 

( )2
+ pp

p
I K .  

Table 6. Values of (1 – ) for p = 5 

n = 5 n = 15 
k 

VVSV J VVSV J 

0.1 0.9310 0.3964 0.9821 1 

0.2 0.8425 0.2091 0.9542 0.9766 

0.3 0.7328 0.1322 0.9064 0.5925 

0.4 0.6035 0.0958 0.8250 0.2989 

0.5 0.4632 0.0762 0.6981 0.1667 

0.6 0.3270 0.0647 0.5286 0.1062 

0.7 0.2117 0.0576 0.3443 0.0761 

0.8 0.1276 0.0533 0.1882 0.0604 

0.9 0.0758 0.0508 0.0899 0.0525 

1 0.05 0.05 0.05 0.05 

Table 7. Values of (1 – ) for p = 15 

n = 50 n = 100 
k 

VVSV J VVSV J 

0.1 1 1 1 1 

0.2 1 1 1 1 

0.3 1 1 1 1 

0.4 0.9992 0.9737 1 1 

0.5 0.9944 0.5892 1 1 

0.6 0.9640 0.2565 0.9987 0.6672 

0.7 0.8344 0.1244 0.9735 0.2610 

0.8 0.5253 0.0746 0.7709 0.1081 

0.9 0.1835 0.0552 0.2892 0.0609 

1 0.05 0.05 0.05 0.05 
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The application of this proposition is seemingly compli-
cated because the expression of the variance involves matrix 
multiplications of high dimension even for moderate value of 
p. However, Proposition 6 shows that it can be computed in 
a simple manner. The proof, using the properties of commu-
tation matrix and vec operator, is derived in (Djauhari 2007) 
[24]. 

Proposition 6. 2  =  
  

8

n 1
vec

2( )
2

. 

MSPC APPROACH 

Based on Propositions 5 and 6, as in the fourth section, in 
what follows we present the use of MSPC approach for 
monitoring the stability of covariance structure. For that pur-
pose we first estimate the parameters  and 

2
 based on m 

independent samples described in the fifth section. 

Let iS  be the sample covariance matrix of the i-th sam-

ple and pooledS  be the pooled covariance matrix, i.e., 

pooledS  = 

1

1
( 1)

m

i i

i

n S
N m

=

. In our case all sample sizes 

are equal, say n. Accordingly, pooledS  is equal to the aver-

age S of iS ; i = 1, 2, …., m. In (Djauhari 2007) [24] we 

have derived that the statistics ˆ  = 

  

1
2

m n 1( ) + 2
vec S( )

2

 and 2
ˆ = 

  

8

n 1( )
1+

12

m n 1( )
+

12

m n 1( ){ }
2

1

vec S
2( )

2

 are asymp-

totically unbiased estimators of  and 
2
, respectively. By 

using these estimates, the control chart that we are seeking is 

defined by the following estimate of control limits. 

UCL = 2
ˆ ˆ+ /z , and    …………………...…  (5) 

LCL = 
  
max 0, ˆ z

/ 2
ˆ( ) . 

The stability of covariance structure is then monitored by 

plotting the sample VVs, 
  
vec S

i( )
2

; i = 1, 2, …., m, in that 

chart. We call it VV chart. For this purpose, we compute the 

sample VV for all samples. The results are in Table 8. 

Furthermore, a simple algebraic manipulation gives us the 

following matrices S  and 2
S , written in triangular form, 

S  = 

1.06E 03

-1.53E - 03 2.22E - 02

-5.02E - 05 -5.16E - 05 7.71E - 05

, 

  

2
S  = 

 

3.49E 06

-3.57E - 05 4.96E - 04

2.19E - 08 -1.07E - 06 1.11E - 08

, 

and we get 
  
vec S( )

2

 = 4.99E-04 and 
  

vec S
2( )

2

 = 2.48E-

07. These statistics are used to compute the estimates  ˆ  and 

 
ˆ

2  of  and 2 , respectively. We obtain ˆ  = 4.84E-04 and 

2
ˆ = 5.59E-07. Thus, the estimated control limits in (5) are 

UCL = 1.95E-03 and LCL = 0. These control limits and the 

value of 
  
vec S

k( )
2

; k = 1, 2, …, m, are plotted in Fig. (2), 

where the vertical axis is the value of sample VV and the 

horizontal axis is the sample number.  

 

Fig . (2). VV chart. 

We learn from this figure that a signal of the instability of 
covariance structure occurs at the sixteenth sample and not at 
fourteenth sample as indicated in Fig. (1). We see that the 
instability of covariance structure does not mean, in the same 
sense, the instability of correlation structure. 

In what follows we investigate the stability of covariance 
structure based on GV. A worst situation might be signaled 
if we use this measure. Look at Table 9 which presents the 
value of sample GVs. 

Table 8. Sample VV 

 

Sample VV Sample VV 

1 1.01E-03 12 5.32E-05 

2 6.64E-04 13 7.74E-05 

3 9.65E-05 14 8.17E-06 

4 4.57E-04 15 8.39E-04 

5 4.23E-04 16 9.46E-03 

6 1.41E-04 17 1.17E-03 

7 2.28E-05 18 4.22E-04 

8 3.26E-06 19 5.11E-04 

9 1.17E-03 20 7.35E-04 

10 4.22E-04 21 9.91E-04 

11 1.92E-05 22 6.81E-04 
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Table 9. Sample GV 

 

Sample GV Sample GV 

1 8.70E-10 12 1.00E-09 

2 3.03E-10 13 6.50E-11 

3 2.60E-10 14 3.53E-12 

4 1.33E-10 15 9.77E-11 

5 5.20E-10 16 2.70E-09 

6 5.45E-10 17 4.87E-10 

7 7.37E-11 18 6.66E-10 

8 1.37E-11 19 2.15E-13 

9 4.87E-10 20 3.96E-09 

10 6.66E-10 21 4.59E-10 

11 3.04E-10 22 1.43E-09 

Based on the improved generalized variance (IGV) chart, 
proposed in our work (Djauhari 2005) [7], we have UCL = 
2.42E-09 and LCL = 0. These estimated control limits and 
the value of sample GVs are plotted in Fig. (3). The vertical 
axis is the value of sample GV and the horizontal axis is the 
same as in the two previous figures.  

 
Fig . (3). IGV chart. 

This figure signals a worst situation compared with Fig. 
(2). There are two signals of instability in this figure while 
there is only one in Fig. (2). This is not surprising because 
VV and GV are different measures. Moreover, the VV chart 
is in general more sensitive than the IGV chart to the shift of 
covariance structure. See (Djauhari 2007) [24] for further 
discussion on this matter. 

ADDITIONAL REMARKS   

We define VVSV as a measure of data concentration 

when all variables are standardized. By using vec operator 

and the property of commutation matrix, its asymptotic sam-

pling distribution is investigated. Sample VVSV converges 

in distribution to a normal distribution. We have proved, see 

Proposition 2, that the random variable 

  

n 1 vec R( )
2

vec P( )
2

 converges in law to a nor-

mal distribution ( )2
0,N  where the variance 2  is asymp-

totically equal to 
  
4 vec P( )( )

t

vec P( )( ) . We see that the 

computation of 2  involves neither matrix inversion nor 

determinant. It only involves some matrix operations. 

Based on that result, by using repeated tests suggested in 
(Montgomery 2001) [5] and (Montgomery 2005) [6], we 
propose to test the stability of correlation structure based on 
control chart (3) if P0 is known or (4) if P0 is unknown. All 
computations and drawings in the previous sections are done 
using MS Excel. This shows the simplicity of the proposed 
method. However, it is still in our investigation to reduce the 
computational complexity of 2

ˆ  which involves numerous 
matrices of high size even for moderate value of p. On the 
other hand, when p is large, the use of Box’s M statistic is 
quite cumbersome because it involves the computation of the 
determinants R  and iR . It is so with Jennrich’s statistic 
which needs the inversion of R . These obstacles are what 
we intent to eliminate by using MSPC approach proposed in 
(3) or (4).  

The example in the fifth section shows that the proposed 
method gives us a different conclusion than those given by 
Box’s M statistic and Jennrich’s statistic. Fig. (1) summa-
rizes that the correlation structure is not stable whereas 
Box’s M statistic and Jenrich’s statistic give us the opposite 
conclusion. This difference is not surprising because the 
proposed method and the latter two methods use different 
measure of multivariate dispersion. However, as mentioned 
in A Case Study section, ARL1(VVSV) is in general less 
than ARL1(J). Thus, in general, VVSV is more sensitive than 
Jennrich’s statistic to the shift of correlation structure.   

The VVSV chart in Fig. (1) presents the history of corre-
lation structure from sample to sample given by (4) whereas 
the VV chart in Fig. (2) shows the history of covariance 
structure from sample to sample based on (5). In Fig. (1), the 
fourteenth point lies outside the interval (LCL, UCL). This 
means that the correlation structure is not stable. On the 
other hand, Fig. (2) indicates that the covariance structure is 
not stable at sixteenth sample. This strengthens our statement 
in Introduction section that the stability (or instability) of 
covariance structure does not necessarily ensure the stability 
(or instability) of correlation structure. Signal of a worst 
situation might occur when one uses generalized variance 
chart as indicated by Fig. (3).  
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