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Abstract: The premature ageing Werner syndrome (WS) is characterized by the early onset of many age related pheno-

types, including graying of hair, cataracts, atherosclerosis, cancer and type 2 diabetes. Type 2 diabetes (DM2) is the loss 

of blood glucose homeostastis, due to insulin resistance and a failure of acute glucose-stimulated insulin secretion (GSIS) 

by pancreatic  cells. Early compensation for insulin resistance usually occurs through increased insulin secretion conse-

quent on increased  cell mass, requiring proliferation of  cells; DM2 progresses if there is failure of compensation. How 

loss of the WRN DNA helicase/exonuclease in WS contributes to DM2 has long been a puzzle. Loss of function muta-

tions in WRN result in problems with DNA replication, repair and recombination, consequential genomic instability and 

premature onset of cellular senescence. Here, I suggest that the high prevalence of DM2 in WS is a consequence of senes-

cence of WS  cells, with islet cells undergoing highly premature failure of the hyperproliferative compensatory stage, 

rapidly leading to late stage diabetes. The additional contribution to DM2 progression by pro-inflammatory cytokines is 

discussed.  

WERNER SYNDROME 

 Loss of the WRN helicase/exonuclease results in the 
premature ageing Werner’s syndrome, recapitulating many 
of the features of normal ageing [1]. Whilst WS patients 
usually display short stature, failure of the pubertal growth 
spurt, very low body mass index and loss of subcutaneous 
body fat, they also suffer from altered triglyceride metabo-
lism and significant abdominal fat deposition, together with 
a very high incidence of atherosclerosis and arteriosclerosis 
[2]. In addition, patients show insulin resistance, accompa-
nied by low levels of adiponectin and high circulating levels 
of plasma TNF-    [3, 4]; type 2 diabetes mellitus (DM2) is a 
highly penetrant phenotype [2]. Thus the majority of Werner 
syndrome patients develop clinically important DM2, and 
associated acceleration of atherosclerosis. 

 How does the loss of a single protein, WRN, lead to al-
tered lipid and glucose metabolism and a strong predisposi-
tion to develop type 2 diabetes? In vitro, the WRN protein 
has been characterized as a 3’-5’ helicase of the RecQ family 
[5] and it also possesses a 3’-5’ exonuclease activity within 
an N terminal domain unique amongst the RecQ family [6]. 
Cultured human WS fibroblasts and lymphoblastoid cells 
show very premature onset of replicative senescence, with 
some WS patient fibroblast lines undergoing senescence 
after only ~20 population doublings, compared with the 50-
60 of normal fibroblasts [7]. This premature senescence is 
associated with significant defects in DNA repair and re-
combination, and particularly a problem with replication fork 
progression over unusual DNA structures [8-10] caused ei-
ther by endogenous template elements such as fragile X sites 
[11, 12] or by exogenous DNA damage (reviewed in [13]). 
The resulting DNA instability appears to trigger a stress 
pathway mediated through p38 MAP kinase, together with  
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expression of genes such as p16
INK4/6 

and p21
CDKN1

 that trig-
ger and maintain the senescent state (reviewed in [14]). In-
hibiting the stress signaling pathway through use of inhibi-
tors of p38 kinase (MAPK, also known as stress-associated 
protein kinase, p38 SAPK) such as SB203580 restores an 
essentially normal cell morphology and proliferation kinetics 
to Werner’s syndrome fibroblasts [15], emphasizing the im-
portance of stress and DNA damage signaling in the pathol-
ogy of WS. Because of the rarity of the disease, the senes-
cent phenotype of many other WS cell types is unknown, 
though it is likely that many rapidly proliferating cell types 
will, like fibroblasts and lymphoblastoid cells, progress rap-
idly to senescence. 

STAGES IN DEVELOPMENT OF TYPE 2 DIABETES  

 Type 2 diabetes (DM2), also known as non-insulin 
dependent diabetes (NIDD) usually occurs gradually over the 
course of years, with insulin resistance preceding develop-
ment of the full clinical disease. Five stages have been pro-
posed in disease progression (reviewed in [16]). In response 
to insulin resistance and mild glycaemia, a compensatory 
stage 1 occurs with increased insulin production arising pre-
dominantly as a consequence of increased  cell mass via 
proliferation (also known as  cell replication), neogenesis 
and hypertrophy of  cells. Stage 2 represents a stable adap-
tation phase in which true glucose regulation is not fully 
maintained and where changes to  cell activity and pheno-
type occur, including significant shifts in gene expression 
leading to dedifferentiation and loss of acute glucose-
stimulated insulin secretion (GSIS). Stage 3 is generally 
called a decompensation phase, with the suggestion that  
cell mass becomes inadequate, although a recent systems 
modeling approach suggests that this so-called decompensa-
tion stage actually represents a phase when the system is still 
trying to compensate for ongoing functional and cellular loss 
(Armin Rashid, pers. comm.) by hyperproliferation of pan-
creatic islet cells to provide more insulin; failure of this hy-
perproliferative stage leads to true hypoproliferative decom-
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pensation stage 4. Although in autoimmune type 1 diabetes, 
this can rapidly progress to stage 5 with ketosis, stage 4 is 
usually stable in DM2. Loss of up to half of the  cell mass 
has been observed post mortem in patients with DM2 [17] 
and rodent studies show major dedifferentiation [18]. Al-
though increased apoptosis of  cells is often assumed to 
account for loss of cell mass, inadequate  cell replication or 
neogenesis with normal rates of apoptosis could equally con-
tribute to a decrease in cell mass, since this is normally 
maintained through fine balance between cell birth (prolif-
eration and neogenesis) and cell death (apoptosis and, to a 
lesser extent, necrosis) [16]. Indeed, enhanced apoptosis was 
not observed in partially pancreatomized rats in stage 4 dia-
betes [19]. 

 To compensate for a decrease in  cell number or dimin-
ished cell function (e.g. on dedifferentiation of pre-existing  
cells), there is a requirement for rapid  cell proliferation. 
However, when cultured in vitro,  cells proliferate poorly, 
reaching a state of replicative senescence within only 10-15 
population doublings, with increased SA-  gal staining, 
shortened telomeres and increased expression of p16

INK4/6 

[20], all hallmarks of senescence. Interestingly, ectopic ex-
pression of hTERT, while restoring telomerase activity in the 

 cells, did not rescue them from senescence [20]. Normal  
cells therefore undergo rapid senescence in vitro, and it is 
likely that a similar process occurs in vivo [21]. If the cells 
are additionally lacking WRN helicase/exonuclease and thus 
even more prone to senesce early, as in WS, it is highly 
likely that there will be a premature inability to compensate, 
with rapid progression to the more clinically severe later 
decompensation stages of diabetes. This could account for 
the high incidence of DM2 in WS patients. 

DRIVERS OF SENESCENCE IN WS  CELLS 

 The altered lipid and glucose metabolism observed in 
DM2 may in part be consequent on peroxisome proliferator-
activated receptor (PPAR) dysregulation [22-24], and further 
exacerbated by inflammation and oxidative damage. Indeed, 
a role for inflammatory cytokines, particularly interleukin-6, 
has been demonstrated in the pathogenesis of DM2 in WS 
[25]. Recently, IL-6, among other inflammatory cytokines, 
has been shown to relay signals for oncogene-induced senes-
cence [26, 27]. Moreover, WS patients show high levels of 
circulating inflammatory cytokines such as TNF-  [3]. In-
flammation contributing to tissue ageing is highly likely 
[28], and such inflammation leads to formation of reactive 
oxygen species at high local concentrations [29]. Interest-
ingly, WS cells are hypersensitive to oxidative damage not 
simply at the level of DNA repair [30]. Oxidative damage 
may drive senescence through telomere shortening [31], and 
it has been observed that white blood cells from diabetic 
patients with microalbuminuria (indicative of oxidative dam-
age to the kidney) have shorter telomeres than those from 
diabetic patients without oxidative kidney damage [32]. 
However, is unlikely that such telomere shortening contrib-
utes significantly to  cell senescence, since, as noted above, 
hTERT expression does not extend the proliferative capacity 
of  cells in vitro [20]. A discussion of senescence of other 
cells such as endothelial progenitor cells, whilst probably 
important in the overall pathogenesis of DM2, is beyond the 
scope of this paper. 

 A combination of accumulated DNA damage, inflamma-
tion and oxidative stress resulting from altered metabolism, 
and high levels of stress signaling are probable drivers of 
cellular senescence (reviewed in [1, 14]). The greatly accel-
erated onset of cellular senescence in Werner’s syndrome 
associated with early loss of proliferative capacity therefore 
means that the early response to insulin resistance i.e. hyper-
proliferation of islet cells, is therefore likely to be limited. 
Interestingly, mice mutant for the cyclin dependent kinase 
Cdk4 show normal early development of the pancreas, but 
islet function requires Cdk4, with null mice showing insulin 
resistance [33]. This is entirely consistent with a requirement 
for proliferation in the development and function of the pan-
creas: human WS patients show stunted overall growth, as 
do the Cdk4 mice, and perhaps they share also incomplete 
growth and inadequate functioning of the pancreas due to a 
deficit in cell proliferation caused, in the case of WS, by 
premature cell senescence. Similarly, cyclin D2 null mice 
show a post-natal deficit in pancreatic  cell replication and 
associated (mild) diabetes [34]. Developmental deficits in 
the pancreas cannot therefore be ruled out at this stage as a 
significant factor in subsequent diabetes in WS.  

 Given the imbalance of lipid metabolism in WS patients 
(as modeled in mice mutant for the helicase domain of  
WRN - [35]), type 2 diabetes is an inherent risk. Mice null 
for WRN fed on a diabetogenic diet do indeed succumb to 
diabetes very readily [36], showing fatty change in the liver 
and pancreatic hyperproliferation. What is not yet clear is 
whether such mice show a rapid failure of the hyperprolifera-
tive phase due to the early onset of senescence, as predicted 
here. There is some conflict in the literature as to the impact 
of various naturally occurring polymorphisms of WRN in 
terms of DM2 predisposition; in a Japanese study, the 
Cys1367Arg polymorphism protects against diabetes [37], 
whilst in Chinese patients it has been reported that the same 
polymorphism is associated with early onset of diabetes [38]. 
Whatever the impact of the polymorphism (and it may be 
genuinely different in different genetic backgrounds), it is 
clear that loss of WRN function strongly predisposes to the 
development of insulin resistance and type 2 diabetes.  

TREATING DIABETES IN WS 

 Various complications associated with insulin resistance 
including dyslipidemia and visceral fat deposition are likely 
to contribute to the high risk of cardiovascular disease in WS 
[1, 2]. Treating WS patients with the PPAR   agonist piogli-
tazone, which regulates transcription of insulin-sensitive 
genes (including MAP kinases, glucose-6-phosphatase, py-
ruvate dehydrogenase and NAD(P)H dehydrogenase, to 
name only a few - [39]) leads to beneficial changes in fat 
distribution and serum adiponectin levels, together with a 
decrease in insulin resistance [3, 4, 40, 41]. Stress kinase 
signalling through the p38 MAP kinase pathway is elevated 
in diabetes (and also induced in response to high glucose 
concentrations - [42]). Given the remarkable impact of MAP 
kinase inhibitor SB203580 in restoring a normal proliferative 
phenotype to WS fibroblasts [15], it is certainly worth testing 
in vivo-tolerated analogues such as BIRB 796 [43] in murine 
models of WS to determine whether they positively impact 
on pancreatic function through restoration of islet cell prolif-
eration. In this context, it is worth noting that BIRB 796 
treatment of humans leads to a significant reduction in TNF-
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 [44], a key inflammatory cytokine that probably contrib-
utes to DM2 pathogenesis in WS [3, 25]. Thus p38 MAPK 
inhibition might result both in enhanced  cell proliferation 
and a decrease in the inflammatory load on the pancreas 
which would otherwise drive senescence. However, as a note 
of caution, is possible that upregulation of p38 MAPK may 
be important in preventing islet  cell apoptosis [45], and as 
such, its inhibition may lead to loss of the very cells that are 
required to prevent development of DM2. 
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ABBREVIATIONS 

Cdk4 = cyclin dependent kinase 4 

DM2 = diabetes mellitus type 2 

GSIS = glucose stimulated insulin secretion 

IL6 = interleukin 6 

MAPK = mitogen activated protein kinase  

PPAR = peroxisome proliferator-activated receptor 

SAPK = stress associated protein kinase 

TNF  = tumour necrosis factor alpha 

WRN = Werner syndrome helicase/exonuclease 

WS = Werner syndrome 
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