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Abstract: The reduced Gassner representation is a multi-parameter representation of Pn, the pure braid group on n 

strings. Specializing the parameters t1, t2,...,tn to nonzero complex numbers x1,x2,...,xn gives a representation Gn(x1,...,xn): Pn  

 GL(
n 1

) which is irreducible if and only if x1...xn  1.We find a sufficient condition that guarantees that the tensor 

product of an irreducible Gn(x1,...,xn)with an irreducible Gn(y1, ..., yn) is irreducible. We fall short of finding a necessary 

and sufficient condition for irreducibility of the tensor product. Our work is a continuation of a previous one regarding the 

tensor product of complex specializations of the Burau representation of the braid group.  
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1. INTRODUCTION 

 The pure braid group, Pn, is a normal subgroup of the 
braid group, Bn, on n strings. It has a lot of linear 
representations. One of them is the Gassner representation 
which comes from the embedding Pn  Aut(Fn), by means 
of Magnus representation [1, p.119]. According to Artin, the 
automorphism corresponding to the braid generator i takes 
xi to xixi+1xi

1
,xi+1 to xi, and fixes all other free generators. 

Applying this standard Artin representation to the generator 
of the pure braid group, we get a representation of the pure 
braid group by automorphisms. The Gassner representation 
is obtained from the Artin representation via the free 
differential calculus, as is explained in chapter 3 of Birman’s 
book [1]. Such a representation has a composition factor, the 
reduced Gassner representation Gn(t1,...,tn) : Pn  
GLn 1( [t1

±1
,...,tn

±1
]), where t1,...,tn are indeterminates. Spe-

cializing t1,...,tn to nonzero complex numbers x1,...,xn defines 
a representation Gn(x1,...,xn) : Pn  GLn 1( ) = GL(

n 1
) 

which is irreducible if and only if x1...xn  1 [2]. For some j 
 {1,...,n}, we consider a free normal subgroup of rank n  1, 

namely, Uj and consider the complex specialization of the 
reduced Gassner representation restricted to this free normal 
subgroup.  

 In [3], we considered the tensor product of complex 
specializations of the Burau representation of the braid group 
and found a necessary and sufficient condition that 
guarantees irreducibility. Here, we consider the tensor 
product of the following irreducible representation restricted 
to a free normal subgroup of the pure braid group, namely, 
Uj:  

Gn(x1,...,xn)  Gn(y1,...,yn):Uj  GL(
n 1 

 
n 1

). 

 It is a known fact that tensor products of the classical 
irreducible representations of the pure braid groups are " 
generically"  irreducible,   as they can be obtained by a mono 
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dromy construction. For more details, see [4]. As a 
consequence, the question left to be answered is: For which 
values of the parameters is the representation above 
irreducible?  

 Our main result, Theorem 1, is that for n  3 and 
x1,...,xn,y1,...,yn    {0,1}, the representation above is 
irreducible under the following condition: for some i and j  
{1,...,n}, i < j, xixj  yiyj and xj yj  1, for every   {1,...,n 

 1}.Here  = x ,  = y  for  < j and  = x +1,  = y +1 for  
 j. However, we fail to resolve the question whether or not 

the tensor product obtained is reducible under each of the 
following conditions specified because there is no general 
principle to imply reducibility. In other words, we will only 
find a sufficient condition for irreducibility.  

 The idea of the proof is similar to that in [3]. We consider 
a free normal subgroup of the pure braid group of rank n  1 
denoted by Uj where 1  j  n. Let [Uj] be the group 
algebra of Uj over , and let Abe the augmentation ideal of 

[Uj]. If M is any Uj-module, then AM is a Uj-submodule of 
M. We first show (Lemma 2(b)) that if 

n 1 
is made into a 

Uj-module via Gn(x1,...,xn) : Uj  GL(
n 1

),then A
n 1 

is its 
unique minimal nonzero Uj-submodule. Of course A

n 1 
= 

n 1
 when Gn(x1,...,xn) is irreducible.  

 Now let x1,...,xn,y1,...,yn  {0}, so that Gn(x1,...,xn)  
Gn(y1,...,yn) defines a diagonal action of Uj on 

n 1 
 

n 1
. 

The main technical result is Proposition 1, which gives a 
sufficient condition for A

n 1 
 A

n 1 
to be the unique 

minimal nonzero Uj-submodule of 
n 1 

 
n 1

. This implies 
the irreducibility of the tensor product above.  

2. DEFINITIONS AND NOTATION 

Notation 1. The pure braid group, Pn, is defined as the 
kernel of the homomorphism Bn  Sn, defined by i  (i, i + 
1), 1  i  n  1. It has the following generators:  

Ai,j  = j 1 j 2…
   i+1 i

2

i+1

1
…

j 2

1

j 1

1
,  1  i < j  n 
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 We will construct for each j = 1,...,n a free normal 
subgroup of rank n  1, namely, Uj. Let Uj be the subgroup 
generated by the elements  

A1,j,A2,j,...,Aj 1,j,Aj,j+1,...,Aj,n, 

where Ai,j are those generators of Pn that become trivial after 
the deletion of the j-th strand. For a fixed value j, the image 
of Aij under the reduced Gassner representation is denoted by 

i ,where i = I  PiQi. In other words, the generators of Uj are 
Ai,j where Ai,j = Aj,i whenever i > j and j = 1,2,...,n. It is known 
that Uj generates a free subgroup of Pn which is isomorphic 
to the subgroup Un freely generated by {A1,n,A2,n,...,An 1,n}. 
This is intuitively clear because it is quite arbitrary how we 
assign indices to the braid "strings".  

 For a fixed choice of j, we denote the image of the 
generator of Uj, namely, Ai,j, under the reduced Gassner 
representation by i .That is  

1 = A1,j,..., j 1 = Aj 1,j,   j =Aj,j+1,   j+1 =Aj,j+2,..., n 1 = Aj,n, 

Definition 1. The reduced Gassner representation restricted 
to Uj is defined as follows: i = I  PiQi for 1  i  n  1. For 
i < j, Pi is the column vector given by  

(1 t1,...,1 ti 1,

   

I t
i
t

j

i

, tj(1 ti+1),...,tj(1 tj 1), 

   

t
j+1

1

j

, tj+2 1,...,tn 1)
T
, 

and for i  j, Pi is the column vector given by  

(tj(t1 1),...,tj(tj 1 1),

   

1 t
j+1

,…,1 t
i

i j

,  

1 ti+1tj,tj(1 ti+2),...,tj(1 tn))
T
. 

Here T is the transpose and Qi is the row vector given by  

Qi = (0,...,0,

   

1

i

, 0,...,0), 1  i  n  1. 

 The definition of the reduced Gassner representation 
restricted to a free normal subgroup is the same, up to 
equivalence, as the definition in [2]. Representations given 
by pseudo reflections I  AiBi and I  CiDi are equivalent if 
the inner products (BiAj) and (DiCj) are conjugate by a 
diagonal matrix. For more details, see [5].  

 We identify 
n 1 

with (n  1)  1 column vectors. We let 
e1,...,en 1 denote the standard basis for 

n 1
, and we consider 

matrices to act by left multiplication on column vectors.  

Definition 2. If r = a1e1 + ···+ an 1en 1  
n 1

, the support of r, 
denoted supp(r), is the set {ei | ai  0}. If s = aij (ei  ej)  

n 1 
 

n 1
, the support of s, also denoted supp(s), is the set 

{ei  ej | aij  0}, and aij is called the coefficient of ei  ej in s.  

Definition 3. For t = (t1,...,tn) , we define vi(t) = ei  i(t)(ei) = 
(I  i(t))(ei). In other words, we have the following:  

For 1  i  j  1, we have vi(t)=  

(1 t1,...,1 ti 1,

   

1 t
i
t

j

i

, tj(1 ti+1),...,tj(1 tj 1), 

   

t
j+1

1

j

,  tj+2 1,...,tn 1)
T
. 

and for i  j, we have vi(t) =  

(tj(t1 1),...,tj(tj 1 1),

   

1 t
j+1

,…,1 t
i

i j

,  

1 ti+1tj,tj(1 ti+2),...,tj(1 tn))
T
. 

 Let v1(t),...,vn 1(t) be the columns of the matrix N(t1,...,tn) 
defined as follows:  

   

N (t) =

1 t
1
t

j
1 t

1
| t

j
(t

1
1) t

j
(t

1
1)

t
j
(1 t

2
) 1 t

2
| t

j
(t

2
1) t

j
(t

2
1)

t
j
(1 t

j 1
) 1 t

j 1
t

j
| t

j
(t

j 1
1) t

j
(t

j 1
1)

t
j+1

1 t
j+1

1 1 t
j
t

j+1
1 t

j+1

t
n

1 t
n

1 t
j
(1 t

n
) 1 t

n
t

j

 

For x1,...,xn  {0}and x = (x1,...,xn), the representation Uj 

 GLn 1( ) = GL(
n 1

) obtained by specializing ti  xi is 
denoted by Gn(x) and the representation Gn(y) is defined in 
the same manner by specializing ti  yi and having y = 
(y1,...,yn). Also vi(x),vi(y) are defined analogously.  

3. PRELIMINARIES 

 Lemma 1 records for future use the action of 1(t),..., 

n 1(t),v1(t),...,vn 1(t), and is proved by direct computation.  

Lemma 1. For t = (t1,...,tn), we have  

(1)  i(t)(vi(t)) = titjvi(t)  for 1  i  j  1,  

 i(t)(vi(t)) = ti+1tjvi(t)  for 1  j  i,  

(2)  i(t)(vk(t)) = vk(t)+(ti+1  1)vi(t)  for j  i < k,  

 i(t)(vk(t)) = vk(t)+(ti  1)vi(t)  for i < k < j,  

 i(t)(vk(t)) = vk(t)+ tj(1  ti)vi(t)  for i < j  k,  

(3)  i(t)(vk(t)) = vk(t)+(1  ti+1)vi(t)  for k < j  i,  

 i(t)(vk(t)) = vk(t)+ tj(ti  1)vi(t)  for k < i < j,  

 i(t)(vk(t)) = vk(t)+ tj(ti+1  1)vi(t)  for j  k < i.  

 Note that Lemma 1 remains true for any specialization ti 
 xi,where xi  

*
. For simplicity, we denote (x1,...,xn) by 

the vector x.  

Lemma 2. Having Uj a free normal subgroup of the pure 
braid group, we let Gn(x): Uj  GL(

n 1
) be a specialization 

of the Gassner representation restricted to Uj making 
n 1 

into a Uj-module, where n  3. Then  

(a)  Let A be the kernel of the homomorphism [Uj]   
induced by i  1 (the augmentation ideal). Then 
A

n 1 
is equal to the -vector space spanned by 

v1(x),...,vn 1(x).  

(b)  If M is a nonzero Uj-submodule of 
n 1

, then A
n 1 

 
M. Hence A

n 1 
is the unique minimal nonzero Uj-

submodule of 
n 1

.  

(c)  If p(x) = (xj  1)
n 2

(x1x2...xn  1)  0, then A
n 1 

= 
n 1

, and Gn(x1,x2,...,xn) is irreducible.  

Proof. The proof is similar to that in [3, p.107]. Here, we 
will take the free normal subgroup, Uj, of rank n  1 instead 
of the braid group, Bn. Notice that, in the proof of (b), we 



14     The Open Mathematics Journal, 2009, Volume 2 Mohammad N. Abdulrahim 

need the fact that if vj  M for some j then all vi  M. This is 
due to Lemma 1. As for (c), the determinant of N(x1,...,xn) is 
p(x) = (xj  1)

n 2
(x1x2...xn  1), so if p(x)  0 then 

v1(x),...vn 1(x) is a basis for 
n 1 

and A
n 1 

= 
n 1 

. For more 
details, see [2]. 

4. PROOF OF THE MAIN THEOREM 

Proposition 1. Suppose that x = (x1,...,xn) and y = (y1,...,yn)  
n
, where xs,ys    {0,1} for 1  s  n, and for some i and 

j (i < j), we have xixj  yiyj,x xjy yj  1 for every   {1,...,j  
1} and x +1xjy +1yj  1 for every   {j,...,n  1}. Let M be a 
nonzero Uj-submodule of 

n 1 
 

n 1 
under the action of 

Gn(x)  Gn(y) : Uj  GL(
n 1 

  
n 1

), where n  3. Then M 
contains all vi(x)  vj(y) for 1  i, j  n  1. Thus M contains 
A

n 1 
 A

n 1
, where the action of Uj on the first factor is 

induced by Gn(x1,...,xn) and the action of Uj on the second 
factor is induced by Gn(y1,...,yn).  

Proof. For 1  j  n, we consider the normal free subgroup 
of rank n  1, namely, Uj, defined as before.  

 First, we observe that if eu  ev  supp(m) for some m  
M then e   ev  supp( u(eu  ev)) for every choice of  = 
1,...,n  1 and v  u. This is clear because of our assumption 
that none of the parameters ti’s is equal to zero or one.  

Claim 1. There exists an s  {1,...,n  1}such that es  es  
supp(m)for some m  M.  

 Proof of Claim 1.  

Case 1: Suppose that there exists an s and m  M such that 
es  es  supp(m), then we are done.  

Case 2: Suppose that there exists (s,t) with 1  s,t  n  1 and 
s  t such that  

m = a(es  et) + W,  (1)  

where a  
 
and supp(W) does not contain es  et,et  es. 

We also assume that supp(W) does not contain e   e  for 
any .  

 Then t(m) = a(es  et  vt) + t(W), which implies that es 

 es  supp( t(m)) and so we are done .  

Case 3: Suppose that for any pair (s,t) and any m  M such 
that es  et  supp(m), we have that et  es  supp(m) as 
well. That is, consider m  M such that  

m = a(es  et) + b(et  es) + W, where 

supp(W) does not contain es  et,et  es and e   e  for any . 

In this case, W is either zero or its elements are of the form 

  

(c
k,l

 e
k
  e

l
 + d

l ,k
 e

l
  e

k
)

k ,l

 

 Here the constants a, b, ck,l,dl,k  .  

 Applying t ,we observe that ei  supp( t(et)), where i is 
the integer given by the hypothesis of Proposition 1. Then  

t(m) = a(es  ei) + b(ei  es) + W, where 

supp(W) does not contain es  ei,ei  es, and both of a, b are 
not zeros. For simplicity, we denote t(m) by m.  

 If e   e   supp(W) for some  , then we are done. If 
not, we see that  

aM + bN = coefficient of es  es in i(m) and aM(1 + yiyj) + 

bN(1 + xixj) = coefficient of es  es in 
  i

2

 (m).  

 The values of M and N are not zeros and can be obtained 
directly from Definition 3. The determinant  

  

det
M N

M (1+ y
i
y

j
) N (1+ x

i
x

j
)

= MN (x
i
x

j
y

i
y

j
)  

is nonzero, since xixj  yiyj  0 by hypothesis. Then one of 

i(m), ( i)
2
(m) has es  es in its support.  

Claim 2. Suppose that e   e   supp(m) for some m  M. 
Then v (x)  v (y)  M if x xjy yj  1 for  = 1,...,j  1 and 
x +1xjy +1yj 1 for  = j,...,n  1.  

 Proof of Claim 2. A calculation shows that  

(  1)(   yj)(   xj)(e   e ) = xjyj( xj yj  1)  
(v (x) v (y)) 

and  

(   1)(   yj)(   xj)(eu  ev) = 0 if (u, v)  ( , ). 

 Here we have  

 = x ,  = y  for  = 1,...,j  1 

and  

 = x +1,  = y +1 for  = j,...,n  1. 

Claim 3. There exists an s such that vs(x)  vs(y)  M.  

 Proof of Claim 3. There exists, by claim1, an element es 

 es  supp(m) for some m  M. By Proposition 1, we have 
xj yj  1 for all  = 1,...,n  1. It follows, by claim 2, that 

vs  vs  M.  

Claim 4. For  = 1,...,n  1, we have that v (x)  v (y)  M.  

 Proof of Claim 4. We have, by claim 3, an integer s such 
that vs(x)  vs(y)  M.  

 It follows that 

  

( A
i
e

i

k=1

n 1

) ( B
i
e

i

k=1

n 1

)  M , which implies 

that e (x)  e (y)  supp(m) for some m  M. Since xj yj 

 1, it follows, by claim 2, that for  = 1,...,n  1,we have  

v (x)  v (y)  M. 

 Here Ai and Bi are non zero numbers determined in 
Definition 3.  

Claim 5. For the value i given by Proposition 1, we have that 
vi  v   M and v   vi  M for all  = 1,...,n  1.  

 Proof of Claim 5. Given an integer  = 1,...,n  1. If  = i 
then we are done by claim 4. Assume then that   i. Since 
v   v   M for every , it follows that i(v   v )  M. It 
follows that  

avi  v  + bv   vi  M,  (1) 

Applying i again, we obtain that  

axixjvi  v  + byiyjv   vi  M.  (2)  

(1) and (2) imply that  

b(xixj  yiyj)v   vi  M. 

 By our hypothesis, we get that  
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v   vi  M and vi  v   M. 

Claim 6. v   v   M for all ,   {1,2,...,n  1}.  

 Proof of Claim 6. Fix the value of . Let   {1,...,n  
1}and   . Then by claim 5, we get that vi  v ,vi  v   M 
and so  

(vi  v )  M. 

 This implies that  

v   v   M. 

 Having done this for every value of , and consequently 
, this would complete the proof.  

 Let x = (x1,...,xn) and y = (y1,...,yn)  
n 

, where xs,ys   
 {0,1}, 1  s  n.  

Theorem 1. Let Gn(x) and Gn(y) be the representations : Uj  
GL(

n 1
) that denote the specializations of the reduced 

Gassner representation restricted to the free normal 
subgroup of the pure braid group, namely, Pn, where 
x1,...,xn,y1,...,yn    {0,1}. Let p(t) = (tj  1)

n 2
(t1t2 ...tn  1). 

For n  3, consider the tensor product of irreducible 
representations Gn(x)  Gn(y) : Uj  GL(

n 1 
 

n 1
), 

where p(x)  0 and p(y)  0.  

If xixj  yiyj for some i < j, x xjy yj  1 for  = 1,...,j  1 and 
x +1xjy +1yj  1 for  = j + 1,...,n  1 then the above 
representation is irreducible.  

Proof. The proof is the same as in [3]. By Proposition 1, 
A

n 1 
 A

n 1 
is the unique minimal nonzero Uj-submodule 

of 
n 1 

 
n 1

. In particular, it is an irreducible Uj-module. 
By Lemma 2 and the fact that p(x)  0, p(y)  0, the left 
factor A

n 1 
corresponds to the representation Gn(x) and the 

right factor A
n 1 

corresponds to the representation Gn(y).  

 Since irreducibility on a subgroup implies irreducibility 
on the group itself, it follows that Theorem 1 is also true for 
the tensor products of specializations of the Gassner 
representation of the pure braid group with n strings. 
Therefore, we get the following corollary.  

Corollary 1. Suppose that for x1,...,xn,y1,...,yn    {0,1} 
and for some i,j, we have xixj  yiyj for 1  i < j  n and 

xj yj  1 for all  = 1,...,n  1. Here ,  are defined in 
claim 2 in the proof of Proposition 1. Then the following 
representation is irreducible:  

Gn(x)   Gn(y) : Pn  GL(
n 1 

 
n 1

), where p(x)  0, p(y)  0. 

 Our work is an extension of a previous one, where we 

have proved in [3] that the representation obtained, by 

tensoring irreducible complex specializations of the Burau 

representation, namely, n(x) or 
   n

(x)  and n(y) or 
   n

( y)  is 

irreducible if and only if x  y.  

REMARKS 

 (1)  In our work, We have found a sufficient condition 
for irreducibility of the representation obtained by tensoring 
complex specializations of the reduced Gassner represen-
tation restricted to a free normal subgroup, but we fall short 
of finding a necessary and sufficient condition for 
irreducibility of the tensor product. In the proof of our main 
theorem, we needed to find a pair (i,j)such that xixj  yiyj; 
whereas for each   j, we needed the conditions xj yj  1 
to show that v   v   M. (See claim 2 in the proof of 
Proposition 1). Based on the proof of Proposition 1, if we 
could find pure braid elements in Uj, namely, m, such that 

m(vm) = avm+1, m = 1,...,n  1then we could show, by 
induction , that if vm  vm  M then vm+1  vm+1  M for all 
values of m. In that case, the sufficient condition for 
irreducibility in Proposition 1 would be simpler and replaced 
by the following condition:  

xixj  yiyj and xj yj  1 for some values of i, j,  

 Some further work is needed to investigate whether or 
not there are pure braids in Uj, namely, m such that m(vm) = 
avm+1 , m = 1,...,n  1. 

  (2) In [2], it was proved that if p(x) = (xj  1)
n 2

(x1...xn  
1)  0 then the representation Gn(x1,...,xn) : Uj  GL(

n 1
) is 

irreducible. In a future work, we will attempt to describe the 
composition factors of Gn(x1,...,xn) when it is reducible, that 
is when p(x) = 0. In other words, it will be useful to answer 
the following question:  

 If Gn(x) : Pn  GL(
n 1

) is irreducible, when and how 
uniquely can it be extended to an irreducible representation 

  Gn (x1,...,xn) : Pn+1  GL(
n 1

) ? This question was answered 
in the case of the braid group [5, p.284]. If we succeed to 
answer the question above regarding the pure braid group 
then the statements in Theorem 1 and Corollary 1 will also 
hold true for the tensor products of irreducible Gn(x1,...,xn) or 

   Gn 1 (x1,...,xn) with an irreducible Gn(y1,...,yn) or 
   Gn 1 (y1,...,yn). 
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