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Abstract: This work is devoted to the study of the viscosity and relaxation of flexible polymer chains in dilute solutions. 

Our aim was to determine the relation between the intrinsic viscosity and the relaxation times of the polymer internal 

normal modes within the bead-spring approach. In the theoretical part we generalize the Zimm theory of the polymer dy-

namics by taking into account the permeability of the solvent into the polymer coil interior and the hydrodynamic interac-

tions between different coils. For theta solvents the polymer relaxation is described as depending on the draining parame-

ter and the concentration of the coils. Using the calculated relaxation times, the intrinsic viscosity has been obtained. The 

free-draining (Rouse) and non-draining (Zimm) expressions for this quantity follow from the theory as special cases of in-

finite and zero permeability, respectively. In the experimental part we studied the viscosity of high-molecular poly(N-

vinyl-2-pyrrolidone) water solutions at different temperatures down to such low concentrations when conventional capil-

lary viscosimetry fails to probe the viscosity without a complicated additional treatment of the data. Using a new Couette-

type viscosimeter with a magnetically suspended rotor allowed us to directly determine the intrinsic viscosity. It notably 

differs from the previous values reported in the literature. By comparison of the data to the theory, the quantities used in 

the description of the universal polymer behavior in solution have been estimated. 

Keywords: Flexible polymers, extremely dilute solution, viscosity, relaxation times. 

INTRODUCTION 

 For the study on dynamics and conformations of polymer 
chains in solution, precise knowledge of polymer relaxation 
times, corresponding to different modes of motion of the 
chain, is required. Among the methods used in the determi-
nation of the polymer longest relaxation time, which corre-
sponds to the motion of the chain as a whole [1, 2], various 
viscosimetry techniques are widely used. However, the in-
terpretation of these experiments encounters serious difficul-
ties. This is due both to problems with the treatment of ex-
perimental data [3, 4] and to the fundamental problems with 
the theory of viscosity of polymer solutions [5, 6]. The pre-
sent contribution deals with the experimental and theoretical 
study of dilute polymer solutions. Although commercially 
used polymer solutions are usually nondilute (an important 
exception being the solutions used in turbulent drag-reducing 
flows), there are several reasons for the interest in dilute so-
lutions: they are important for the characterization of a 
polymer’s molecular weight, stiffness, branching, interaction 
with solvent, and for understanding hydrodynamic forces in 
the solution, free from the complications of intermolecular 
entanglements [5]. Note that there are several criterions in 
the literature concerning the term “dilute”. We shall consider 
as dilute such solutions in which the polymer coils are well 
separated so that the effects of overlapping of different coils 
can be neglected. The volume fraction of the coils in solution 
will be small (often the criterion 

  
c < 1 / [ ]  is used, where c  
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is the mass or number concentration of the polymers and [ ] 

is the corresponding intrinsic viscosity of the solution) but 

different chains still interact hydrodynamically with each 

other. It is commonly accepted that the reduced viscosity of 

dilute solutions, red [ ( ) ] /( )c c= , should linearly de-

pend on c: red = [ ](1 + kH[ ]c +...), where  and (c) are 

the viscosities of the solvent and solution, respectively, and 

kH is the Huggins coefficient. Alternatively, the Kraemer 

expression for the viscosity is (1/c)ln rel = [ ](1 + kK[ ]c 

+...), where kK is Kraemer’s constant. At low c the latter 

quantity should obey the equation kK  1/2 - kH. However, in 

practice an anomalous, strongly nonlinear, behavior of 
red

is 

observed at very low c where the linearity is most of all ex-

pected [3, 4], which is one of the mentioned problems with 

the data treatment in the conventional capillary viscosimetry. 

In our work we have avoided these problems using a distinct 

way of measurements that allowed us to directly observe the 

linear dependence of red on c. This is one of the main 

achievements of the work. Other our efforts concerned the 

theoretical description of the results. The main idea comes 

from the known but often neglected fact that the phenome-

nological parameters used in the description of polymer be-

havior should be determined from experiments coming from 

a model, which includes the hydrodynamic interaction (HI) 

between the beads and does not a priori assume the imper-

meability of the coil with respect to the solvent. This means 

that, contrary to the usual approach to the interpretation of 

experimental data, we do not consider the polymer dynamics 

in its non-draining limit, which is the opposite case to the 

free-draining (or fully permeable) model [1, 2]. In the latter 
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(Rouse) model [7] the solvent is nonmoving; in the Zimm 

generalization [8] the motion of beads leads to the flow of 

the solvent which, in its turn, influences the bead movement. 

Only for infinitely strong HI the coil behaves as an impene-

trable body. A correct theory must describe both the cases 

and contain these models as limits of infinitely small (Rouse) 

and large (Zimm) HI. The strength of HI is connected with 

the draining parameter h that appeared already in the famous 

Kirkwood and Riseman (KR) work [9]. There has been much 

debate concerning the necessity to take into account the 

draining effects in the polymer dynamics. Most of investiga-

tors use exclusively the Zimm model in the data description. 

Although a number of experiments on specific solutions 

really indicates that the draining is negligible, these results 

cannot be considered generally valid. Actually, there are 

experiments that bear witness against this simplification. The 

first clear observation of the draining effect for flexible 

polymers, using static and dynamic light scattering (DLS) 

experiments and viscosimetry, was reported in [10]. Some 

newer DLS experiments revealing nonuniversality effects in 

the polymer dynamics have been recently discussed in [11]. 

A theory that accounts for polymer permeability has been 

successfully applied in the description of the fluorescence 

correlation spectroscopy of monomer dynamics in DNA 

coils [12]. Here this theory is used to obtain the quantities 

observable in viscosimetry of polymer solutions. The theo-

retical results, along with some other results from the litera-

ture, are used to describe the viscosity measurements that we 

have carried out using an original rotational viscosimeter 

[13].  

THEORY 

 According to the Flory theory of steady-state transport 

processes in dilute polymer solutions [14], the ratio of the 

intrinsic viscosity [ ] to 
  
R

G

3
, where 

 
R

G
 is the gyration ra-

dius, is a universal constant (called Flory-Fox factor ) for 

long polymer chains (without excluded volume) for which 

the ratio 
  
R

G

2
/ M is independent of the polymer mass M. This 

result is consistent with the theories of KR [9] and Zimm [8] 

in the nondraining limit with preaveraged HI and has been 

widely used for a long time. However, as mentioned in In-

troduction, various experiments indicate the nonuniversality 

of , possibly caused by draining effects usually ignored by 

experimentalists. From the theoretical point of view, the ne-

cessity to take into account these effects (i.e., to join the 

Rouse and Zimm description of polymer dynamics) is seen 

from the following consideration. The basic equation within 

the bead-spring models of polymer dynamics is the equation 

of motion for the position vector of the bead [1, 2], 

   

dx
n

dt
=

1
f

n

ch
+ f

n( ) + x
n( ) .          (1) 

 Here, 
  
f

n

ch
 is the force on the nth bead from the neighbor-

ing beads, 
  
f

n
 is the random force due to the motion of the 

molecules of solvent, 
  

x
n

( )  is the velocity of the solvent, 

and  is the friction coefficient (for a spherical particle  = 

6 b, where  is the solvent viscosity and b is the bead ra-

dius. As distinct from the theory by Rouse [7], where the 

solvent is nonmoving ( = 0 ), Eq. (1) takes into account the 

HI [8]. Within the Zimm theory the velocity field 
  

x
n

( )  is 

expressed through the Oseen tensor H , 

   

dx
n

dt
=

1
f

n

ch
+ f

n( ) + H x
n

x
m( )

m n

f
m

ch
+ f

m( )         (2) 

 In the sum m  n since 
  

x
n

( ) in the point n is created by 

all other N - 1 beads in the chain except the nth one. If one, 

following [2], formally defines the Oseen tensor for n = m as 

   
H

nn
=

nm
/ , the summation in (2) can be extended to all n, 

m to include the first term on the right. Usually the contin-

uum approximation with respect to n is used 

(
   
x

n
t( ) x t, n( ) ). After this step, however, the term ~

-1
 

disappears. One should require that the Zimm model gener-

alizes the simpler Rouse model. If we act as described above, 

this is not the case: the two models are independent. Moreo-

ver, imagine that in the Rouse model (with 0= ) we lose in 

the continuum approximation the term ~ 
-1

 in (1); the model 

would become meaningless. Thus, to generalize the Rouse 

model, we have in the continuum approximation to keep the 

~ 
-1

 term in (2). The m = n term in the sum can be defined 

arbitrarily since it will not influence the integration. As a 

result, the Rouse-Zimm equation in the continuum limit 

should be 

   

x t, n( )
t

=
1

f ch t, n( ) + f t, n( )  

   

+ dmH n, m( )
0

N

f ch t, m( ) + f t, m( )          (3) 

 Depending on the polymer parameters, the model gives 

the description of the polymer behavior more close to the 

Rouse or Zimm dynamics. In general, however, both terms 

on the right side of Eq. (3) should be kept in consideration. 

After this correction of the method described in the mono-

graph [2], one can follow the standard way and obtain, in 

particular, the spectrum of polymer internal modes in theta 

solutions, the relaxation rates of these modes will have a 

particularly simple form 
  
1 /

p
= 1 /

pR
+1 /

pZ
, where the 

limiting relaxation times are given by the known formulas 

[1] (a is the mean-square distance between the beads long 

the chain) 

  
pR

=
2N 2a2b

k
B
Tp2

,  

  

pZ
=

N 1/2a( )
3

3 p3( )
1/2 k

B
T

.          (4) 

 The quantity h(p) = 
  pR

/
pZ

 = 
  
h / p , with the drain-

ing parameter 
  
h = 2 3N / b / a , indicates the strength of 

HI, i.e. whether the dynamics is of the pure Zimm (h >> 1) 
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or Rouse (h << 1) type. The Oseen tensor for the case when 

the flow is affected by other polymers in solution (with the 

concentration c) has been calculated in [15]. In this case the 

Rouse relaxation time remains the same as in (4), but the 

Zimm time pZ depends on c, so that at small c 

  
pZ

c( ) = pZ
1+

N

6 p

fa2

c ... .          (5) 

 The friction coefficient of the coil is connected with its 

diffusion constant by the Einstein relation D = kBT/f with 

 
D = D

R
+ D

Z
, where 

  
D

R
= k

B
T / (6 Nb )  and 

  
D

Z
/ D

R
= 4 2h / 3 , which corresponds to the KR result [9] 

(but disagrees with the Flory version [14] according to which 

the ratio between RG and the hydrodynamic radius deter-

mined from D is a universal constant). Having the relaxation 

times, the steady-state viscosity can be calculated according 

to the known formula [5] 

  

c( ) = +
1

2
k

B
Tc

p
p=1

c( ) .          (6) 

 Using this expression and (5), the intrinsic viscosity and 

Huggins coefficient can be calculated as the zero and first 

order coefficients in the c-expansion of red. Let us first con-

sider the Zimm limit of (6). If h  , [ ]Z = limc 0[ (c) - 

]/( c) in the volume/mass units will have the form  

  

[ ]
Z
=

N
3/2

a
3

(12 )1/2

N
A

M
p

3/2

p=1

=
0

N
3/2

a
3

M
,         (7) 

where NA is Avogadro’s number, M is the polymer molar 

mass, and 0 = 2.56 10
23

 is the Flory-Fox factor. Note that 

this value results from several approximations. The Oseen 

tensor has been preaveraged over the equilibrium (Gaussian) 

distribution of beads and the nondiagonal elements in the 

resulting matrix have been neglected [2]. More exact nu-

merical calculations give slightly different values of 0 [6]. 

When the preaveraging procedure is avoided, the second-

order perturbation theory gives 0 = 2.66 10
23

. It is seen 

from (4) and (7) that the relaxation times can be directly ob-

tained from the viscosity measurements: the longest relaxa-

tion time of the Zimm polymer of mass m is 

  1Z
~ [ ]

Z
m / T with the proportionality constant 

  

N
A

/ 3
0
k

B( ) . In theta solvents [ ]Z and 1Z are propor-

tional to (N
1/2

a)
3
. In good solvents the dependence on N 

changes to N
3

,  = 0.6 [1]. For arbitrary strength of HI [ ] 

should be a function of h. Obtaining the dependence of [ ] 

on h for good solvents needs further investigations; for theta 

solvents it can be written as in Eq. (7) but with 0 replaced 

by the following function of h [15] 

  
0
(h) =

0
p 3/2

p=1

1

p 3/2

1+ p1/2 / hp=1

.         (8) 

 This result for [ ] is similar to that of KR but with a sig-

nificant difference due to a different h.  

 When the polymer shrinks to the globule as it is observed 

in poor solutions, and is completely impenetrable to solvent, 

it can be regarded as a solid sphere of the volume V. Then 

the familiar Einstein theory of the viscosity of suspensions 

can be used. In this approach the intrinsic viscosity and the 

hydrodynamic radius are readily expressed as 

  
[ ] = 2.5

VN
A

M
,  

  

R
H
=

3[ ]M

10 N
A

1/3

.         (9) 

 Thus, having measured the viscosity of a polymer solu-

tion, the above formulas (7) – (9) can be used to determine 

the intrinsic viscosity and then the polymer size. In theta 

solution the polymer relaxation times, as well as the combi-

nation N
1/2

a or the gyration radius
  
R

G
= N / 6a can be 

found, assuming the Flory-Fox factor is known. Alterna-

tively, if RG is known, the function (h) can be determined 

from [ ] and from Eq. (8) the draining parameter h can be 

extracted. Based on the KR formula for D (see the text after 

Eq. (5)) also the hydrodynamic radius of the chain can be 

evaluated from the relation
  

R
G

/ R
H
= 8 / 3+ 2 / h . The 

polymer radii are measured also in light scattering experi-

ments. Such independent data then could serve for testing the 

proposed theory, in particular, the importance of draining in 

the polymer dynamics. 

EXPERIMENTAL 

 In our experiment, the Couette-type viscosity and density 

meter with a magnetically suspended rotor was used. The 

device was constructed especially for measurements of mac-

romolecular solutions while scanning temperature as well as 

at constant temperature. Its detailed description is given in 

[13]. Here we only note that in this rotational viscosimeter 

the whole inner cylinder is immersed into the sample and 

works without mechanical contact with the outer parts of 

device. The requirement of constant shear rate (it can vary in 

the range from 20 to about 130 s
-1

, when Taylor vortices 

appear in the volume of the sample thus disturbing the Cou-

ette flow around the rotor) is fulfilled in the device and the 

elimination of the influence of surface forces on the bulk 

phase is guaranteed. Before our measurements the independ-

ence of the results on the value of the shear rate has been 

verified. Then the device was calibrated at the shear rate 80 

s
-1

, which was then used throughout the experiment. The 

rotor and sample chamber are removable and made of glass 

for simple cleaning and preparation of samples. For our ex-

periments it was important that no influence of the polymer 

film eventually adsorbed on the surface of the cylinder on 

the measured viscosity has been detected. This effect reveals 

itself mainly at the lowest measured concentrations c and, as 

in the works [3, 4], would lead to qualitatively different de-

pendences of the measured viscosity on c if compared to the 

moderately diluted solutions. Since this effect has not been 

observed in our experiment, we suppose that the measured 

viscosity depends only on the known polymer concentration 

in the solution. The accuracy of both the viscosity (if 

changed in the range 0.3 - 300 mPas) and density (0.7 - 1.4 

g/ml) measurements is  0.1% and the temperature can be 
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scanned with the accuracy 0.02 ºC from 5 to 85 ºC [13]. We 

probed the viscosity of aqueous poly(N-vinyl-2-pyrrolidone) 

(PVP) solutions within the 0.1 - 4 mg/ml range of c at differ-

ent temperatures. Our attempts to study lower concentrations 

leaded to unreliable results weighted with too large experi-

mental errors. PVP was a commercial product from Sigma 

Chemical Co. with molecular weight 3.6·10
5
. The volume of 

the studied samples was 1.6 ml. The samples were always 

cooled to 15 ºC and then heated up to 40 ºC. The scan rate 

was 15 ºC per hour.  

 

 

 

 

 

 

 

 

 

 

Fig. (1). Viscosity dependence on the polymer concentration at 

three different temperatures. The lines represent quadratic polyno-

mial fits. In all the cases (0)/  = 1, with errors less than 0.2%.  

 

 A fit of the measured viscosity rel = (c)/  to a quad-

ratic polynomial (see Fig. 1) was used to determine the vis-

cosity functions red and (ln rel)/c. Examples of the results 

are shown in Fig. (2). Both these quantities have been fitted 

by linear functions. These straight lines (Huggins and Krae-

mer plots) have common intercepts (the difference being less 

than 1%) that coincide with the intrinsic viscosities [ ] at 

given temperatures T. By this way the T dependence of [ ] 

has been determined. 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Huggins and Kraemer viscosity functions from dilute to 

extremely dilute PVP solutions.  

 

 In Ref. [4], the range of concentrations from approxi-

mately 0.15 to 4 mg/ml has been studied at the temperatures 

T = 20, 25, and 35 °C. The deduced red at these tempera-

tures changes roughly in the following intervals: 0.125-

0.150, 0.120-0.145, and 0.110-0.135 (ml/mg). These changes 

correspond to those in our experiments, however, the abso-

lute values of our results notably, by a factor of 1.3-1.4, ex-

ceed the results [4]. Due to this, not only [ ] but also kH are 

different. So, the values of kH found by us are from about 1.5 

to 1.9 times smaller than kH as we have estimated them from 

the data [4]. The obtained intrinsic viscosities [ ] (in ml/mg) 

at different temperatures are as follows: 20°C: 0.166, 25°C: 

0.163, 30°C: 0.157, 35°C: 0.151, 40°C: 0.145. Correspond-

ingly, the Huggins (Kraemer) coefficients at these tempera-

tures are 0.246 (0.212), 0.251 (0.209), 0.289 (0.188), 0. 347 

(0.154), and 0.399 (0.121). The absolute errors of [ ] de-

crease with increasing temperature from 0.020 ml/mg at 

20°C to 0.010 ml/mg at 40°C. These errors come mainly 

from the quadratic fit to the data on rel (in comparison with 

the fits to rel, the errors from the linear fits to red are negli-

gible). As distinct from the works [3, 4], no additional treat-

ment of the data was necessary. Note that while the addi-

tional procedure of the data handling in [3, 4] seems to be 

meaningful, a possible reason for the discrepancy with the 

numerical values from these works could originate in the 

change of the constants K and tk, supplied by the manufac-

turer and used for the determination of viscosity via the 

equation  = K (t - tk), where t is the measured time of the 

flow of the sample through the capillary (note that the equa-

tion (1.1) for  in [4] is too simple to be directly used for the 

precise determination of the viscosity). These constants de-

pend on the viscosimeter geometry and when the inner ra-

dius of the capillary changes due to the adsorption of poly-

mers, K and tk also change thus altering the determined vis-

cosity. In particular, when the inner radius of the capillary 

changes due to the adsorption of polymers, K and tk also 

change thus altering the determined viscosity. 

 The theta temperature T  of PVP in pure water has been 

determined in studies of PVP in water containing salts. By 

extrapolation to the zero concentration the theta temperatures 

of such systems, T  was found to be 413±5 K in Ref. [16] 

and 420±7 K in [17]. Our systems at these temperatures can-

not be studied experimentally. However, assuming universal 

character of the theory presented for theta solutions, one can 

till determine the polymer parameters. This can be done as 

follows. It has been experimentally verified (see, e.g., [18] 

and refs. therein) that the viscosity of long polymer solutions 

depends on the temperature as 
  
= Aexp(B / T ) , where 

  
B = B

0
+ ( M )c and 

  
ln( A / A

0
) = ( M )c , with A0 and B0 

being the values for the solvent. By comparison of this for-

mula with the representation of viscosity at c  0, 

( ) (1 [ ] ...)c c= + + , one finds 
  
[ ] + / T . For the 

given M, we have then determined from our experiment the 

constants  = 90.334/T K ml/mg and  = -0.142 ml/mg. 

Thus, [ ]  0.077 and 0.073 ml/mg for 413T =  and 420 

K, respectively. The problem in these estimations is in the 

fact that from the beginning we cannot judge on the degree 

of draining of the studied polymers, i.e., we have no infor-

mation on the value of h in Eq. (8). Assuming a complete 

impermeability of the PVP polymers [19], we have deter-
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mined from Eq. (7)  N a = 46.65 nm using the value 
 
[ ] = 

0.075 ml/mg as [ ]
Z

and the polymer mass per mole M = 

360 kg. The gyration radius RG = 19.04 nm and the corre-

sponding hydrodynamic radius for Zimm polymers is 

  
R

H
= 3 R

G
/ 8 = 12.66 nm. The longest relaxation time 

from the formula given after Eq. (7) is of order of μs, for 

example, at T = 413 K it is estimated as 1Z = 1.17 μs. 

 Since the experimental temperatures are well below the 
theta point, it is reasonable to estimate the polymer radius 
using Eqs. (9). So, we obtain RH = 20 nm for the hydrody-
namic radius. This is close to the value 18.95 nm found in 
[19] for the same PVP mass at the same temperature, al-
though the measured viscosity in that work leads to [ ] = 
0.118 ml/mg, which is a value notably lower than [ ] = 
0.163 ml/mg at 25°C from our experiment. In any case, both 
values of RH are larger than the above estimated value at 
theta temperature. This result needs a special consideration. 

CONCLUSIONS 

 One would expect that from a variety of polymeric sys-
tems the dilute solutions of flexible polymers are particularly 
suitable for theoretical description and interpretation of ex-
perimental data. However, a number of long-standing prob-
lems shows that these systems are in fact very complicated. 
For instance, it is not clear why some solutions in the region 
of time and space scales much exceeding the atomic ones 
behave universally as predicted by the Zimm theory, and the 
other do not. It concerns various observed characteristics of 
polymer solutions, in particular their viscosity, which was 
the subject of the present work. Being motivated by the vis-
cosimetry experiments that demonstrated an anomalous be-
havior of the viscosity at low concentrations of polymers, we 
have realized experiments, which, as distinct from the tradi-
tional capillary viscosimetry, yielded the expected linear 
dependence of the reduced viscosity on polymer concentra-
tion. In addition, the obtained solution characteristics, such 
as the intrinsic viscosity, notably differ from their values in 
other experiments. At the same time, some of our results are 
rather surprising and cannot be explained within the known 
theories. This relates, e.g., to the temperature dependence of 
the intrinsic viscosity or an unexpectedly small value of the 
hydrodynamic radius of polymer coils in theta conditions. 
The model developed by us for the viscosity of polymer so-
lutions does not solve these problems. Partially this is due to 
the lack of independent (not viscosimetric) information on 
the studied systems and the absence of the model develop-
ment for good and poor solutions. However, we believe that 
the starting point of the used approach, which consists in the 
necessity to take into account a nonzero permeability of the 
polymer with respect to the solvent, is inclusive. The perme-
ability (or draining) breaks the universality conception since 
it leads to an additional parameter which is different for dis-
tinct polymers even in the “universal” region of their behav-
ior. This phenomenological parameter then should appear in 
various polymer characteristics, such as the polymer radii or 
relaxation times. The idea goes back to the classical work by 
Kirkwood and Riseman [9] but is mostly ignored by experi-
mentalists. Taking into account the hydrodynamic interac-
tions between different polymer coils in theta solutions, we 

have obtained formulas for the individual polymer relaxation 
times and the solution viscosity at low concentrations. In 
particular, the KR result for the intrinsic viscosity has been 
corrected. At present, no theory of the viscosity of polymer 
solutions can be considered as commonly accepted. We thus 
believe that the used experimental method and the obtained 
results could be of importance for a further development of 
the polymer solution rheology.  
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