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Abstract: Heat shock proteins (HSPs) are molecular chaperones that facilitate the proper folding and assembly of nascent 

polypeptides and assist in the refolding and stabilization of damaged polypeptides. Through these largely intracellular 

functions, the HSPs maintain homeostasis and assure cell survival. However, a growing body of literature suggests that 

HSPs have important effects in the extracellular environment as well. Extracellular HSPs are released from damaged or 

stressed cells and appear to act as local “danger signals” that activate stress response programs in surrounding cells. 

Importantly, extracellular HSPs have been shown to activate the host innate and adaptive immune response. With this in 

mind, extracellular HSPs are commonly included in a growing list of a family of proteins known as danger-associated 

molecular patterns (DAMPs) or alarmins, which trigger an immune response to tissue injury, such as may occur with 

trauma, ischemia-reperfusion injury, oxidative stress, etc. Extracellular HSPs, including Hsp72 (HSPA), Hsp27 (HSPB1), 

Hsp90 (HSPC), Hsp60 (HSPD), and Chaperonin/Hsp10 (HSPE) are especially attractrive candidates for DAMPs or 

alarmins which may be particularly relevant in the pathophysiology of the sepsis syndrome. 

Keywords: Heat shock proteins (HSPs), danger-associated molecular patterns (DAMPs), Extracellular HSPs, 
polypeptides.  

INTRODUCTION 

 Virtually all cells respond to stress through the activation 
of primitive, evolutionarily conserved genetic programs that 
maintain homeostasis and assure survival. Stress adaptation 
(also known in the literature as tolerance, desensitization, 
conditioning, or reprogramming) is a common paradigm 
found throughout nature in which a primary exposure of a 
cell to a stressful stimulus results in an adaptive (frequently 
protective) response, such that a second exposure to the same 
stimulus produces a minimal response. More importantly, 
this adaptive response is not unique to the original stimulus, 
in that exposure to a different stressful stimulus is also 
associated with a minimal response. This particular 
phenomenon is often called cross-tolerance or cross-
adaptation [1-2]. The heat shock response is one of the more 
commonly described forms of stress adaptation and was first 
described nearly 50 years ago [3-4]. The heat shock 
response, also frequently referred to simply as the stress 
response, is an ancient, highly conserved, endogenous 
cellular defense mechanism characterized by the rapid 
upregulation of a specific class of proteins known 
collectively as heat shock proteins (HSP) or stress proteins 
[5]. The structure, mode of regulation, and function of HSPs 
are phylogenetically conserved among different species, and 
HSPs have been isolated from virtually every class of living  
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organism to date, including both prokaryotes and eukaryotes. 
These proteins range in molecular weight from 7 kDa to 110 
kDa and have been found in virtually every part of the cell, 
including the nucleus, cytoplasm, and mitochondria [1-2, 6-
7]. By convention, the HSPs are grouped and classified into 
families based upon their molecular weight, e.g. Hsp70 
refers to the 70 kDa family of HSPs, though the 
nomenclature of human HSPs has recently been standardized 
(Table 1) [8]. Herein, we will refer to both the traditional and 
standardized nomenclature in order to avoid confusion. 
There are also an increasing number of proteins that have 
well defined cellular functions not directly related to cellular 
stress, but have been demonstrated to be expressed in 
response to heat shock and other cellular stresses [9-10]. 
These so-called moonlighting proteins include ubiquitin [11-
12]; heme oxygenase [13]; inhibitor of B, I B  [14]; 
endothelial nitric oxide synthase, eNOS [15]; and mitogen-
activated protein kinase (MAPK) phosphatase-1 (MKP-1) 
[16].  

 The HSPs are generally thought to maintain cellular 
homeostasis by acting as molecular chaperones, facilitating 
the proper folding and assembly of nascent polypeptides and 
assisting in the refolding and stabilization of damaged 
peptides [6-7, 17]. Consistent with their function as 
molecular chaperones, HSPs have traditionally been 
considered to be exclusively intracellular proteins. However, 
not long after the HSPs were first discovered, Morton and 
colleagues [18] discovered a circulating immunosuppressive 
protein, termed early pregnancy factor (EPF), which was 
later found to be a mitochondrial HSP known as chaperonin 
(Cpn)/Hsp10 (HSPE) [19]. Later, Hightower and Guidon 
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[20] demonstrated that Hsp70 (HSPA) was released into the 
extracellular fluid by cultured rat embryo cells in response to 
thermal stress. Release of Hsp70 (HSPA) occurred in the 
absence of cell death and was not inhibited by either 
monensin or colchicine, suggesting that release occurred via 
a non-classical secretory pathway (see below). More 
importantly, release was inhibited when these proteins were 
synthesized in the presence of the lysine analogue 
aminoethyl cysteine, suggesting that proper folding of Hsp70 
(HSPA) was necessary for secretion [20]. Since that time, 
there has been a virtual explosion of literature on the biology 
of extracellular HSPs. Perhaps even more intriguing is the 
relatively recent recognition that extracellular HSPs possess 
the ability to stimulate many cells of the innate and adaptive 
immune systems [21]. Herein, we will briefly review the 
current roles that extracellular HSPs play in both the innate 
and adaptive immune responses. We will focus primarily 
upon host-derived HSPs, rather than bacterial-derived HSPs. 
Moreover, we will focus primarily upon five specific 
families of HSPs – Hsp70 (HSPA), Hsp27 (HSPB1), Hsp90 
(HSPC), Hsp60 (HSPD), and Hsp10 (HSPE) as the 
extracellular roles of these HSP families are the best 
characterized to date. 

DANGER SIGNALS, ALARMINS, AND DAMPS 

 The host immune response has evolved over time to 
protect organisms from infection, injury, and subsequent 
death. Danger signals [22-24] are molecules that alert and 
activate the host immune response – these danger signals 
may come from either the internal or the external 
environments and activate cells of either the innate or 
adaptive immune response. External or exogenous danger 
signals have traditionally been called pathogen-associated 
molecular patterns (PAMPs) and include pathogen-derived 

proteins, nucleic acids, and lipids such as lipopolysaccharide 
(LPS), peptidoglycan, lipoteichoic acid, CpG DNA, and 
flagellin. These PAMPs are recognized by a surprisingly 
limited number of highly conserved pattern recognition 
receptors (PRRs), which include the Toll-like receptors 
(TLRs) and the nucleotide-binding oligomerization domain 
(NOD) receptors. Perhaps it is more than just a mere 
coincidence that these same PRR appear to recognize 
endogenous danger signals as well [25] – hence the term, 
danger-associated molecular pattern or DAMP [26]. 
Endogenous danger signals may be secreted by damaged 
cells or released rather non-specifically by necrotic cells to 
act in an autocrine, paracrine, or endocrine manner, thereby 
alerting the host to the presence of tissue injury. Oppenheim 
was the first to coin the term alarmin for these endogenous 
DAMPs [27]. In summary then, exogenous DAMPs (LPS, 
CpG DNA, etc) usually trigger an immune response to an 
infectious insult (e.g. bacteremia), while endogenous 
DAMPs or alarmins trigger an immune response to tissue 
injury, such as may occur with trauma, ischemia-reperfusion 
injury, oxidative stress, etc. Several candidate alarmins have 
been described, including high mobility group box 1 protein 
(HMGB1) [28-33], uric acid [34-39], and extracellular HSPs 
[6, 26, 33, 40-43], among others. 

 Several properties would suggest that extracellular HSPs 
are biologically plausible and likely candidates to serve as 
alarmins [44-46]. First, collectively, the HSPs are the most 
abundant intracellular proteins, representing up to 10% of 
the total protein in the cell. For example, 1 g of tissue 
contains approximately 2.5 mg of HSPs. The lysis of 10

5
 to 

10
6
 cells (approximately 1 mg) would result in the release of 

approximately 2 μg HSP, translating to a local concentration 
of 1-2 mg/mL at the tissue level [47]. Second, several of the 
HSPs are markedly induced (up to 15% of the total 

Table 1. Major Heat Shock Protein Families 

Name 
Size  

(kDa) 
Localization Bacterial Homolog Some Known and Possible Functions 

Ubiquitin 8 Cytosol/nucleus — Nonlysosomal degradation pathways 

HSP 27 

(HSPB1) 
27 Cytosol/nucleus — 

Regulator of actin cytoskeleton; molecular 

chaperone; cytoprotection 

Heme oxygenase 32 
Bound to ER, 

extends to cytoplasm 
— 

Degradation of heme to bilirubin; 

resistance to oxidant stress 

HSP 47 47 ER — Collagen chaperone 

HSP 60 

(HSPD) 
60 Mitochondria Gro EL Molecular chaperone 

HSP 70 

(HSPA) 
72 Cytosol/nucleus Dna K 

Highly stress inducible; involved in 

cytoprotection against diverse agents 

 73 Cytosol/nucleus — Constitutively expressed chaperone 

HSP 90 

(HSPC) 
90 Cytosol/nucleus htpG Regulation of steroid hormone activity 

HSP 110 110 Nucleolus/cytosol Clp family Protects nucleoli from stress 



Extracellular Heat Shock Proteins and Immunity The Open Inflammation Journal, 2011, Volume 4    51 

 

intracellular protein content) in response to a diverse range 
of cellular insults, including increased temperature, oxidative 
stress, glucose deprivation, chemical exposure, I/R injury, 
ultraviolet radiation, and infectious agents such as LPS. 
Third, HSPs are ancient, highly conserved molecules that 
have been identified in virtually every organism, both 
prokaryotic and eukaryotic, that have been examined to date. 
In comparison, LPS, an important “exogenous” danger 
signal, appeared relatively late on the evolutionary time-
scale and is much less ubiquitous, being unique to only 
gram-negative bacteria. It is tempting to speculate that the 
programmed response to the exogenous “danger signal”, 
LPS, is modeled on the more primitive programmed 
response to the endogenous “danger signal” [47]. Fourth, 
HSPs are highly immunomodulatory and have the capacity 
to mediate the induction of peptide-specific immunity. For 
example, as molecular chaperones, HSPs bind to many 
peptides derived from the cells from which they are isolated. 
HSP-peptide complexes elicit potent T cell responses against 
the chaperoned peptide as well as the cell type from which 
the chaperoned peptide is derived, including tumors and 
viruses, and vaccination with HSP-tumor peptide complexes 
as an immunotherapy for cancer is an active area of 
investigation [44-45, 47-50]. Similarly, HSP-pathogen-
derived peptide complexes have the capacity to elicit a 
pathogen-specific immune response [45]. Finally, HSPs 
themselves, especially members of the Hsp70 (HSPA) and 
Hsp60 (HSPD) families, have the capacity to activate the 
host innate immune response, resulting in dendritic cell 
activation and maturation, activation of complement, and 
release of proinflammatory cytokines [51-62].   

POTENTIAL MECHANISMS OF RELEASE OF THE 

HEAT SHOCK PROTEINS 

 One argument that is frequently cited against the 
purported role for extracellular HSPs as endogenous danger 
signals has been the lack of any clearly defined mechanism 
to explain their release into the extracellular environment 
[63]. Collectively, the HSPs lack the classic N-terminus 
leader sequence necessary for the canonical protein secretory 
pathway [64]. Of interest, several additional proteins 
involved in the host immune response similarly lack the 
classic N-terminus leader sequence and are secreted through 
non-classical pathways (Table 2) [65]. What many 
investigators fail to recognize, however, is that there are 

diverse secretory pathways utilized by both prokaryotic and 
eukaryotic organisms, many of which have only recently 
been elucidated [7, 66-69]. While HSPs undoubtedly are 
released during necrotic cell death, most studies suggest that 
this is not the major mechanism of release [20, 64, 70-73]. 
For example, several studies have shown that release of 
HSPs generally occurs in the absence of significant cell 
death [20, 64, 70-76]. Perhaps the best evidence comes from 
an experiment in which serum Hsp72 (HSPA) concentrations 
were measured in Sprague-Dawley rats following exposure 
to a cat. Rats were physically separated from the cat using a 
clear Plexi-glass shield. In this experiment, cat exposure 
induced a significant increase in both corticosterone and 
extracellular Hsp72 (HSPA) production. This response was 
not observed in adrenalectomized rats [77]. Finally, there are 
several studies demonstrating increased serum Hsp72 
(HSPA) levels in patients following exercise [78-79]. 
Collectively, these studies strongly suggest that HSP are 
released via a specific, though as yet undefined, secretory 
mechanism.  

 Hsp72 (HSPA) is perhaps the best and most widely 
studied extracellular heat shock protein and was first 
reported in cultured rat embryo cells following exposure to 
increased temperature in the late 1980’s [80]. The 
mechanism of release appeared to be specific, in that Hsp72 
(HSPA) release could not be reproduced by induction of cell 
lysis through exposure to non-ionic detergents. However, the 
mechanism did not appear to involve classic secretory 
pathways either, as it was not inhibited by either colchicine 
or monensin, both of which inhibit this pathway. Finally, 
Hsp72 (HSPA) synthesized in the presence of a lysine amino 
acid analogue (aminoethyl cysteine) was not released from 
these cells, suggesting that the altered protein structure 
prevented interaction with an as yet unidentified, but specific 
secretory mechanism [80]. Several groups, including ours 
[70, 80-86] have shown that viable cells release Hsp72 
(HSPA) in a specific and inhibitable manner. Monensin and 
brefeldin A are inhibitors of the classic endoplasmic 
reticulum (ER)/Golgi protein transport and secretory 
pathways. We have shown that Hsp72 (HSPA) release from 
THP-1 cells is not inhibited by either monensin or brefeldin 
A [70]. In this particular study, release of extracellular 
Hsp72 (HSPA) was early and sustained up to 24 hours 
following heat shock and did not require new protein 
synthesis. Others have shown that Hsp72 (HSPA) release 

Table 2. “Leaderless” Proteins Involved in the Host Immune Response 

PROTEIN EXTRACELLULAR FUNCTION INTRACELLULAR FUNCTION 

IL-1  Pro-inflammatory cytokine Activator of transcription 

IL-1  Pro-inflammatory cytokine - 

IL-18 Pro-inflammatory cytokine - 

Caspase I (ICE) ? IL-1/IL-18 converting enzyme 

HMGB1 Pro-inflammatory cytokine Chromatin component 

IL-16 Pro-inflammatory cytokine - 

MIF Pro-inflammatory cytokine Transcription factor modulator 
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from peripheral blood monocytes (PBMC) is inhibited by 
brefeldin A, but not monensin [84, 86]. Hsp72 (HSPA) 
release has also inhibited by methylamine and methyl- -
cyclodextrin, both of which inhibit protein secretion via 
lysosomal pathways [86]. Recent studies suggest that Hsp72 
(HSPA) is actively released via an exosome-dependent, non-
classical protein secretory pathway [74, 76, 87].   

THE IMMUNOMODULATORY EFFECTS OF EX-
TRACELLULAR HEAT SHOCK PROTEINS 

Heat Shock Protein 72 (HSPA) 

 Extracellular Hsp72 (HSPA) is a highly 
immunomodulatory protein with effects on both the innate 
and adaptive immune responses [6-7, 17]. In this regard, 
extracellular Hsp72 (HSPA) appears to specifically interact 
with a wide myriad of cell surface receptors, including 
TLR2, TLR4, LOX-1, CD91, CD94 (C-type lectin), CD40 
and chemokine receptor CCR5 [45-46, 61, 88-90]. These 
studies have used a variety of approaches to demonstrate 
physical interactions between Hsp72 and the purported 
receptor protein and are reviewed further in an excellent 
discussion by Binder and colleagues [91]. Hsp72 (HSPA), 
consistent with its role as a “chaperokine” appears to 
stimulate pro-inflammatory gene expression in macrophage 
and monocyte cell lines via both TLR-2 and TLR-4 [51, 53-
54]. In addition, we have shown that extracellular Hsp72 
(HSPA) stimulates pro-inflammatory gene expression in 
cultured bronchial epithelial cells [92], hepatocytes [93], 
neutrophils [71], and cardiomyocytes (Wheeler, unpublished 
data). Moreover, intratracheal administration of extracellular 
Hsp72 (HSPA) induced pro-inflammatory gene expression in 
mice, primarily through TLR4 and NF- B activation [92]. 
Our group has also demonstrated that extracellular Hsp72 
(HSPA) induces the endotoxin tolerance phenotype in THP-
1 cells. Preconditioning with low-dose Hsp72 (HSPA) 
reprogrammed the subsequent response to LPS, such that 
LPS-mediated TNF-  gene expression was markedly 
abrogated [70, 94]. Subsequent experiments have 
demonstrated that these effects are not exclusive to TLR4 
ligands, but that Hsp72 (HSPA) preconditioning also 
reprograms the response to TLR2 ligands, such as 
Pam3CysK, lipoteichoic acid, peptidoglycan, heat-killed 
Staphylococcus aureus (HKSA), and Hsp72 (HSPA) itself 
(Wheeler, unpublished data).  

 Some of the immunomodulatory effects of extracellular 
Hsp72 (HSPA) and other heat shock proteins have been 
ascribed to the presence of bacterial contaminants in the 
recombinant protein [95-100]. However, extensive and 
elegantly performed experimental controls strongly suggest 
that it is indeed the heat shock protein itself that is 
responsible for these effects. Typically, these controls 
include (i) measuring the LPS content of the recombinant 
protein via Limulus amebocyte lysate assay (LAL) and 
adding this concentration to control; (ii) directly inhibiting 
LPS activity with concomitant treatment with polymyxin B, 
lipid A, or lipid IVa treatment; (iii) heat denaturation or 
trypsin pretreatment of the recombinant protein to confim 
loss of immunomodulatory activity; and (iv) comparing 
immunomodulatory activity of the recombinant protein to 
irrelevant polypeptide sequences or similar sized proteins 
[101]. In addition, Hsp72 (HSPA) purified from liver cell 

lysates induced secretion of IL-1 , TNF- , and IL-12 by 
murine macrophages [52]. Similarly, we have shown that 
endogenously released Hsp72 (HSPA) induces cellular 
reprogramming in THP-1 cells [70]. Neutralizing antibodies 
directed against extracellular Hsp72 (HSPA) have been 
shown to inhibit these pro-inflammatory effects [29]. 
Finally, an important consideration is whether extracellular 
Hsp72 (HSPA) chaperones small amounts of LPS and other 
PAMPs to their respective cell surface receptors, thereby 
augmenting stimulation of the innate immune response 
[101]. With this in mind, the effects of Hsp72 (HSPA) on the 
innate immune response in the absence of bacterial 
contaminants may be moot.  

 Extracellular Hsp72 (HSPA) has additional effects on the 
innate immune response. For example, extracellular Hsp72 
(HSPA) both directly [102-103] and indirectly (by 
stimulating increased chemokine synthesis) [71, 92] induces 
neutrophil and dendritic cell chemotaxis. In addition, 
extracellular Hsp72 (HSPA) appears to play an important 
role in priming dendritic cells, macrophages, monocytes, and 
natural killer cells [40, 46, 63, 101]. To this end, 
extracellular Hsp72 (HSPA) enhances synthesis of pro-
inflammatory cytokines and upregulates cell surface 
expression of MHC class II and other important co-
stimulatory molecules on dendritic cells [51, 53-56]. 
Extracellular Hsp72 (HSPA) also directly stimulates 
macrophage phagocytic activity [104-106]. Extracellular 
Hsp72 (HSPA) induces natural killer (NK) cell activity [107-
110]. NK cells play an important role in both the innate and 
adaptive immune responses. These unique cells exert 
cytotoxicity through both direct effects (via perforin 
production) and via mediation of antibody-dependent 
cytotoxicity. 

 Extracellular Hsp72 (HSPA) also exerts important effects 
on the adaptive immune response. For example, Hsp72 is 
able to chaperone a large variety of immunomodulatory 
peptides derived from tumors, virally-infected cells, etc and 
deliver them to antigen presenting cells. These 
chaperone/peptide complexes subsequently generate peptide-
specific T-lymphocyte-mediated responses both in vitro and 
in vivo. Several groups are currently attempting to exploit 
this unique facet of heat shock protein biology for vaccine 
development and cancer immunotherapy [40, 46, 49, 111-
113].  

 A few studies have been able to demonstrate uptake of 
extracellular Hsp72 (HSPA). More importantly, uptake of 
extracellular Hsp72 (HSPA) appears to confer some degree 
of stress tolerance [85, 114-117]. While the data are far from 
complete, these studies at least suggest a potential autocrine 
or paracrine role for extracellular Hsp72 (HSPA), further 
supporting the concept that heat shock proteins are 
endogenous danger signals or alarmins.  

 Extracellular Hsp72 (HSPA) has been found in the blood, 
cerebrospinal fluid, and bronchoalveolar lavage fluid of 
critically ill children and adults with a variety of 
inflammatory disease states. For example, increased 
extracellular Hsp72 levels following cardiopulmonary 
bypass have been detected in both adults [118-119] and 
children (Wheeler, unpublished data). Increased extracellular 
Hsp72 (HSPA) levels correlate with poor outcome in 
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critically ill patients with liver disease [120], coronary artery 
disease [121-124], pre-eclampsia [125], sickle cell disease 
vaso-occlusive crisis [126], diabetic ketoacidosis [127], and 
septic shock [128]. Extracellular Hsp72 (HSPA) levels in the 
cerebrospinal fluid (CSF) of children with traumatic brain 
injury also appear to correlate with poor outcome [129]. 
Finally, extracellular Hsp72 (HSPA) has been found in the 
pulmonary edema fluid of adults with acute lung injury [130] 
and the urine of children following renal transplantation 
[131]. Given the signaling properties recently ascribed to 
Hsp72 (HSPA), these data suggest that the release of Hsp72 
(HSPA) could potentiate an already active host immune 
response, thereby leading to poor outcome [132]. 
Alternatively, extracellular Hsp72 (HSPA) could serve an as 
yet undefined cytoprotective function at lower levels as a 
normal response to infection or stress, and once a certain 
critical threshold is attained, it could potentiate the 
dysregulated inflammatory response that subsequently 
results in multiple organ failure. Recent experimental data 
[133] and the finding that extracellular Hsp72 (HSPA) levels 
> 15 ng/mL correlated with improved outcome following 
multiple trauma in adults [134] support this concept. As 
such, it is tempting to speculate that lower levels of 
extracellular Hsp72 (HSPA) “cool down” the host 
inflammatory response, while higher levels further stimulate 
and/or augment the host inflammatory response. These 
important questions remain an active focus of investigation 
in many laboratories, including our own.  

Hsp27 (HSPB1) 

 Hsp27 (HSPB1) is a member of the so-called small heat 
shock protein family (HSPB). Within quiescent cells, it 
assists in the degradation and removal of damaged proteins 
and also slows the rate of actin microfilament polymerization 
[135]. Like several members of the heat shock protein 
family, Hsp27 (HSPB1) is highly stress inducible. Following 
cell stress, Hsp27 (HSPB1) is phosporylated and loses the 
ability to slow the rate of actin polymerization, resulting in 
stabilization of the cellular cytoskeleton. Additionally, 
Hsp27 (HSPB1) has been shown to protect cells against 
apoptosis through the prevention of downstream caspase 
activation [136]. 

 Hsp27 (HSPB1) is released from peripheral blood 
monocytes following treatment with TNF-  [137]. 
Extracellular Hsp27 (HSPB1) appears to possess anti-
inflammatory properties, with the target cell type 
determining the functionality. However, the receptor through 
which extracellular Hsp27 (HSPB1) inhibits inflammation is 
as yet poorly defined. Hsp27 (HSPB1) inhibits neutrophil 
apoptosis and potentially allows for exaggerated tissue 
destruction during sepsis, trauma, and acute lung injury 
[138]. In stark contrast to the exogenous danger signal, LPS, 
Hsp27 (HSPB1) inhibits neutrophil apoptosis without 
increasing pro-inflammatory cytokine production [138]. 
Hsp27 (HSPB1) induces expression of the anti-inflammatory 
cytokine, IL-10, in monocytes, primarily through the p38 
protein kinase pathway, with only a mild increase in TNF-  
levels [139-140]. Hsp27 (HSPB1) also inhibits monocyte 
differentiation into mature dendritic cells or 
macrophages[141].  

 These anti-inflammatory effects may be exploited by 
tumor cells, as the dampening of the host immune response 
may allow tumor progression and metastasis [142]. For 
example, increased serum levels of Hsp27 (HSPB1) have 
been associated with worse outcome in women with breast, 
ovarian, and uterine cancer [143]. In contrast, antibodies to 
Hsp27 (HSPB1) have been identified in the blood of women 
with breast cancer and other gynecologic cancers [144-145]. 
Those women with the highest levels of anti-Hsp27 serum 
antibodies seemed to have improved breast cancer survival 
[146]. Increased tumor expression of Hsp27 (HSPB1) is 
associated with shorter cancer free periods and advanced 
cancer staging, possibly due to the inhibition of tumor cell 
apoptosis [147]. Other studies have contradicted these 
findings, with no demonstrated association between serum 
Hsp27 (HSPB1) levels and cancer survival [147-148]. Hsp27 
(HSPB1) also appears to be released from some brain tumor 
cells to dampen the immune response, inhibit apoptosis, and 
allow for tumor growth, progression, and metastasis [149]. 
The anti-inflammatory properties of Hsp27 (HSPB1) may be 
potentially exploited for the treatment of inflammatory 
disease processes. For example, Hsp27 (HSPB1) 
administration improves motor neuron survival for up to one 
week following nerve transection in neonatal mice [150].  

 In addition to playing a role in tumor growth and 
progression, extracellular Hsp27 (HSPB1) appears to play a 
role in the pathophysiology of cardiovascular disease. For 
example, Hsp27 (HSPB1) blocks lipid uptake by competitive 
inhibition of a low-density lipoprotein (LDL) scavenger 
receptor-A and decreases atherosclerotic plaque formation in 
vitro [140]. Clinically, extracellular Hsp27 (HSPB1) levels 
may be a reasonable biomarker for atherosclerosis disease 
progression [151-152]. Several studies have demonstrated an 
inverse association between Hsp27 (HSPB1) levels and 
atherosclerosis [151, 153-155]. However, a prospective 
study of 255 healthy women showed an inverse association 
with age but not serum Hsp27 (HSPB1) levels and future 
major cardiovascular events [154]. 

 Higher levels of Hsp27 (HSPB1) have also been shown 
to protect mouse hearts from reperfusion injury and 
myocardial infarction[156]. In a small adult study, the 
expression of Hsp27 in transplanted hearts in acute rejection 
was elevated and thought to be a self-protective 
mechanism[157]. Further corroborating this theory, the 
vessels of transplanted hearts with higher phosphorylated 
levels of Hsp27 (HSPB1) upon biopsy demonstrated less 
cardiac allograft vasculopathy when compared to 
transplanted heart vessels with vasculopathy [158]. 
Similarly, and perhaps more relevant to the present 
discussion, there have been a few studies showing that 
elevated levels of Hsp27 (HSPB1) and/or decreased levels of 
autoantibodies to Hsp27 (HSPB1) correlate with improved 
outcome in patients with acute coronary syndrome [153, 
159-160].  

Hsp90 (HSPC) 

 Hsp90 (HSPC) is one of the most abundant proteins 
inside the cell. Hsp90 (HSPC) plays an important role in 
maintaining normal homeostasis and acts as a scaffolding 
protein for several key enzyme and signal transduction 
systems [161-163]. So far, however, there have been 
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comparatively few reports describing Hsp90 (HSPC) in the 
extracellular environment. We have shown that increased 
plasma Hsp90 (HSPC) levels correlate with worse outcome 
in critically ill children with septic shock (Wheeler, 
unpublished data). In addition, extracellular Hsp90 (HSPC) 
induces IL-8 gene expression in cultured vascular smooth 
muscle cells in a TLR4- and NF-B-dependent manner [164]. 
Finally, a human recombinant antibody directed against 
yeast-derived Hsp90 (HSPC) has been used to treat critically 
ill patients with invasive candidiasis . In this study, 
recombinant antibody to Hsp90 plus lipid-associated 
amphotericin B produced significant clinical and culture-
confirmed improvement in outcome for patients with 
invasive candidiasis [165-168]. Given these data, it is very 
likely that future studies will demonstrate functional roles for 
extracellular Hsp90 (HSPC).   

Hsp60 (HSPD) 

 Hsp60 (HSPD) is a key mitochondrial chaperone that 
forms a complex with the chaperonin (Cpn)/Hsp10 (HSPE) 
[169-170]. Extracellular human Hsp60 (HSPD) appears to be 
involved in many autoimmune and inflammatory processes 
within the body. Some of these processes are thought to be 
triggered by a number of infectious agents through molecular 
mimicry, in which the initial host immune response to 
microbial-derived Hsp60 (HSPD) leads to a subsequent cross 
reaction to the host-derived Hsp60 (HSPD). For example, 
both Chlamydia pneumoniae Hsp60 (HSPD) and the host 
human Hsp60 (HSPD) have been detected in atheromas 
[171]. Both of these molecules were shown to have the 
ability to activate host macrophages and endothelial cells 
contributing to the progression of atherosclerosis [171]. For 
the purposes of this review however, only research involving 
isolated human Hsp60 will be discussed. 

 Circulating antibodies to human Hsp60 (HSPD) appear to 
play a role in the pathophysiology of a number of 
vasculopathies and related illnesses. For example, in an 
animal model of atherosclerosis, auto-antibodies to Hsp60 
were shown to be involved in disease progression [172]. 
Increased circulating levels of anti-Hsp60 (HSPD) antibodies 
have been found in patients with carotid artery 
atherosclerosis [173]. Elevated Hsp60 (HSPD) antibodies 
were also found in patients with other vasculopathies, such 
as borderline hypertension [174]. Increased circulating anti-
Hsp60 (HSPD) antibody titers have also been found in 
patients with coronary artery disease [175] and correlate with 
the presence and severity of disease after adjusting for 
traditional risk factors [176]. Interestingly, the antibody titers 
in coronary artery disease patients decreased after an acute 
myocardial infarction [175]. The authors speculated that a 
soluble form of Hsp60 (HSPD) must be released from the 
ischemic myocardial tissue to complex with the anti-Hsp60 
(HSPD) antibodies [175]. This hypothesis was confirmed by 
several independent groups showing increased levels of 
Hsp60 (HSPD) following acute myocardial infarction [177-
178]. Similarly, increased circulating levels of both Hsp60 
(HSPD) and anti-Hsp60 antibodies have been associated 
with an increased risk of developing coronary artery disease 
[178] and appear to correlate with increased severity of 
disease, even controlling for all other risk factors [179]. In a 
follow-up surveillance study enrolling healthy civil service 

workers, increased plasma Hsp60 (HSPD) levels correlated 
with increased plasma TNF- , psychological distress 
(primarily in women), low socioeconomic status, and social 
isolation [180], resulting in an increased propensity for 
coronary artery disease. 

 Xu and colleagues discovered an association between 

elevated circulating levels of Hsp60 (HSPD) and the 

progression and severity of carotid artery atherosclerosis 

[181]. This association was further investigated 

prospectively. Patients with a sustained elevation of serum 

Hsp60 (HSPD) were found to be at risk for the development 

of early atherosclerosis [182]. High levels were also found in 

patients with borderline hypertension which was again 

associated with the development of early cardiovascular 

disease [183]. However, when Hsp60 (HSPD) was measured 

in patients with chronic hypertension and chronic vascular 

disease, these levels were found to be similar to healthy 

controls [121, 184], potentially suggesting increased binding 

to anti-Hsp60 (HSPD) antibodies. 

 Extracellular Hsp60 (HSPD) plays a role in the 

pathophysiology of many autoimmune diseases [185]. For 

example, elevated IgG antibodies to Hsp60 (HSPD) are 

found in the sera of patients with rheumatic autoimmune 

diseases [186]. Host-derived Hsp60 (HSPD) appears to play 

a role in the regulation of autoimmune arthritis in rats [187-

188]. An antigen-specific T-cell response to Hsp60 (HSPD) 

was associated with improved outcome in patients with 

juvenile idiopathic arthritis (JIA) [189-190], possibly 

through increased IL-10 production by regulatory T-cells 

[191]. Armed with this data, vaccines against Hsp60 (HSPD) 

have shown promising results in models of arthritis and 

cyclophosphamide-accelerated diabetes [192-194]. 

 It is becoming clearer that extracellular Hsp60 (HSPD) 

plays a role in inflammation and the body’s immune 

response. To this end, we have shown that increased 

circulating Hsp60 (HSPD) levels correlates with poor 

outcome in critically ill children with septic shock [195]. 

Similar to extracellular Hsp72 (HSPA), Hsp60 (HSPD) 

appears to act primarily via the TLR4 pathway [196-197], 

though activation of the TLR2 pathway has also been 

observed [196]. Hsp60 (HSPD) activates human 

macrophages and dendritic cells to produce Th1 

inflammatory cytokines such as TNF  and interferon (IFN)-  

[198-199]. However, determining the specific cytokine 

profile may be dose dependent as both Th1 and Th2 cytokine 

profiles resulted when dendritic cells were treated with lower 

concentrations of Hsp60 (HSPD) [199]. Similar to LPS and 

extracellular Hsp72 (HSPA), Hsp60 (HSPD) may also be 

able to promote inflammation initially and then induce a 

state of tolerance [200-201], akin to the endotoxin tolerance 

phenotype. Again, the potential effects of contamination of 

the recombinant Hsp60 (HSPD) protein with bacterial 

products must be considered and assessed with the use of 

adequate controls (see discussion above). 

 Hsp60 (HSPD) also appears to activate the adaptive 

immune response. For example, Hsp60 (HSPD) can inhibit 

pro-inflammatory cytokine production and shift to an anti-

inflammatory Th2 profile in T lymphocytes [202]. However, 
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other studies have shown that Hsp60 (HSPD) increases IFN-

 production in T lymphocytes [203]. Similarly, extracellular 

Hsp60 (HSPD) has been shown to activate B-cells in a 

mixed Th1 and Th2 manner with B-cells producing both 

IFN-  and IL-10 [204]. 

Chaperonin (Cpn)/Hsp10 (HSPE) 

 As discussed briefly above, Cpn/Hsp10 (HSPE) was the 
first heat shock protein to be isolated outside the cell. In this 
case, Cpn/Hsp10 (HSPE) was isolated from the serum of 
pregnant females as early pregnancy factor (EPF) [19, 205]. 
EPF was originally believed to be essential for the initiation 
and maintenance of the developing embryo during early 
pregnancy and was later found to be homologous to rat 
Cpn/Hsp10 (HSPE). EPF appears to have growth factor 
qualities [206], as well as anti-inflammatory properties 
which are necessary for protecting the embryo from the 
mother’s own immune system [207-208]. Cpn/Hsp10 
(HSPE) is released into circulation by dividing primitive 
cancer cells [206]. Cpn/Hsp10 (HSPE) forms a complex with 
the mitochondrial co-chaperone, Hsp60 (HSPD) and assists 
with the proper folding of mitochondrial proteins, as well as 
the reactivation of denatured proteins[170]. 

 Relevant to the present discussion, Cpn/Hsp10 (HSPE) 
appears to modulate the innate immune system through 
interactions with monocytes, lymphocytes, and natural killer 
cells [208]. Disease specific animal models have produced 
compelling data describing the immunosuppressive activities 
of Cpn/Hsp10 (HSPE). For example, it was shown to 
decrease the expression of leukocyte trafficking adhesion 
molecules and the immune response in an animal model of 
multiple sclerosis and delayed-type hypersensitivity [209]. 
The inflammatory response was also suppressed in animal 
models of allograft transplantation, resulting in increased 
graft survival [210-211]. The in vitro administration of 
recombinant Cpn/Hsp10 (HSPE) appeared to inhibit LPS-
induced NF- B activation, thereby decreasing inflammatory 
cytokine and chemokine production, as well [211]. 

EXTRACELLULAR HEAT SHOCK PROTEINS AND 
SEPSIS 

 Our understanding of the relative contribution of 
intracellular versus extracellular HSPs in the 
pathophysiology of the sepsis syndrome is far from 
complete. For example, numerous in vitro and in vivo studies 
suggest that augmenting the intracellular expression of HSPs 
is beneficial to the host [5-7, 17, 212-213]. Indeed, the 
discovery of innovative methods of augmenting intracellular 
HSP expression in the clinical setting remains an active area 
of focus for several laboratories, including our own. On the 
other hand, there is compelling evidence that extracellular 
HSPs augment the host innate and adaptive immune 
response (discussed above). The immunomodulatory effects 
(i.e. either stimulatory or inhibitory) of extracellular HSPs 
are largely dependent upon contextual factors. Rather than 
viewing intracellular and extracellular HSP expression as 
two independent and mutually exclusive processes, we 
hypothesize that moderate levels of stress, such that would 
occur in critically ill patients with sepsis, increase both 
intracellular HSP expression and extracellular release of 
HSP, likely through some as yet undefined active, secretory 

mechanism. These two events result in enhanced protection 
for both the host cell, as well as cells in the immediate 
surroundings through either active uptake (and enhanced 
protection through increased intracellular HSP expression) or 
activation of stress response programs. Conversely, greater 
levels of stress further augment intracellular HSP expression 
and cause necrotic cell death, resulting in the release of large 
quantities of HSPs and causing an overzealous activation of 
the host inflammatory response through their 
immunostimulatory effects.  

CONCLUSION 

 The stress response is characterized by a rapid increase in 
both the intracellular expression and subsequent release of a 
unique group of proteins, known as heat shock proteins. 
While intracellular HSPs predominantly down-regulate the 
host inflammatory response, extracellular HSPs may 
increase or decrease the host inflammatory response. The 
extracellular HSPs are now included in a growing list of so-
called danger-associated molecular patterns (DAMPs), or 
alarmins. Further studies are necessary to better characterize 
the effects of these special proteins on the host inflammatory 
response during sepsis. 
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