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Abstract: Gates that transfer objects within their capacity, without formation of queues, are considered in a combinatorial 

framework. The number of different ways, 
  
I m,n,( ) , n objects can pass randomly an array of m gates, each with 

constrained capacity , is used to characterize its performance. Two gate distributions were formulated and their properties 

studied. The first, n dependent distribution was found to be symmetric, whereas the second,  dependent distribution is 

skew. These properties persist also in the case of multivariate gate distributions. In the latter case, the expectation and 

variance turn to have additive properties, respectively. 

INTRODUCTION AND STATEMENT OF PROBLEM 

 Many service systems provide access or exist in the form 
of gates. This is typical of arrays of cashiers in large retail 
and discount stores, such as supermarkets and warehouses, 
cashiers and gates in stadiums and amusement parks, toll 
plazas, tellers in banks, security checks in airports, and 
services provided by local and national authorities to the 
public in municipality and government agencies. Gates are 
commonplace in computational hardware. Systems that 
transfer information and facilitate communication, e.g. 
telephone exchange centers, can be also viewed as transfer 
gates for incoming calls. 

 Devices for purification of materials often rely on 
differential capacity for mass transfer, whereby the slower 
material is separated across a barrier from the faster one. 
Gate systems can be characterized by their number, capacity 
per gate and variability, e.g. if there are different gates in the 
array. We define an ideal gate system as one that operates 
within its capacity range so that no queues, delays or 
blockage of passage can occur. This is an ideal situation that 
guarantees customer or user satisfaction, and hence must be 
the target of any advanced design. If the approach to the 
array of gates is random, then its performance is enhanced 
with an increase in the number of ways it can be passed 
within the limits of its capacity. Thus, we are interested in 
the conditions that provide the maximum number of ways in 
which an assembly of identical objects can pass the gate 
array randomly, without exceeding its capacity and avoiding 
the formation of queues.  

 We explore the sensitivity of the array to a unit change in 
the object transfer capacity per gate. We also consider 
heterogeneous arrays comprising sections of gates with 
different capacities. The studied gate systems is viewed in 
the context of two new distributions, which are functions of 
the number of gates, their specific capacity, and the number 
of passing objects or entities. 

 In the first gate distribution, the number of passing 
objects serves as the random variable, while the number of  
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gates and the capacity per gate are set as system parameters. 
In the second gate distribution, the capacity per gate serves 
as the random variable, while the number of gates and 
passing objects turn system parameters. The first gate 
distribution is shown to be symmetric for uniform as well as 
heterogeneous gate arrays. In contrast, the second gate 
distribution is skew, irrespective of the gate array being 
uniform or not. Furthermore, it is also self shifting with 
respect to the range wherein it is defined. The symmetry of 
the first gate distribution facilitates a good fit, in a wide 
range of the number of gates, capacity limit and passing 
objects, with the normal distribution having the same 
expectation and variance.  

 Finally, these gate distribution facilitate analysis and 
optimization of performance regarding passage of objects in 
a mode of queueless operations.  

OBJECTIVE OF WORK 

1. In how many ways, I(m,n, ), can n objects pass m 
gates per unit time subject to the constraint that the 
maximum allowable capacity of each gate is  objects 
per unit time. Note that the variable time can be 
replaced by any other measuring unit such as length 
and area, depending on the nature of the problem. 

2. Identify and formulate the relevant distributions 
associated with I(m,n, ), as a function of m,n, , with 
respect to their significance and properties. 

 In item 1, it is implied that as long as the capacity of a 
gate is not exceeded, there is no queuing. A queue is formed 
once the capacity is exceeded, but according to the definition 
of I(m,n, ), this is not allowed.  

THEORY 

 The expression of I(m, n , ), 

   

I m,n,( ) = 1( )
i

i
m( ) m 1

m+n i 1
, = +1 , n m

i=0

n

  (1) 

and the symmetry property I(m,n, ) = I(m,m  – n, ) are 
derived in the Appendix. 
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 The number of ways , 
   
Q m,n,( ) , that a queue of up to n-

 objects is formed in at least one gate, is expressed in 

Appendix by, 

  

1( )
i 1

i

m( ) m 1

m+n i 1
.

i=1

n /

 Clearly 

I(m,n, ) + 
   
Q m,n,( ) = 

  
m 1

m+n 1
. 

 Eq. (1) is the solution of an equivalent problem where n 
objects are distributed in m boxes that can hold up to  
objects per box [1, 2]. In this case, I(m,n, ) is the number of 
different ways the n objects can be distributed in the m 
boxes. Note that if n > m  or n < 0, then I(m,n, ) = 0. 

 The first gate distribution is defined as  

   

gn m,n,( ) = I m,n,( ) / I m,i,( )
i=0

m

, 0 n m  (2) 

where 
   
g

n
(m,n, )  vanishes outside the range [0,  m ], and m  

is the maximum total capacity of all gates to pass objects per 
unit time. This distribution is a function of n, at fixed m and 
. The second gate distribution is, 

   
G m,n,( ) = I m,n,( ) / I m,n,n( ) ,

n

m
1 n  (3) 

 Unlike 
  
gn m,n,( ) ,G m,n,( )  is a cumulative 

distribution ranging from 0 to 1. Taking its discrete 

derivative gives 

   

g m,n,( ) =
1

I m,n,n( )
I m,n, +1( ) I m,n,( ) ,

n

m
1 n

 (4) 

 Observe that 
  

I m,n,n( ) = m 1
m+n 1

, which is the 

number of different ways the objects can pass the m gates 

per unit time at  = n, i.e., in the case there is no constraint 

on the gate capacity.  

 The functions 
   
g

n
(m,n, )  and 

   
G (m,n, )  can be included 

in the list of discrete distributions known in literature [3]. 

 In the case of multivariate (k groups) problem, 

   
m = m

1
,...,mk( ) and =

1
,..., k( ) , 

  
gn m,n,( )  stays 

symmetric,  

   

I m,n,( ) = I m ,L n,( ) , L = L
i

i=1

k

, L
i
= m

i i
,  (5) 

where, 
 
L

i
 and L are partial and total capacity of 

 
m

i
 and 

  

m = m
i

i=1

k

 gates, respectively. In this case, 
  
gn m,n,( ) can 

be evaluated by a recurrence convolution formula.  

 Define
  

m, ,t( ) as a product of k generating functions 

[1, 2, 4], 
  

m
i
,

i
,t( ) ,  

   

m, ,t( ) = m
i
,

i
,t( )

i=1

k

, m
i
,

i
,t( )

= 1+ t + ...+ t i

m
i

. (6) 

 Following a transformation we have, 

   

m, ,t( ) = t
L

1+ t
1
+ ...+ t i

m
i

i=1

k

   

= z
L

1+ z + ...+ z i

m
i

, z = t
1

i=1

k

 (7)  

 Express  as a polynomial in z, 

   

m, ,t( ) = z
L

I m,n,( ) z
n

n=0

L

I m,n,( ) t L n

n=0

L

= I m,L n,( ) tn

n=0

L
   (8) 

 The corresponding polynomial of eq. (6) is 

   

m, ,t( ) = I m,n,( ) tn

n=0

L

  (9) 

 Comparing eqs. (8) and (9) gives eq. (5). Note that if the 

number of objects 
 
n
i

 passing the 
 
m

i
 gates exceeds 

  
m

i i
, 

its contribution to 

   

I m,n,( ) vanishes , n = n
i

i=1

k

. 

 The distribution of n objects among the k groups of gates, 

where the maximum capacity of the ith group is iL  can be 

done in
  
I 1,n,L( )ways, 

  
1 = 1,...,1( ) , L = L

1
,...,L

k( ) .  

 Eq. (A10) in appendix follows from eq. (5) at k = 1, and 

by virtue of eq. (2), 
  
gn m,n,( ) is also symmetric as its value 

remains unchanged when n and i are replaced by m  – n and 

m  – I, respectively. Using eq. (5), the same applies to a 

multivariate distribution 
  
gn m,n,( ) . 

  Expectation 
 
E

k
n( )  and Variance 

 
V

k
n( ) of the 

multivariate gate distribution.  

Expanding 
   

m
i
,

i
,t( ) and m, ,t( )  as polynomials in t 

gives 
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m
i
,

i
,t( ) = I m

i
,n,

i( )tn

n=0

Li

, (10) 

   

m, ,t( ) = I m,n,( )tn ,

n=0

L

 (11) 

where, 
  
I m

i
,n,

i( ) is defined in eq. (1) and 
  
I m,n,( )  stands 

for its multivariate counterpart.  

Substitute eqs. (10) and (11) in eq. (6) and obtain 

   

I m,n,( ) = I mi ,ni , i( ) .
i=1

k

n
1
+...+n

k
=n

  (12) 

 Equality (12) expresses 
  
I m,n,( ) as a convolution of 

  
I m

i
,n,

i( ) . In what follows, we calculate 

  
E

k
n( ) and V

k
n( ) for the multivariate case. 

   

Ek n( ) =
1

t = 1( )
n I m,n,( )

n=0

L

 (13) 

   

Vk n( )=
1

t = 1( )
n

2
I m,n,( ) Ek n( )

2

n=0

L

 (14) 

where, 
  

= m, ,t( )  is used for the sake of brevity. 

Differentiating eqs. (6) and (11), with respect to t, gives 

   

' / = i
' / i ,

i=1

k
'
= n I m,n,( )tn 1

n=0

L

 (15) 

where, 
  i

= m
i
,

i
,t( ) . Combining eqs. (13) and (14) 

gives 

  

E
k

n( )= '
t = 1( ) / t = 1( ) = i

'
t = 1( ) / i

t = 1( )
i=0

k

 (16) 

 Calculating 
 i

'
 gives 

   

i
'
= m

i
1+ t + ...+ t i

m
i

1

rt
r 1

r=0

i

 

so that  

   

i
'

t = 1( ) / i
t = 1( ) =

m
i

i
+1

r =
m

i i

2

r=0

i

, (17) 

and finally we get 

   

E
k

n( ) =
1

2
m

i i

i=1

k

 (18) 

 This is in agreement with the symmetry properties of 

  
I m,n,( )  as per eq. (5). Differentiation of 

 

'
 in eq. (15) 

gives 

   

''
= n

2
I m,n,( )tn 2

n=0

L

n I m,n,( )tn 2

n=0

L

 (19) 

 Recalling eq. (15), we get 

   

1

t = 1( )
n

2
I m,n,( ) =

''
t = 1( )

t = 1( )
+

'
t = 1( )

t = 1( )
n=0

L

 . (20) 

 Thus, by eqs. (14), (16) and (20), 

  

V
k

n( ) =
''

t = 1( )
t = 1( )

+

'
t = 1( )

t = 1( )

'
t = 1( )

t = 1( )

2

 (21) 

 Differentiation of the left-hand-side equality in eq. (15) 
gives, 

  

''
t = 1( )

t = 1( )
=

'
t = 1( )

t = 1( )

2

+ i
''

i

i
'

i

2

t=1

i=1

k

. (22) 

 Combining eqs. (21) and (22) gives,  

  

V
k

n( ) = i
'

i

+ i
''

i

i
'

i

2

t=1
i=0

k

 (23) 

 Calculation of the summand in eq. (23) finally gives, 

   

V
k

n( ) =
m

i i i
+ 2( )

12

i=1

k

 (24) 

 Eqs. (21) and (24) show that both 
  
E

k
n( ) and V

k
n( )  can 

be expressed, in an additive way, by the corresponding 

expectations 
   
m

i i
/ 2 , and variances 

   
m

i i i
+ 2( ) / 12 , 

respectively. 

 In the univariate case we have:
   
E

1
(n) = m / 2  and 

   
V

1
(n) = m ( + 2) / 12 . 

 We conclude this section by observing the recurrence 

properties of eq. (12). Indeed 
  
I m,n,( ) can be recasted as, 
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I m,n,( ) = I m
1

,n nk ,
1( ) I mk ,nk , k( ) ,m

1

n
k
=0

n

= m
1

,...,mk 1( ) ,
1
=

1
,..., k 1( )

 (25) 

For example, in the bivariate case, we have 

   

I
2

m
1

,m
2

,n,
1

,
2( ) = I m

1
,n n

2
,

1( ) I m
2

,n
2

,
2( )

n
2
=0

n

  (26) 

 Note that calculation of eq. (12), which may need 

excessive computations, may be shortened by recalling that 

  
I m

i
,n

i
,

i( ) vanishes if 
  
n
i
> m

i i
. 

GRAPHIC DISPLAYS 

 In this work all graphic displays are presented as Y 
(vertical axis) vs. X (horizontal axis).  

 The following graphic output shows that the first gate 
distribution has a Gaussian fit in a wide range, including 
small values of m and .  

 Fig. (1) shows a plot as dots of gn(10,n,3) and Fig. (2) of 

gn(4,n,2). The solid line is a Gaussian fit using E(n) and V(n) 

as per eqs.(18) and (24) for k = 1. Despite the fact that, 

unlike the Gaussian fit, 
  
gn m,n,( ) is defined in the range 

   0 n m , the fit is strong, even in values of m and  as 

small as 4 and 2, respectively. As expected the fit improves 

as m and  increase. 

 

Fig. (1). A plot of the first gate distribution gn(10; n; 3) vs. n. 

 

Fig. (2). A plot of the first gate distribution gn(4; n; 2) vs. n. 

 Fig. (3) shows, from left to right, dotted plots of 

   
gn m

1
,n

1
,

1( ) ,gn m
2

,n n
1

,
2( ) , and 

   
g

n
m

1
,m

2
,n,

1
,

2( )  

obtained as convolution of the first 

two:
   
m

1
= 10,

1
= 3, m

2
= 20,

2
= 4 .  

 

Fig. (3). A plot (from left to right) of two first gate distributions 

gn(10; n; 3) and gn(20; n; 4), and their convolution gn(10; 20; n; 3; 
4) vs. n. 

 A Gaussian fit (solid line) is shown for 

   
gn m

1
,m

2
,n,

1
,

2( ) . Clearly the symmetry property, e.g. 

around 
   

1

2
m,

1
+ m

2
,

2( ) , persists also in the bivariate first 

gate distribution, and the Gaussian fit is good. Fig. (4) shows 

a plot of 
  
G m,n,( )  as a function of , n = 350, m = 2, 5, 7, 

10, 14, 25 from right to left (m = 2, right most, straight line). 

The greater m is the steeper is the slope of 
  
G m,n,( ) , 

which possesses a unique self shifting property of the range 

wherein it is defined. This range is 
   

n

m
1 n , so that at 

   
= n m( ) / m, G m,n,( ) = 0  and at  = n, it is 1.  

 Fig. (5) shows a plot of 
  
g m,n,( ) derived from Fig. (4). 

Here m increases from left to right, m = 2, 5, 7, 10, 14, 25 

and n = 350. 

 The second gate distribution is skewed to the right. The 
unique self shifting property is clearly displayed. Increase of 
m shifts the left hand boundary of the distribution further to 
the left, and decreases its variance, and skewness coefficient. 
The maxima of the plots traces an increasing function of m. 

 Fig. (5) can be used to determine the effect of a unit 

change in  on the capacity of the gate array at fixed number 

of gates m and passing objects n. If 
  

=
n

m
 or  = n, then a 

unit change in  is the smallest, and may not justify the effort 

or cost. However, if  is at the maximum of a given curve in 

Fig. (5), then a unit change in it is expected to produce a 

maximal effect in changing the number of ways the n objects 

can pass the m gates. 

 Consider the case where 
   

= 2
n

m
 so that gn is at its peak. 

This gives  = 350, 140, 100, 70, 50, 28 for the curves in Fig. 

(5), from right to left, respectively. In the rightmost 
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horizontal line,  = 350 is at the end of the range, where 

   
g = 0.05 . As the line is horizontal, all values of  give the 

same results for the effect of its unit change.  = 140 is close 

to the maximum in the second, m = 5, distribution. As  

decreases, it shifts further to the left of the maximum. At  = 

50 (m = 14 curve), the maximum is at 70, whereas at  = 28 

(m = 25 curve), the maximum is at 45 and the effect of a unit 

change in  practically vanishes. Thus, the larger m is, at 

fixed n, the smaller is the effect of a unit change in  at the 

point where
   

n =
1

2
m . Here the effect of a unit change in  

intensifies as  is increased, until the maximum in the 

distribution is reached. As m increases, so does the value of 

the maximum in the corresponding distribution. 

Concurrently, the standard deviation decreases. 

 Plots of 
   
G m

1
,m

2
,n,

1
,

2( ) vs.
  1

and
2

 for 
  

m
1
= 5 , m

2
 

= 10, and for three different pairs of 
  
m

1
,m

2
and n = 100  are 

shown in Figs. (6), and (7), respectively. At high levels of 

  
m

1
= 10 , m

2
= 20 and n = 100 , the top plot reaches rapidly 

an asymptotic range wherein it tends to unity. All three 

surfaces show that it is a monotonically increasing function 

of both 
  1

and
2

. Smaller values of 
  
m

1
= 5 and m

2
= 10 , 

intermediate (surface) and 
  
m

1
= 2 , m

2
= 5  bottom surface, 

produce smaller slopes and hence, a larger variance of 

   
g m

1
,m

2
,n,

1
,

2( )w . The self shifting property persists 

also here. Larger 
  
m

1
and m

2
 shift the range boundary 

toward the origin. 

 

 

 

Fig. (4). A plot of Gl(m; n; l) as a function of l; n = 350, m = 2; 5; 7; 10; 14; 25. In the plot, m increases from right to left. 

 

Fig. (5). A plot of gl(m; n; l) as a function of l, derived from Fig. (4). In the plot, m increases from right to left. 



6     The Open Mathematics Journal, 2009, Volume 1 Zimmels and Fel 

 

APPENDIX 

 Using the notation of Riordan [1], we define, 

 

   

E t ;m,( ) = 1+ t + ....+ t

m

=

1 t
+1

m

1 t( )
m

  (A1) 

 Expansion of the numerator and denominator gives, 

 

   

1 t( )
m

=

u=0

u
m+u 1

t
u

, 1 t
+1

m

= 1( )
k

k
m

t
k +1( )

k=0

m
 (A2)  

 Hence 

 

Fig. (6). A plot of Gl(m1, m2, n, l1, l2) vs. l1 and l2 for n = 100, m1 = 5 and m2 = 10. 

 
Fig. (7). A plot of Gl(m1, m2, n, l1, l2) vs. l1 and l2 at n = 100 for three different pairs of m1, m2: the upper surface m1 = 10, m2 = 20, the 

intermediate surface m1 = 5, m2 = 10, the lower surface m1 = 2, m2 = 5. 
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E t ;m,( ) = 1( )
k

k
m

u
m+u 1

t
u+k +1( )

k=0

m

u=0

  (A3) 

 Denoting u = n – k (  + 1)  0, changes the (k, u) 

variables to (k, n), which are running in the range: 

   

0 k
n

+1
, 0 n < .  Thus, 

   

E t;m,( ) = I m,n,( ) t
n

n=0

, (A4) 

   

I m,n,( ) = 1( )
k

k
m

n k +1( )
m+n k +1( ) 1

k=0

n/ +1( )
.  (A5) 

 Equations (A5) and (1) are identical except for difference 
in notation. 

 The number of ways that a queue of up to n-  objects 
can be formed in at least one of the m gates is, 

   

Q m,n,( ) = m 1
m+n 1 I( m, n, )

= 1( )
k 1

k
m

m 1

m+n k +1( ) 1

k=1

n / +1( )   (A6)  

 Represent the generating polynomial E(t ; m, ) in t as 
follows, 

   

E t; m,( ) = t
k

k=0

m

= I m, n,( ) tn

n=0

m

,  (A7) 

and recast the last as  

   

E t; m,( ) = t
m

E t
1
; m,( )    (A8)  

 A straightforward calculation in (A8) gives, 

   

t
m

E t
1
; m,( )= I m, n,( ) tm n

n=0

m

,  

and substituting w = m – n, leads (after reversing the 
summation) to 

   

t
m

E t
1
; m,( )= I m, m w,( ) tw

w=0

m

 (A9) 

 By virtue of eqs. (A7) and (A9), we get  

   
I(m,n, ) = I(m,m n, )   (A10) 
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