Open Access

On the Mittag-Leffler Property

M. A. Alshumrani^{*}

Department of Mathematics, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, K.S.A

Abstract: Let *C* be a category with strong monomorphic strong coimages, that is, every morphism *f* of *C* factors as $f = u \circ g$ so that *g* is a strong epimorphism and *u* is a strong monomorphism and this factorization is universal. We define the notion of strong Mittag-Leffler property in pro-*C*. We show that if $f : X \to Y$ is a level morphism in pro-*C* such that $p(Y)^{\beta}_{\alpha}$ is a strong epimorphism for all $\beta > \alpha$, then *X* has the strong Mittag-Leffler property provided *f* is an isomorphism. Also, if $f : X \to Y$ is a strong epimorphism of pro-*C* and *X* has the strong Mittag-Leffler property, we show that *Y* has the strong Mittag-Leffler property. Moreover, we show that this property is invariant of isomorphisms of pro-*C*.

Keywords: Pro-categories, strong Mittag-Leffler property, categories with strong monomorphic strong coimages. **MSC:** Primary 16B50.

1. INTRODUCTION

In [1], J. Dydak and F. R. Ruiz del Portal generalized the notion of Mittag-Leffler property to arbitrary balanced categories with epimorphic images. They obtained several results.

In [2], the author defined the notion of categories with strong monomorphic strong coimages. *C* is a category with strong monomorphic strong coimages if every morphism *f* of *C* factors as $f = u \circ g$ so that *g* is a strong epimorphism and *u* is a strong monomorphism and this factorization is universal among such factorization. In this paper, we define the notion of strong Mittag-Leffler property in pro-*C*. We show that if $f : X \to Y$ is a level morphism in pro-*C* such that $p(Y)^{\beta}_{\alpha}$ is a strong epimorphism for all $\beta > \alpha$, then *X* has the strong Mittag-Leffler property provided *f* is an isomorphism (Theorem 3.2). Also, if $f : X \to Y$ is a strong epimorphism of pro-*C* and *X* has the strong Mittag-Leffler property (Corollary 3.6). Moreover, we show that this property is invariant of isomorphisms of pro-*C* (Corollary 3.5).

2. PRELIMINARIES

First we recall some basic facts about pro-categories. The main reference is [3] and for more details see [4].

Let *C* be an arbitrary category. Loosely speaking, the pro-category pro-*C* of *C* is the universal category with inverse limits containing *C* as a full subcategory. An object of pro-*C* is an inverse system in *C*, denoted by $X = (X_{\alpha}, p_{\alpha}^{\beta}, A)$, consisting of a directed set *A*, called the *index* set, of *C* objects X_{α} for each $\alpha \in A$, called the *terms* of *X*

and of *C* morphisms $p_{\alpha}^{\beta}: X_{\beta} \to X_{\alpha}$ for each related pair $\alpha < \beta$, called the *bonding morphisms* of *X*. A morphism of two objects $f: X = (X_{\alpha}, p_{\alpha}^{\beta}, A) \to Y = (Y_{\alpha}, p_{\alpha}^{\beta}, A)$ consists of a function $\varphi: A' \to A$ and of morphisms $f_{\alpha}: X_{\varphi(\alpha')} \to Y_{\alpha'}$ in *C* one for each $\alpha' \in A'$ such that whenever $\alpha' < \beta'$, then there is $\gamma \in A$, $\gamma > \varphi(\alpha'), \varphi(\beta')$ for which $f_{\alpha'} P_{\phi(\alpha')}^{\gamma} = P_{\alpha'}^{\beta'} f_{\beta'} P_{\phi(\beta')}^{\gamma}$. From now onward, the index set *A* of an object *X* of pro-*C* will be denoted by I(X) and the bonding morphisms by $P(X)_{\alpha}^{\beta}$ for each $\alpha < \beta$.

If P is an object of C and X is an object of pro-C, then a morphism $f: X \to P$ in pro-C is the direct limit of Mor (X_{α}, P) , $\alpha \in I(X)$ and so f can be represented by $g: X_{\alpha} \to P$. Note that the morphism from X to X_{α} represented by the identity $X_{\alpha} \to X_{\alpha}$ is called the *projection morphism* and denoted by $P(X)_{\alpha}$.

If X and Y are two objects in pro-C with identical index sets, then a morphism $f: X \to Y$ is called a *level morphism* if for each $\alpha < \beta$, the following diagram commutes.

Theorem 2.1. For any morphism $f: X \to Y$ of pro-*C* there exists a level morphism $f' = X' \to Y'$ and isomorphisms $i: X \to X', j: Y' \to Y$ such that $f = j \circ f' \circ i$ and I(X') is a

^{*}Address correspondence to this author at the Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, K.S.A; Tel: (00966)26952297; E-mail: maalshmrani1@kau.edu.sa

cofinite directed set. Moreover, the bonding morphisms of X' (respectively, Y') are chosen from the set of bonding morphisms of X (respectively, Y).

Recall that a morphism $f: X \to Y$ of *C* is called a *monomorphism* if $f \circ g = f \circ h$ implies g = h for any two morphisms $g,h: Z \to X$. A morphism $f: X \to Y$ of *C* is called an *epimorphism* if $g \circ f = h \circ f$ implies g = h for any two morphisms $g,h: Y \to Z$.

If f is a morphism of C, then its domain will be denoted by D(f) and its range will be denoted by R(f). Hence, $f: D(f) \rightarrow R(f)$.

Next, we recall definitions of strong monomorphism and strong epimorphism and state some of their basic results obtained. The main reference is [3].

Definition 2.2. A morphism $f: X \rightarrow Y$ in pro-*C* is called a *strong monomorphism (strong epimorphism*, respectively) if for every commutative diagram,

with P, Q objects in C, there is a morphism $h: Y \to P$ such that $h \circ f = a$ ($g \circ h = b$, respectively).

Note that if X and Y are objects of C, then $f: X \to Y$ is a strong monomorphism (strong epimorphism, respectively) if and only if f has a left inverse (a right inverse, respectively).

The following result presents the relation between monomorphisms and strong monomorphisms and between epimorphisms and strong epimorphisms.

Lemma 2.3. If f is a strong monomorphism (strong epimorphism, respectively) of pro-C, then f is a monomorphism (epimorphism, respectively) of pro-C.

Lemma 2.4. If $g \circ f$ is a strong monomorphism (strong epimorphism, respectively), then f is a strong monomorphism (g is a strong epimorphism, respectively).

The following theorem is a characterization of isomorphisms in pro-*C*.

Theorem 2.5. Let $f: X \to Y$ be a morphism in pro-*C*. The following statements are equivalent.

(i) f is an isomorphism.

(ii) f is a strong monomorphism and an epimorphism.

Theorem 2.6. Suppose that,

is a commutative diagram in pro-*C*. If *f* is an epimorphism and *g* is a strong monomorphism, then there is a unique morphism $h: Y \rightarrow Z$ such that $h \circ f = a$ and $g \circ h = b$.

In [2], the author defined the notion of categories with strong monomorphic strong coimages as follows.

Definition 2.7. *C* is a *category with strong coimages* if every morphism *f* of *C* factors as $f = u \circ g$ so that *g* is a strong epimorphism and this factorization is universal among such factorization, that is, given another factorization $f = v \circ h$ with *h* being a strong epimorphism there is $t : D(v) \rightarrow D(u)$ such that $t \circ h = g$ and $u \circ t = v$.

Definition 2.8. C is a category with strong monomorphic strong coimages if it is a category with strong coimages and u in the universal factorization $f = u \circ g$ is a strong monomorphism.

We will need the following results which are proved in [2]. For this paper to be self-contained we include the results with their proofs.

Lemma 2.9. Let C be any category. Then the following conditions on C are equivalent:

- (i) C is a category with strong monomorphic strong coimages.
- (ii) Any morphism f factors as $f = u \circ g$ so that g is a strong epimorphism and u is a strong monomorphism. Given another factorization $f = v \circ h$ with h being a strong epimorphism and v a strong monomorphism, there is an isomorphism $t : D(v) \to D(u)$ such that $t \circ h = g$ and $u \circ t = v$.

Proof. (i) \Rightarrow (ii) Any morphism f factors as $f = u \circ g$ such that g is a strong epimorphism and u is a strong monomorphism. Assume that f have another factorization $f = v \circ h$ with h being a strong epimorphism and v a strong monomorphism, there is $t : D(v) \rightarrow D(u)$ such that $t \circ h = g$ and $u \circ t = v$. Since g is a strong epimorphism, t is a strong epimorphism and hence an epimorphism by Lemma 2.3. Since v is a strong monomorphism. Thus, t is an isomorphism by Theorem 2.5.

(ii) \Rightarrow (i) Any morphism f factors as $f = u \circ g$ such that g is a strong epimorphism and u is a strong monomorphism. Now we show that f is universal. Assume that $f = v \circ h$ is another factorization with h a strong epimorphism. The morphism v can be factored as $v = b \circ a$ where a is a strong epimorphism and b is a strong monomorphism, there is an isomorphism c such that $c \circ a \circ h = g$ and $u \circ c = b$. Let $t = c \circ a$. Hence, the result holds.

By Lemma 2.9, any morphism f of a category C with strong monomorphic strong coimages has a unique, up to isomorphism, factorization into a composition $f = u \circ g$ where g is a strong epimorphism and u is a strong monomorphism. We write this unique factorization as $f = SM(f) \circ SE(f)$.

The range of SE(f) will be called the *image* of f and denoted by im(f).

Theorem 2.10. Let C be a category with strong monomorphic strong coimages. Let $f: X \rightarrow Y$ be a level

morphism in pro-*C*. Then there exist level morphisms $g: X \to Z$ and $h: Z \to Y$ such that $g_{\alpha} = SE(f_{\alpha})$, $h_{\alpha} = SM(f_{\alpha})$ for each $\alpha \in I(X)$ and $f = h \circ g$. Moreover, if f is an isomorphism in pro-*C*, then both h and g are isomorphisms. *Proof.* First note that we have $f_{\alpha} \circ p(X)_{\alpha}^{\beta} = p(Y)_{\alpha}^{\beta} \circ f_{\beta}$ for $\beta > \alpha$. Since *C* is a category with strong monomorphic strong coimages, we have,

$$SM\left(f_{\alpha}\right)\circ SE\left(f_{\alpha}\right)\circ p\left(X\right)_{\alpha}^{\beta}=p\left(Y\right)_{\alpha}^{\beta}\circ SM\left(f_{\beta}\right)\circ SE\left(f_{\beta}\right).$$

This implies that the following diagram,

$$\begin{array}{c|c} X_{\beta} \xrightarrow{SE(f_{\beta})} \operatorname{im}(f_{\beta}) \\ SE(f_{\alpha}) \circ p(X)_{\alpha}^{\beta} \bigvee & \downarrow p(Y)_{\alpha}^{\beta} \circ SM(f_{\beta}) \\ \operatorname{im}(f_{\alpha}) \xrightarrow{SM(f_{\alpha})} Y_{\alpha} \end{array}$$

is commutative in pro-*C* with $SE(f_{\beta})$ a strong epimorphism and $SM(f_{\alpha})$ a strong monomorphism. Thus, there is a unique morphism $v: im(f_{\beta}) \rightarrow im(f_{\alpha})$ by Theorem 2.6. Put $Z_{\alpha} = im(f_{\alpha})$ and $p(Z)_{\alpha}^{\beta} = v$. Thus, *Z* is an object of pro-*C*. Further, put $g_{\alpha} = SE(f_{\alpha})$ and $h_{\alpha} = SM(f_{\alpha})$ for each $\alpha \in I(X)$. Hence, $f = h \circ g$. Obviously, *g* is a strong epimorphism and *h* is a strong monomorphism. Note that if *f* is an isomorphism, hence a strong monomorphism by Theorem 2.5, then *g* is a strong monomorphism by Lemma 2.4 and thus it is an isomorphism by Theorem 2.5. Also, if *f* is an isomorphism, then *h* is a strong epimorphism and thus it is an isomorphism. Hence, the result holds.

We denote g by SE(f) and h by SM(f). Therefore, we write f as $SM(f) \circ SE(f)$.

3. STRONG MITTAG-LEFFLER PROPERTY

Definition 3.1. Let *C* be a category with strong monomorphic strong coimages. An object *X* of pro-*C* has the *strong Mittag-Leffler property* if for every $\alpha \in I(X)$ there is $\beta > \alpha$ such that $SE(p(X)_{\alpha}^{\beta}) \circ p(X)_{\beta}^{\gamma}$ is a strong epimorphism for all $\gamma > \beta$.

We write
$$SE\left(p\left(X\right)_{\alpha}^{\beta}\right) \circ p\left(X\right)_{\beta}^{\gamma} = SE\left(p\left(X\right)_{\alpha}^{\gamma}\right)$$

Note that if *C* is a category with strong monomorphic strong coimages and *X* is an object of pro-*C* such that $p(X)^{\beta}_{\alpha}$ is a strong epimorphism for all $\beta > \alpha$, then *X* has the strong Mittag-leffler property. Indeed, $SE(p(X)^{\beta}_{\alpha}) \circ p(X)^{\gamma}_{\beta}$ is a strong epimorphism for all $\gamma > \beta$.

Theorem 3.2. Let *C* be a category with strong monomorphic strong coimages. Let $f: X \to Y$ be a level morphism in pro-*C* such that $p(Y)^{\beta}_{\alpha}$ is a strong epimorphism for all $\beta > \alpha$. If *f* is an isomorphism in pro-*C*, then *X* has the strong Mittag-Leffler property.

Proof. Assume that *f* is an isomorphism in pro-*C*. Then for each α , there exists $\beta > \alpha$ and a morphism $r: Y_{\beta} \to X_{\alpha}$ in *C* such that the following diagram commutes.

$$\begin{array}{c|c} X_{\beta} & \xrightarrow{f_{\beta}} & Y_{\beta} \\ p(X)_{\alpha}^{\beta} & \swarrow & & \downarrow \\ p(Y)_{\alpha}^{\beta} & & \downarrow \\ X_{\alpha} & \xrightarrow{f_{\alpha}} & Y_{\alpha} \end{array}$$

That is, $p(X)_{\alpha}^{\beta} = r \circ f_{\beta}$ and $p(Y)_{\alpha}^{\beta} = f_{\alpha} \circ r$. Since $p(Y)_{\alpha}^{\beta}$

is a strong epimorphism for all $\beta > \alpha$, we have f_{α} is a strong epimorphism by Lemma 2.4. For any $\gamma > \beta$, we have,

$$r \circ p(X)^{\gamma}_{\beta} \circ f_{\gamma} = r \circ f_{\beta} \circ p(X)^{\gamma}_{\beta} = p(X)^{\beta}_{\alpha} \circ p(X)^{\gamma}_{\beta} = p(X)^{\gamma}_{\alpha}$$

Note that,

$$r \circ p(Y)_{\beta}^{\gamma} \circ f_{\gamma} = SM(r) \circ SE(r) \circ p(Y)_{\beta}^{\gamma} \circ f_{\gamma}$$

Fore.

Therefore,

$$SE\left(p\left(X\right)_{\alpha}^{\gamma}\right) = SE\left(r\right) \circ p\left(Y\right)_{\beta}^{\gamma} \circ f_{\gamma} = SE\left(r\right) \circ f_{\beta} \circ p\left(X\right)_{\beta}^{\gamma}$$
$$= SE\left(p\left(X\right)_{\alpha}^{\beta}\right) \circ p\left(X\right)_{\beta}^{\gamma}$$

Hence, *X* has the strong Mittag-Leffler property.

We need the following special case of Theorem 2.10.

Lemma 3.3. Let *C* be a category with strong monomorphic strong coimages. If *Y* is an object of pro-*C* and $e:I(Y) \to I(Y)$ is an increasing function, then there exist level morphisms $g: X \to Z$ and $h: Z \to Y$ such that $g_{\alpha} = SE\left(p(Y)_{\alpha}^{e(\alpha)}\right)$ and $h_{\alpha} = SM\left(p(Y)_{\alpha}^{e(\alpha)}\right)$ for all $\alpha \in I(Y)$.

Moreover, both g and h are isomorphisms.

Proof. Let *Y* be an object of pro-*C* and $e: I(Y) \to I(Y)$ be an increasing function. Let $X_{\alpha} = Y_{e(\alpha)}$ and $p(X)_{\alpha}^{\beta} = p(Y)_{e(\alpha)}^{e(\beta)}$ for all $\alpha, \beta \in I(Y)$ with $\beta > \alpha$. Let $f: X \to Y$ be defined by $f_{\alpha} = p(Y)_{\alpha}^{e(\alpha)}$ for each $\alpha \in I(Y)$. Now if we continue as in the proof of Theorem 2.10, then the result holds.

Theorem 3.4. Let *C* be a category with strong monomorphic strong coimages. If *Y* has the strong Mittag-Leffler property and *I*(*Y*) is cofinite, then there is a level morphism $h : Z \to Y$ in pro-*C* such that $p(Z)_{\alpha}^{\beta}$ is a strong epimorphism for all $\beta >$

 α , each h_{α} is a strong monomorphism and h is an isomorphism in pro-C.

Proof. Suppose that *Y* have the strong Mittag-Leffler property and *I*(*Y*) is cofinite. Then for every $\alpha \in I(Y)$, there is $\beta > \alpha$ such that $SE\left(p(Y)_{\alpha}^{\beta}\right) \circ p(Y)_{\beta}^{\gamma} = SE\left(p(Y)_{\alpha}^{\gamma}\right)$ is a strong epimorphism for all $\gamma > \beta$. If we switch from β to $\omega < \gamma$, then

epimorphism for all $\gamma > \beta$. If we switch from β to $\omega < \gamma$, then we have,

$$SE\left(p\left(Y\right)_{\alpha}^{\omega}\right)\circ p\left(Y\right)_{\omega}^{\gamma} = SE\left(p\left(Y\right)_{\alpha}^{\beta}\right)\circ p\left(Y\right)_{\beta}^{\omega}\circ p\left(Y\right)_{\omega}^{\gamma}$$
$$= SE\left(p\left(Y\right)_{\alpha}^{\beta}\right)\circ p\left(Y\right)_{\beta}^{\gamma}$$

It is a strong epimorphism. But,

$$SM\left(p\left(Y\right)_{\alpha}^{\omega}\right) \circ SE\left(p\left(Y\right)_{\alpha}^{\omega}\right) \circ p\left(Y\right)_{\omega}^{\gamma} = p\left(Y\right)_{\alpha}^{\omega} \circ p\left(Y\right)_{\omega}^{\gamma} = p\left(Y\right)_{\alpha}^{\gamma}$$

Thus, $SE\left(p\left(Y\right)_{\alpha}^{\omega}\right) \circ p\left(Y\right)_{\omega}^{\gamma} = SE\left(p\left(Y\right)_{\alpha}^{\gamma}\right)$ is a strong

epimorphism for $\gamma > \omega$. Therefore, by induction on the number of predecessors $n(\alpha)$ of $\alpha \in I(Y)$, we can construct an increasing function $e:I(Y) \to I(Y)$ such that $SE\left(p(Y)_{\alpha}^{e(\alpha)}\right) \circ p(Y)_{e(\alpha)}^{\gamma} = SE\left(p(Y)_{\alpha}^{\gamma}\right)$ is a strong epimorphism for all $\gamma > e(\alpha)$. Using Lemma 3.3, there exist level morphisms $g: X \to Z$ and $h: Z \to Y$ such that $g_{\alpha} = SE\left(p(Y)_{\alpha}^{e(\alpha)}\right)$ and $h_{\alpha} = SM\left(p(Y)_{\alpha}^{e(\alpha)}\right)$ for all $\alpha \in I(Y)$. h

is an isomorphism. Note that $p(Z)^{\beta}_{\alpha}$ is a strong epimorphism

for all $\beta > \alpha$ since,

$$p(Z)^{\beta}_{\alpha} \circ SE(p(Y)^{e(\beta)}_{\beta}) = SE(p(Y)^{e(\alpha)}_{\alpha}) \circ p(Y)^{e(\beta)}_{e(\alpha)}$$
 is a strong

epimorphism. Hence, the theorem is proved.

Corollary 3.5. Let C be a category with strong monomorphic strong coimages. If X is isomorphic to Y in pro-C and Y has the strong Mittag-Leffler property, then X has the strong Mittag-Leffler property.

Proof. Assume that $f: X \to Y$ is an isomorphism in pro-*C* and *Y* have the strong Mittag-Leffler property. Using Theorem 2.1, we can see that *Y* has the strong Mittag-Leffler property if and only if *Y* has the strong Mittag-Leffler property since the bonding morphisms of *Y* are chosen from

the bonding morphisms of Y. Therefore, we may assume that $p(Y')_{\alpha}^{\beta}$ is a strong epimorphism for all $\beta > \alpha$ by Theorem 3.4. There exists a level isomorphism $f': X' \to Y'$ by Theorem 2.1. Thus, X' has the strong Mittag-Leffler property by Theorem 3.2. Hence, X has the strong Mittag-Leffler property.

Corollary 3.6. Let *C* be a category with strong monomorphic strong coimages. If $f: X \rightarrow Y$ is a strong epimorphism of pro-*C* and *X* has the strong Mittag-Leffler property, then *Y* has the strong Mittag-Leffler property.

Proof. Assume that $f: X \to Y$ is a strong epimorphism of pro-*C* and *X* have the strong Mittag-Leffler property. Using Theorem 3.4, we may assume that *f* is a level morphism of pro-*C* such that each $p(X)^{\beta}_{\alpha}$ is a strong epimorphism. Note that there exist level morphisms $SE(f): X \to Z$ and $SM(f): Z \to Y$ such that each $SE(f)_{\alpha}$ is a strong epimorphism and each $SM(f)_{\alpha}$ is a strong monomorphism and $f = SM(f) \circ SE(f)$ by Theorem 2.10. Since $SE(f)_{\alpha} \circ p(X)^{\beta}_{\alpha} = p(Z)^{\beta}_{\alpha} \circ SE(f)_{\beta}$ is a strong epimorphism, we have $p(Z)^{\beta}_{\alpha}$ is a strong epimorphism by Lemma 2.4. Since *f* is a strong epimorphism and thus it is an isomorphism by Theorem 2.5. Hence, *Y* has the strong Mittag-Leffler property by Theorem 3.2.

ACKNOWLEDGEMENTS

I thank King Abdulaziz University for supporting this work.

REFERENCES

- Dydak J, Ruiz del Portal FR. Monomorphisms and epimorphisms in pro-categories. Topol Appl 2007; 154: 2204-22.
- [2] Alshumrani MA. Categories with strong monomorphic strong coimages. Missouri J Math Sci 2011; in press.
- [3] Dydak J, Ruiz del Portal FR. Isomorphisms in pro-categories. J Pure Appl Algebra 2004; 190: 85-120.
- [4] MardeŠic S, Segal J. Shape Theory. North-Holland: Amsterdam 1982.

Revised: December 28, 2010

Accepted: February 28, 2011

© M. A. Alshumrani; Licensee Bentham Open.

Received: November 04, 2010

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.