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1. Introduction

Fractional calculus is one of the active research
fields in mathematic analysis, which deals with
the investigation and application of integrals and
derivatives of arbitrary orders. Although they are
often real in applications, these order can be com-
plex in viewpoint of pure mathematics. The sub-
ject of fractional calculus is by no means new. The
idea goes back to the Leibniz’s note in his letter to
L’Hospital, dated 30 September 1695. For three
centuries the theory developed mainly as a pure
theoretical field of mathematics [1-6]. However, in
the last few decades it was found that derivatives
and integrals of non-integer order are very suitable
for the description of properties of various real
materials. In recent years it has turned out that
many phenomena in engineering, physics, chem-
istry, and other sciences can be described very
successfully by models using mathematical tools
of fractional calculus, such as viscoelastic system,
dielectric polarization, electrode-electrolyte polar-
ization, and electromagnetic waves [7-11].

As the interdisciplinary applications are char-
acterized elegantly by fractional calculus, many

authors also begin to investigate the chaotic dy-
namics of fractional nonlinear dynamical systems
[12-21]. Since no general theory is available for
studying the chaotic dynamical systems, all the
investigations rely on numerical simulations. The
typical method to do numerical computations of
fractional ordinary equations is to approximate
fractional operators by using standard integer op-
erators, this can be realized via utilizing frequency
domain techniques based on Bode diagrams, one
can obtain a linear approximation of a fractional-
order integrator with any desired accuracy over
any frequency band, the order of which depends
on the desired bandwidth and discrepancy be-
tween the actual and the approximate magnitudes
of the corresponding Bode diagrams. But this
frequency method seems not to be suitable for
numerical detection of the chaotic attractors of
chaotic fractional differential systems. Detailed
reports in this respect can be found in [22]. Ac-
tually, the first choice of numerical calculations
for fractional differential equation is the time-
domain method. One of the typical numerical
methods for fractional ordinary differential equa-
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tions is the fractional Adams method, constructed
by Diethelm, et al. [23]. This method was suf-
ficiently applied to calculation of periodic orbits
and/or chaotic attractors for fractional differential
equations. For example, see [14,15,17,18,24,25].

The general fractional system reads as⎧⎨
⎩

CDα
0,tx(t) = f(t, x(t)),

x(0) = x0,
(1)

in which x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn,

f(t, x(t)) = (f1(t, x(t)), · · · , fn(t, x(t)))T ∈ Rn,

CDα
0,tx(t) = (CDα1

0,tx1(t), · · · , CDαn
0,t xn(t))T ∈

Rn, 0 < αi ≤ 1, i = 1, · · · , n. Its “efficient di-
mensions” is defined by | q |= α1 + α2 + · · ·+ αn,

[14]. The fractional derivative is in the sense
of Caputo, [1-5, 21], that is, the α-th Caputo
(n − 1 < α < n ∈ Z+) fractional derivative of
y(t) is as follows,

CDα
0,ty(t) =

∫ t

0
(t − τ)n−α−1y(n)(τ)dτ

Γ(n − α)
. (2)

In equation (2), y(n)(τ) is the classical derivative
with respect to τ . If α = 1, CDα

0,ty(t) is the typ-
ical derivative y′(t). This means that in (1), if
(α1, α2, · · · , αn) = (1, 1, · · · , 1), then system (1)
is the ordinary differential system.

Based on the reliable numerical approach and
numerical tracking technique, this letter studies
the evolution of chaotic dynamics of fractional
Lorenz system and Rössler system. The “efficient
dimensions”, which play the role of damping, for
these systems to have complete chaotic attractors
at different parameter values are obtained. The
rest of the paper is arranged as follows. In Sec-
tion 2, we introduce how to find such a smallest
bound by computational method and give numer-
ical examples. Finally, we draw conclusions in the
last section.

2. Numerical exploration of the smallest
efficient dimension

First, we consider the scalar form of (1). This
system has a unique analytic solution under suit-
able conditions. This solution solves the following

Volterra integral equation,

x(t) = x(0)+
1

Γ(α)

∫ t

0

(t−τ)α−1f(τ, x(τ))dτ. (3)

In order to numerically compute system (1),
we apply the fractional Adams method [23]. Set
h = T/N, tn = nh, n = 0, 1, . . . , N ∈ Z+. Then
(3) can be discretized as follows,

xh(tn+1) = x(0) +
hα

Γ(α + 2)
f(tn+1, x

p
h(tn+1))+

hα

Γ(α + 2)

n∑
j=0

aj,n+1f(tj , xh(tj)), (4)

where

aj,n+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

nα+1 − (n − α)(n + 1)α, j = 0,

(n − j + 2)α+1 + (n − j)α+1

− 2(n − j + 1)α+1, 1 ≤ j ≤ n,

1, j = n + 1,

xp
h(tn+1) = x(0) +

1
Γ(α)

n∑
j=0

bj,n+1f(tj , xh(tj)),

and

bj,n+1 =
hα

α
((n + 1 − j)α − (n − j)α).

If CDα
0,tx(t) ∈ C2[0, T ], α ∈ (0, 1), then the trun-

cated error estimate is

max
j=0,1···N

|x(tj) − xn(tj)| = O(h1+α).

In this article, we firstly study the following
fractional Lorenz system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDα1
0,tx1(t) = (25γ + 10)(x2 − x1),

CDα2
0,tx2(t) = (28 − 35γ)x1 − x1x3

+(29γ − 1)x2,

CDα3
0,tx3(t) = x1x2 − γ+8

3 x3.

(5)

When γ ∈ [0, 0.8), system (5) belongs to frac-
tional generalized Lorenz system [25]. I this pa-
per, based on the scheme (4) we apply numerical
tracking technique to find the smallest value of ef-
ficient dimension of (5) for fixed γ, say, γ = 0.78.
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In the following, we introduce the calculation pro-
cedure.

10 First, fix α2 = α3 = 1, let α1 decrease with
step length �s = 0.1. After k steps, α1(k) =
1 − 0.1k. If system (5) has no chaotic attrac-
tor for α1(k) and α2, α3, but has a chaotic at-
tractor for α1(k − 1) = 1 − 0.1(k − 1) and the
same α2, α3 values. Next we increase α1(k−1) =
1− 0.1(k − 1) with a new step length �′s = 0.01.
After k′ steps, α1 = 1 − 0.1(k − 1) − 0.01k′.
If system (5) has no chaotic attractor for α1 =
1− 0.1(k − 1)− 0.01k′ and α2, α3 but has one for
α0

1 = 1 − 0.1(k − 1) − 0.01(k′ − 1) and the same
α2, α3 values. We think the smaller efficient di-
mension | q |= α2+α3+1−0.1(k−1)−0.01(k′−1)
such that system (5) has a chaotic attractor. Now
we can stop here.

20 Fix α1 = 1−0.1(k−1)−0.01(k′−1), α3 = 1,
now let α2 decrease as above and find a smaller
value α0

2 such that system (5) is chaotic.
30 Fix α1 = 1−0.1(k−1)−0.01(k′−1), α2 =

α0
2, now let α3 decrease as above and find a smaller

value α0
3 such that system (5) is chaotic.

40 The smallest efficient dimension |q| =
α0

1 + α0
2 + α0

3 is what we find.
It is surprisingly found that chaos is generated

when α0
1 = 0.52, α0

2 = 0.36, α0
3 = 0.44 for fixed

γ = 0.78, in other words, the efficient dimension
| q |= α0

1 + α0
2 + α0

3 = 1.32. In what follows, we
list partial figures for fractional Lorenz system,
see Figs. 1-2.

Another example is the fractional Rössler sys-
tem, described by

⎧⎪⎪⎨
⎪⎪⎩

CDα1
0,tx1(t) = −(x2 + x3),

CDα2
0,tx2(t) = x1 + px2,

CDα3
0,tx3(t) = x3(x1 − 10) + 0.2,

(6)

where system parameter p is allowed to vary.
By almost the same procedure as that of sys-

tem (5), we can get the smallest efficient dimen-
sion | q |= α1 + α2 + α3 = 2.04.

3. Conclusions

To model and/or analyze fractional differen-
tial equation [26], etc, especially to disclose the
dynamics of fractional differential systems, have
been become more and more important due to
their real-world applications [4,7]. For chaotic
fractional differential systems, the definition of ef-
ficient dimension was firstly mentioned in [13],
where a novel but not mathematically rigorous
numerical method was applied to the fractional
Lorenz system, and where to seek the smallest ef-
ficient dimension for the chaotic fractional system
was also proposed. In this paper, we apply the
fractional Adams method and numerical tracking
technique to find the smallest efficient dimensions
of chaotic Lorenz and Rössler systems. The nu-
merical results and computer graphics show that
the tracking technique is efficient. The algorithm
and technique presented in this paper can be ap-
plied to other fractional differential systems.
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Fig. 1. (a), (b), (c), (d) The fractional Lorenz system. Initial value (x10, x20, x30) = (−15.5,−17.48, 35.64),

γ = 0.78, time step length h = 0.004, the number N = 3500, the first 100 points are removed. (a) (α1, α2, α3, ) =

(0.99, 0.99, 0.99), x1 vs x2 vs x3. (b) (α1, α2, α3, ) = (0.9, 0.9, 0.9), x1 vs x2 vs x3. (c) (α1, α2, α3, ) = (0.85, 0.85, 0.85),

x1 vs x2 vs x3. (d) (α1, α2, α3, ) = (0.84, 0.8, 0.8), x1 vs x2 vs x3.
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Fig. 2. (a), (b), (c), (d) The fractional Lorenz system. Initial value (x10, x20, x30) = (−4.755,−1.4273, 21.922),

γ = 0.78, , the number N = 3800, the first 100 points are removed. (a) time step length h = 0.003 (α1, α2, α3, ) =

(0.81, 0.68, 0.68), x1 vs x2 vs x3. (b) time step length h = 0.0005 (α1, α2, α3, ) = (0.72, 0.5, 0.55), x1 vs x2 vs x3.

(c) time step length h = 0.0005 (α1, α2, α3, ) = (0.61, 0.45, 0.55), x1 vs x2 vs x3. (d) time step length h = 0.00018

(α1, α2, α3, ) = (0.52, 0.36, 0.44), x1 vs x2 vs x3.
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Fig. 3. (a), (b), (c), (d) The fractional Rössler system, Initial value (x10, x20, x30) = (−15,−15, 0), time step length

h = 0.03, the number N = 3500, the first 500 points are removed. (a) p = 0.2, (α1, α2, α3, ) = (0.99, 0.99, 0.99) x1 vs

x2 vs x3. (b) p = 0.3, (α1, α2, α3, ) = (0.95, 0.95, 0.95) x1 vs x2 vs x3. (c) p = 0.4, (α1, α2, α3, ) = (0.9, 0.9, 0.9) x1 vs

x2 vs x3.. (d) p = 0.5, (α1, α2, α3, ) = (0.87, 0.87, 0.87) x1 vs x2 vs x3.
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Fig. 4. (a), (b), (c), (d) The fractional Rössler system, Initial value (x10, x20, x30) = (−10.359, 2.4176, 0.011131),

the number N = 3800, the first 500 points are removed. (a) h = 0.03, p = 0.6, (α1, α2, α3, ) = (0.84, 0.84, 0.84)

x1 vs x2 vs x3. (b) h = 0.02, p = 0.8, (α1, α2, α3, ) = (0.75, 0.75, 0.75) x1 vs x2 vs x3. (c) h = 0.015, p = 0.9,

(α1, α2, α3, ) = (0.7, 0.7, 0.7) x1 vs x2 vs x3. (d) h = 0.008, p = 0.9, (α1, α2, α3, ) = (0.68, 0.68, 0.68) x1 vs x2 vs x3.
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