The Lie Algebra of Local Killing Fields

Richard Atkins^{*}

Department of Mathematics, Trinity Western University, 7600 Glover Road, Langley, BC, V2Y 1Y1, Canada

Abstract: We present an algebraic procedure that finds the Lie algebra of the local Killing fields of a smooth metric. In particular, we determine the number of independent local Killing fields about a given point on the manifold. As an application, we provide a local classification of the types of surfaces that admit the various possible Lie algebras of local Killing fields, in terms of the Gaussian curvature.

Keywords: Lie algebra, local Killing field, derived flag, curvature, locally symmetric space.

1. INTRODUCTION

Killing fields describe the infinitesimal isometries of a metric and as such play a significant role in differential geometry and general relativity. In this paper we present an algebraic method that finds the Lie algebra of the local Killing fields of a smooth metric g. In particular, we determine the number of independent local Killing fields of g about any given point. In the section following, we identify the local Killing fields of a metric with local parallel sections of an associated vector bundle W, endowed with a connection ∇ . An examination of the form of the curvature of ∇ leads to a characterization of spaces of constant curvature by means of a system of linear equations. In Section 3 we investigate the Lie algebra structure of Killing fields. Section 4 includes an overview of the procedure developed in [1]. Therein the bundle generated by the local parallel sections of W is found by calculating a derived flag of subsets of W. The number of independent Killing fields of g about a point $x \in M$ is then equal to the dimension of the fibre \widetilde{W}_x over x of the terminal subset of the derived flag. Associated to \widetilde{W}_x is a Lie algebra canonically isomorphic to the Lie algebra K_r of local Killing fields about x. The method is illustrated by providing a short proof of a classical theorem that gives a necessary condition for a space to be locally symmetric, expressed by the vanishing of a set of quadratic homogeneous polynomials in the curvature. Section 5 considers the derived flag for surfaces. We obtain a complete classification of the local Riemannian metrics corresponding to the various possible kinds of Lie algebra K_r . Furthermore, we show that if a regular surface with non-constant curvature possesses a Killing field then the integral curves of the curvature vector field are geodesic paths.

2. KILLING FIELDS AND CONSTANT CURVATURE

We associate to Killing fields parallel sections of a suitable vector bundle in the manner put forward by Kostant [2]. The utility of such a framework is two-fold: first, it permits us to apply algebraic techniques adapted to finding the subbundle generated by local parallel sections. Second, it enables a purely algebraic description of the Lie bracket of two Killing fields, avoiding the explicit appearance of derivatives.

Let g be a metric on a differentiable manifold M of dimension n; g is assumed to be pseudo-Riemannian of signature (p,q) unless otherwise stated. K is a Killing field of g if and only if,

$$K_{a:b} + K_{b:a} = 0 \tag{1}$$

where the semi-colon indicates covariant differentiation with respect to the Levi-Civita connection of g. It is straightforward to verify that,

$$K_{a;bc} = R_{abc}^{\ a} K_d \tag{2}$$

for Killing fields K, where R_{abc}^{d} is the Riemann curvature tensor of g, defined according to,

$$A_{c;ba} - A_{c;ab} = R_{abc}^{\ \ d} A_d$$

The summation convention shall be used throughout.

Let W be the Whitney sum $W := T^*M \oplus \Lambda^2 T^*M$. A local section of W has the form X = K + L, where $K = K_a dx^a$ is a local section of T^*M and $L = L_{ab} dx^a \wedge dx^b$ is a local section of $\Lambda^2 T^*M$. Define a connection ∇ on W by,

$$\nabla_i X = (K_{a;i} - L_{ai})dx^a + (L_{ab;i} - R_{abi}^c K_c)dx^a \wedge dx^b$$
(3)

For an open subset $U \subseteq M$, let K_U denote the local Killing fields $K: U \to T^*M$ and let P_U denote the local parallel sections $X: U \to W$; the subscript U shall be omitted when U = M. Define the map $\phi_U: K_U \to P_U$ by,

^{*}Address correspondence to this author at the Department of Mathematics, Trinity Western University, 7600 Glover Road, Langley, BC, V2Y 1Y1 Canada; Tel: 1-604-888-7511; Fax: 1-604-513-2018; E-mail: richard.atkins@twu.ca

$$\phi_U(K_a) := K_a + K_{a;b} \tag{4}$$

It is clear that the image of ϕ_U does, in fact, lie in P_U . The inverse $\psi_U : P_U \to K_U$ of ϕ_U is the projection of W onto $T^*M : \psi_U(K_a + L_{ab}) := K_a$. This establishes a vector space isomorphism,

$$K_U \leftrightarrow P_U$$
 (5)

Consider a vector space V with a non-degenerate, symmetric bilinear form h. Let $B = B_{abcd}$ be a covariant 4-tensor on V satisfying the following relations common to a Riemann curvature tensor:

$$B_{abcd} = B_{cdab} = -B_{bacd} = -B_{abdc} \tag{6}$$

and let $T = T_{ab\cdots}$ be an *n*-tensor on *V* with $n \ge 2$. The derivation $B \star T$ is the (n+2)-tensor defined by,

$$B \star T_{abcd\cdots} \coloneqq B_{sbcd} T^{s}_{a\cdots} + B_{ascd} T^{s}_{b\cdots} + B_{absd} T^{s}_{c\cdots} + B_{abcs} T^{s}_{d\cdots}$$
(7)

Indices are raised by h.

Lemma 1. If V is 2-dimensional then $B \star L = 0$ for all $L \in \Lambda^2 V^*$.

Proof:

It shall be convenient to work in an orthonormal basis of V in which $h = diag(\eta_1, \eta_2)$, where $\eta_i = \pm 1$. Then $L_{j}^i = \eta_i L_{ij}$. Owing to the symmetries (6), there are effectively two cases to consider.

(i) a = b = 1 case: $B \star L_{abcd} = \eta_2 (B_{21cd} + B_{12cd}) L_{21} = 0$ (ii) a = c = 1, b = d = 2 case: $B \star L_{abcd} = \eta_2 B_{2212} L_{21} + \eta_1 B_{1112} L_{12} + \eta_2 B_{1222} L_{21} + \eta_1 B_{1211} L_{12} = 0$

q.e.d.

Applying the Bianchi identities, the curvature $F(i, j) := \nabla_{[i} \nabla_{j]}$ of ∇ takes the form,

$$F(i,j)(X) = (R_{ijkl;s}K^s + R \star L_{ijkl})dx^k \wedge dx^l$$
(8)

where $X = K_a dx^a + L_{ab} dx^a \wedge dx^b$ [3]. In the sequel, it shall be convenient to view the curvature F as a map $F: W \to \Lambda^2 T^* M \otimes W$ given by $w \mapsto F(,)(w)$. F is composed of two pieces: a K-part and an L-part. The K-part provides a description of locally symmetric spaces: g is locally symmetric if and only if $T^*M \subseteq \ker F$. The L-part, on the other hand, provides a characterization of metrics of constant sectional curvature by means of a system of homogeneous linear equations.

Proposition 2. Let g be Riemannian and $n \ge 3$. Then M is a space of constant curvature if and only if,

$$R \star L = 0$$

for all $L \in \Lambda^2 T^* M$

Expressed in terms of indices, M has constant curvature (for $n \ge 3$) if and only if for all $L \in \Lambda^2 T^* M$,

$$R_{sjkl} L^{s}_{i} + R_{iskl} L^{s}_{j} + R_{ijsl} L^{s}_{k} + R_{ijks} L^{s}_{l} = 0$$
⁽⁹⁾

It is evident from the lemma that the proposition does not hold for n = 2.

Proof:

 $\Rightarrow \text{ If } g \text{ has constant curvature then } R_{ijkl} = \kappa_0(\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl}) \text{ with respect to an orthonormal } frame, where <math>\kappa_0$ is a constant. Substitution of this expression into the left hand side of (9) gives zero for all skew-symmetric $L = L_{ab}$.

$$R_{sjil}L_{si} + R_{isil}L_{sj} + R_{ijsl}L_{si} + R_{ijjs}L_{sl} = 0$$
(10)

Put $L_{rs} := \delta_{rl} \delta_{sj} - \delta_{rj} \delta_{sl}$ into (10) to obtain $R_{ijij} = R_{ilil}$. It follows that for any two pairs of distinct indices $i \neq j$ and $a \neq b$, $R_{ijij} = R_{abab}$. Thus,

$$R_{iiii} = \kappa(x) \quad \text{for } i \neq j \tag{11}$$

where κ is some function on M.

Next, let i = k and j = l be two distinct indices in (9). This gives:

$$R_{ijis}L_{sj} + R_{ijsj}L_{si} = 0 \tag{12}$$

Let *m* be any index distinct from *i* and *j* and put $L_{rs} := \delta_{rm} \delta_{sj} - \delta_{rj} \delta_{sm}$ into (12). We obtain,

$$R_{iiim} = 0$$
 for *i*, *j* and *m* distinct (13)

Consider a pair Y_1, Y_2 of orthonormal vectors in $T_x M$. If X_1, X_2 span the same plane as Y_1, Y_2 at x then $R(Y_1, Y_2, Y_1, Y_2) = \kappa(x)$, by (11). If Y_1, Y_2 span a plane orthogonal to X_1, X_2 then we may as well suppose $X_3 = Y_1$ and $X_4 = Y_2$, whence $R(Y_1, Y_2, Y_1, Y_2) = \kappa(x)$, from (11) again.

The last possibility is that Y_1, Y_2 and X_1, X_2 span planes that intersect through a line, which for the purpose of calculating sectional curvature we may take to be generated by $X_1 = Y_1$, by means of appropriate rotations of the pairs X_1, X_2 and Y_1, Y_2 within the respective planes they span. We may suppose, furthermore, that X_3 is the normalized component of Y_2 orthogonal to X_2 ; thus,

$$Y_2 = aX_2 + bX_3,$$

where $a^2 + b^2 = 1$. From (11) and (13) this gives,

$$\begin{aligned} R(Y_1, Y_2, Y_1, Y_2) &= R(X_1, aX_2 + bX_3, X_1, aX_2 + bX_3) \\ &= a^2 R_{1212} + b^2 R_{1313} \\ &= \kappa(x) \end{aligned}$$

Therefore g has constant curvature at each point $x \in M$. By Schur's Theorem, g has constant curvature.

q.e.d.

3. THE LIE ALGEBRA STRUCTURE OF K_{U}

Let V be an n-dimensional vector space equipped with a non-degenerate, symmetric bilinear form h, of signature (p,q), and let $B = B_{abcd}$ be a covariant 4-tensor on V satisfying the usual algebraic relations of a Riemann curvature:

$$B_{abcd} = -B_{bacd} \tag{14}$$

$$B_{abcd} = -B_{abdc} \tag{15}$$

$$B_{abcd} + B_{acdb} + B_{adbc} = 0, \quad and \; afortioni \tag{16}$$
$$B_{abcd} = B_{cdab}$$

By virtue of (14) and (15) we may define a skew-symmetric, bilinear bracket operation on $V^* \oplus \Lambda^2 V^*$ by,

$$[K_{a} + L_{ab}, K_{a}' + L_{ab}']:$$

= $L_{ab}'K^{b} - L_{ab}K'^{b} + L_{a}'^{c}L_{cb} - L_{a}^{c}L_{cb}' + B_{abcd}K^{c}K'^{d}$ (17)

where indices are raised and lowered with h. If a subspace W of $V^* \oplus \Lambda^2 V^*$ is closed with respect to the bracket and satisfies the Jacobi identity then we denote the associated Lie algebra by A(W, B, h).

Lemma 3. Let *W* be a subspace of $V^* \oplus \Lambda^2 V^*$, closed with respect to the bracket operation. The Jacobi identity holds on *W* if and only if for all X = K + L, X' = K' + L' and X'' = K'' + L'' in *W*, where $K, K', K'' \in V^*$ and $L, L', L'' \in \Lambda^2 V^*$,

$$B \star L_{abcd} K^{\prime c} K^{\prime \prime d} + B \star L_{abcd}^{\prime} K^{\prime \prime c} K^{d} + B \star L_{abcd}^{\prime \prime} K^{c} K^{\prime d} = 0$$
(18)

Proof:

Let $K, K', K'' \in V^*$ and $L, L', L'' \in \Lambda^2 V^*$. There are four cases to consider.

(i) K - K' - K'' case. We have,

$$[K, [K', K'']] = [K, B_{abcd} K'^{c} K''^{d}] = B_{abcd} K^{b} K'^{c} K''^{d}$$

Therefore,

$$[K,[K',K'']] + [K',[K'',K]] + [K'',[K,K']]$$

= $(B_{abcd} + B_{acdb} + B_{adbc})K^bK'^cK''^d$
= 0 (19)
by equation (16).

(ii)
$$K - K' - L$$
 case. First,

$$[K, [K', L]] = [K, L_{ab}K'^{b}] = B_{abcd}K^{c}L_{s}^{d}K'^{s}$$

Also,

$$[L,[K,K']] = [L,B_{abcd}K^cK'^d]$$

$$= B_{ascd} K^c K'^d L^s_{\ b} - L^s_a B_{sbcd} K^c K'^d$$

Combining these with (15) and the fact that $L = L_{ab}$ is skew-symmetric, we obtain,

$$[K,[K',L]] + [K',[L,K]] + [L,[K,K']] = B \star L_{abcd} K^c K'^d \quad (20)$$

(iii) K - L - L' case. Observe that,

$$[K, [L, L']] = [K, L'L - LL'] = L'LK - LL'K$$

and,

$$[L, [L', K]] = -[L, L'K] = LL'K$$

Using these equations gives,

$$[K,[L,L']] + [L,[L',K]] + [L',[K,L]] = 0$$
(21)

(iv)
$$L - L' - L''$$
 case. It is elementary to verify that,

$$[L, [L', L'']] + [L', [L'', L]] + [L'', [L, L']] = 0$$
(22)

After applying (19)-(22),

$$[X, [X', X'']] + [X', [X'', X]] + [X'', [X, X']]$$

simplifies to,

$$B \star L_{abcd} K^{\prime c} K^{\prime \prime d} + B \star L_{abcd}^{\prime} K^{\prime \prime c} K^{d} + B \star L_{abcd}^{\prime \prime} K^{c} K^{\prime d}$$

q.e.d.

Proposition 4. (i) If V is 2-dimensional then any subspace W of $V^* \oplus \Lambda^2 V^*$, closed with respect to the bracket, defines a Lie algebra A(W, B, h).

(ii) If V is arbitrary and B = 0 then $V^* \oplus \Lambda^2 V^*$ defines a Lie algebra $A(V^* \oplus \Lambda^2 V^*, B = 0, h)$.

Proof:

(i) Follows from Lemmas 1 and 3. (ii) is immediate.

q.e.d.

For local Killing fields $K, K' \in K_U$, the Lie bracket K'' := [K, K'] is,

$$K_{a}^{\prime\prime} = L_{ab}^{\prime} K^{b} - L_{ab} K^{\prime b}$$
(23)

where we have written $L_{ab} := K_{a;b}$ and $L'_{ab} := K'_{a;b}$. Furthermore, $L''_{ab} := K''_{a;b}$ is given by,

$$L_{ab}^{\prime\prime} = L_{a}^{\prime c} L_{cb} - L_{ac} L_{cb}^{\prime} + R_{abcd} K^{c} K^{\prime d}$$
(24)

Defining a bracket on P_{U} by,

$$[K + L, K' + L']:$$

= $L'_{ab}K^{b} - L_{ab}K'^{b} + L'^{c}_{a}L_{cb} - L_{ac}L'_{cb} + R_{abcd}K^{c}K'^{d}$ (25)

gives an isomorphism $\phi_U : K_U \to P_U$ of Lie algebras:

$$\phi_U([K,K']) = [\phi_U(K), \phi_U(K')]$$
(26)

8 The Open Mathematics Journal, 2011, Volume 4

For $x \in U$, define the subspace $W_{U,x}$ of W_x by,

$$W_{U,x} := \{ w \in W_x : w = X(x), \text{ for some } X \in P_U \}$$

$$(27)$$

Since parallel sections of a vector bundle are determined by their value at a single point, P_U and $W_{U,x}$ are isomorphic as vector spaces via the restriction map $r_x : P_U \to W_{U,x}$, given by $r_x(X) := X(x)$. Comparing (17) and (25), we have, in fact, a Lie algebra isomorphism $r_x : P_U \to A(W_{U,x}, R_x, g_x)$. Composing this with ϕ_U characterizes the Lie algebra of K_U .

Lemma 5.

$$r_x \circ \phi_U : K_U \to A(W_{U,x}, R_x, g_x)$$
(28)

is an isomorphism of Lie algebras.

In order to find the Lie algebra of the local Killing fields of g about the point x it remains to calculate $W_{U,x}$ for a sufficiently small neighbourhood U of x. This is accomplished in the following section.

4. PARALLEL FIELDS AND LOCALLY SYMMETRIC SPACES

We begin by briefly reviewing the method from [1]. This describes an algebraic procedure for determining the number of independent local parallel sections of a smooth vector bundle $\pi: W \to M$ with a connection ∇ . Since the existence theory is based upon the Frobenius Theorem, smooth data are required.

Let W' be a subset of W satisfying the following two properties:

P1: the fibre of W' over each $x \in M$ is a linear subspace of the fibre of W over x, and,

P2: W' is *level* in the sense that each element $w \in W'$ is contained in the image of a local smooth section of W', defined in some neighbourhood of $\pi(w)$ in M.

Let X be a local section of W'. The covariant derivative of X is a local section of $W \otimes T^*M$. Define $\tilde{\alpha}$ by,

$$\widetilde{\alpha}(X) := \phi \circ \nabla(X)$$

where $\phi: W \otimes T^*M \to (W/W') \otimes T^*M$ denotes the natural projection taken fibrewise. If *f* is any differentiable function with the same domain as *X* then,

$$\widetilde{\alpha}(fX) = f\widetilde{\alpha}(X)$$

This means that $\tilde{\alpha}$ defines a map,

$$\alpha_{W'}: W' \to (W/W') \otimes T^*M$$

which is linear on each fibre of W'.

The kernel of $\alpha_{W'}$ is a subset of W', which satisfies property P1 but not necessarily property P2. In order to carry out the above constructions to ker $\alpha_{W'}$, as we did to W', the non-level points in ker $\alpha_{W'}$ must be removed. To this end we define a leveling map *S* as follows. For any subset *V* of *W* satisfying P1 let *S*(*V*) be the subset of *V* consisting of all elements *v* for which there exists a smooth local section $s: U \subseteq M \rightarrow V \subseteq W$ such that $v = s(\pi(v))$. Then *S*(*V*) satisfies both P1 and P2.

We may now describe the construction of the maximal flat subset \widetilde{W} , of W. Let,

$$V^{(0)} := \{ w \in W \mid F(,)(w) = 0 \}$$

$$W^{(i)} := S(V^{(i)})$$

$$V^{(i+1)} := \ker \alpha_{w^{(i)}}$$

where, as before, $F:TM \otimes TM \otimes W \to W$ is the curvature tensor of ∇ . This gives a sequence,

$$W \supseteq W^{(0)} \supseteq W^{(1)} \supseteq \cdots \supseteq W^{(k)} \supseteq \cdots$$

of subsets of W. For some $k \in N$, $W^{(l)} = W^{(k)}$ for all $l \ge k$. Define $\widetilde{W} = W^{(k)}$, with projection $\widetilde{\pi} : \widetilde{W} \to M$.

We say that the connection ∇ is *regular at* $x \in M$ if there exists a neighbourhood U of x such that $\tilde{\pi}^{-1}(U) \subseteq \widetilde{W}$ is a vector bundle over U. \widetilde{W}_x shall denote the fibre of \widetilde{W} over $x \in M$.

Lemma 6. Let ∇ be a connection on the smooth vector bundle $\pi: W \to M$.

(i) If $X: U \subseteq M \to W$ is a local parallel section then the image of X lies in \widetilde{W} .

(ii) Suppose that ∇ is regular at $x \in M$. Then for every $w \in \widetilde{W}_x$ there exists a local parallel section $X: U \subseteq M \to \widetilde{W}$ with X(x) = w.

We may now describe the Lie algebra of local Killing fields about a point x.

Theorem 7. Let g be a smooth metric on a manifold M with associated connection ∇ on $W = T^*M \oplus \Lambda^2 T^*M$, which is assumed to be regular at $x \in M$. Then g has

dim \widetilde{W}_x independent local Killing fields in a sufficiently small neighbourhood U of $x \in M$. Moreover, the Lie algebra of Killing fields on U is canonically isomorphic to the Lie algebra $A(\widetilde{W}_x, R_x, g_y)$.

Proof:

By Lemma 6 there exists a sufficiently small open neighbourhood U of x such that $W_{U,x} = \widetilde{W}_x$. The theorem now follows from Lemma 5.

q.e.d.

As an illustration, we provide a short algebraic proof of the classical theorem that locally symmetric spaces satisfy,

$$R \star R = 0 \tag{29}$$
[4].

Lemma 8. If *M* is locally symmetric then $T^*M \subseteq \widetilde{W}$.

Proof:

Suppose M is locally symmetric and let $x \in M$. Then there is an open neighbourhood U of x such that the space of Killing fields on U, whose covariant derivative vanishes at x, has dimension n. By the isomorphism given in Lemma 5, $T_x^*M \subseteq W_{U,x}$. From Lemma 6 (i) we have $W_{U,x} \subseteq \widetilde{W}_x$ and so $T_x^*M \subseteq \widetilde{W}_x$.

q.e.d.

Let $T = T_{a\cdots}$ be an *n*-tensor with $n \ge 1$. Define $R \cdot T$ to be the (n+2)-tensor obtained by contracting the rightmost index of *R* with the leftmost index of *T*:

$$R \cdot T_{abc\cdots} := R_{abc}^{\ s} T_{s\cdots} \tag{30}$$

Let $p := T^*M$, the cotangent space of M and let $p^{(1)}$ be defined as the set of all elements $v \in T^*M$ satisfying,

$$R \star R \cdot v = 0 \tag{31}$$

Define t to be the set of all $L \in \Lambda^2 T^* M$ such that,

 $R \star L = 0 \tag{32}$

We shall assume that t has constant rank.

Proof of (29):

Let us calculate the derived flag of W supposing M to be locally symmetric. From (8), $W^{(0)} = V^{(0)} := \ker F = p \oplus t$. Let X = K + L be a local section of $W^{(0)}$, where K and Lare local sections of p and t, respectively. By definition, $X(x) \in V_x^{(1)}$ if and only if $\nabla_i X(x) \in W_x^{(0)}$, for all i. This is equivalent to,

(*): $L_{ab:(i)} - R_{ab(i)}^{c} K_{c} \in t$ at x.

Taking the covariant derivative of $R \star L = 0$ gives $R \star L_{(i)} = 0$. Thus $L_{ab;(i)}$ is a local section of t. This means that (*) holds if and only if $R \cdot K_x$ lies in t. This is the case precisely when $K \in p^{(1)}$ at x, and so $V^{(1)} = p^{(1)} \oplus t$. By Lemma 8, we must have $V^{(1)} = T^*M \oplus t$, whence it follows that $p^{(1)} = T^*M$ and $W^{(1)} = V^{(1)} = W^{(0)}$. Therefore $R \star R = 0$.

q.e.d.

We have also shown that for M locally symmetric, $\widetilde{W} = W^{(0)} = p \oplus t$. Conversely, if $\widetilde{W} = p \oplus t$ then $T^*M \subseteq \ker F$, from which we conclude that M is locally symmetric. The terminal subbundle of the derived flag therefore characterizes locally symmetric spaces:

M is a locally symmetric space if and only if
$$\overline{W} = p \oplus t$$
.
(33)

In particular, the derived flag computes the local canonical decomposition.

As observed above, a Riemannian manifold with dim $M \ge 3$ has constant curvature if and only if $R \star L = 0$ for all _ (Proposition 2). Furthermore, all manifolds of dimension n = 1 or 2 satisfy $R \star L = 0$ for $L \in \Lambda^2 T^* M$ (cf. Lemma 1). Since spaces of constant curvature are locally symmetric the curvature F vanishes for such manifolds. It is not difficult to see that the converse holds (for the 2-dimensional case use the canonical form of the Riemann curvature: $R_{ijkl} = c(g_{il}g_{jk} - g_{ik}g_{jl})$, where c is the Gaussian curvature). Consequently,

M is a space of constant curvature if and only if
$$W = W$$
.
(34)

Employing Theorem 7, we obtain as a corollary the familiar result that a Riemannian manifold possesses the maximal possible number $\frac{1}{2}n(n+1)$ of independent local Killing fields if and only if it is a space of constant curvature.

5. CLASSIFICATION FOR RIEMANNIAN SURFACES

In this final section we shall determine which Riemannian surfaces correspond to the various types of Lie algebra K_x . In the process, a necessary condition for a Riemannian surface to possess a Killing field is obtained. First, we recall the situation involving the maximal number of local Killing fields:

Let M be a Riemannian surface. The following are equivalent:

- (i) dim $K_x = 3$ for all $x \in M$.
- (ii) M has constant Gaussian curvature c.
- (iii) M is locally symmetric.

In this case,

(a) if c = 0 then K_x is isomorphic to the Lie algebra of $\Re^2 \times_{sd} SO(2)$;

- (b) if c > 0 then $K_r \cong sl_2 \Re$;
- (c) if c < 0 then $K_x \cong su_2$.

The equivalence of (i)-(iii) follows from Lemma 1, (34) and the observation below (34). Assume that these conditions hold. c = 0 corresponds, locally, to flat Euclidean space, for which K_x is isomorphic to the Lie algebra of the semidirect product of translations and rotations. Suppose $c \neq 0$ and let X and Y be orthogonal vectors in T_x^*M with norm,

$$X^2 = Y^2 = \frac{1}{|c|}$$

Define $H \in \Lambda^2 T_x^* M$ by,

Then.

[X,Y] := H

$$[H,X] = -sg(c)Y$$
 and $[H,Y] = sg(c)X$

where sg(c) denotes the sign of c. Appealing to Lemma 5, this identifies K_x with $sl_2\Re$ for c > 0 and with su_2 for c < 0 [5].

Next, we calculate the derived flag for W assuming that the surface is *regular*: $W^{(i)} = V^{(i)}$ has constant rank for all i. The elements $K \in T^*M$ satisfying R_{ijkl} ^{;s} K_s are those for which $c^{s}K_s = 0$. Therefore, by Lemma 1,

$$W^{(0)} = \ker \partial c \oplus \Lambda^2 T^* M \tag{35}$$

where ∂c denotes the vector field $c^{,a}$. The case $\partial c = 0$ has been handled above. Suppose therefore that dim ker $\partial c = 1$; that is, ∂c is non-vanishing. Then $W^{(0)}$ is a rank-two fibre bundle over M. Let X = K + L be a local section of $W^{(0)}$, where K is a local section of ker ∂c and L is a local section of $\Lambda^2 T^* M$. $X(x) \in W_x^{(1)}$ is equivalent to $\nabla_i X(x) \in W_x^{(0)}$ for all i, by the definition of the derived flag. Since $\Lambda^2 T^* M \subseteq W^{(0)}$, $X(x) \in W_x^{(1)}$ if and only if,

$$K_{a:(i)} - L_{a(i)} \in \ker \partial c \tag{36}$$

At x. Taking the covariant derivative of $c^{s}K_{s} = 0$ gives the equation $c^{a}K_{a;b} = -c_{;ab}K^{a}$. Substituting this into (36) determines $W^{(1)}$ as the subset of all $K + L \in W^{(0)}$ satisfying,

$$c_{ab}K^{a} + L_{ab}c^{a} = 0 ag{37}$$

By contracting (37) with K and ∂c , it is evident that $W^{(1)}$ consists of the zero elements in W along with the solutions of,

$$c_{ab}K^{a}K^{b} + L_{ab}c^{a}K^{b} = 0$$
(38)

$$c_{ab}K^a c^b = 0 \tag{39}$$

where $0 \neq K \in \ker \partial c$ and $L \in \Lambda^2 T^* M$. Equation (39) has a solution $0 \neq K \in \ker \partial c$ if and only if,

$$c_{;ab}c^{,b} = fc_a \tag{40}$$

for some f. (40) may be written in terms of differential forms as,

$$dc \wedge D_{\lambda c} dc = 0 \tag{41}$$

where D denotes covariant differentiation. This leads to a necessary condition for the existence of a Killing field on a Riemannian surface.

Theorem 9. If a regular Riemannian surface possesses a Killing field then,

$$dc \wedge D_{\partial c} dc = 0$$

Proof:

By Theorem 7, if a regular Riemannian surface has a Killing field then \widetilde{W} has rank at least one. Since $\widetilde{W} \subseteq W^{(1)}$,

equation (39) must have a non-trivial solution $K \in \ker \partial c$ at each $x \in M$. The theorem now follows from the fact that (39) is equivalent to (41).

q.e.d.

Corollary 10. Let M be a regular Riemannian surface with non-constant curvature. If M possesses a Killing field then the integral curves of ∂c are geodesic paths.

By a *geodesic path* we mean a curve that is a geodesic when appropriately parameterized.

Proof:

Equation (41) is equivalent to $D_{\partial c}\partial c = f\partial c$, which implies that integral curves of the non-vanishing vector field ∂c may be parametrized so as to give geodesics of M.

q.e.d.

An example would be the punctured paraboloid $z = x^2 + y^2$; $(x, y) \neq (0, 0)$, with the induced metric from its embedding into 3-dimensional Euclidean space. The integral curves of ∂c are described by the geodesic paths $\gamma_{\theta}(t) = (t\cos\theta, t\sin\theta, t^2)$, up to reparametrization.

Now let us return to calculating $W^{(1)}$. If $dc \wedge D_{\partial c}dc = 0$ on the surface then the non-zero elements of $W^{(1)}$ are the solutions to (38) for which $0 \neq K \in \ker \partial c$. For any choice of non-trivial $K \in \ker \partial c$, (38) uniquely determines an element $L = L(K) \in \Lambda^2 T^* M$. Therefore $W^{(1)}$, in this case, is a rank one vector bundle over M. If, on the other hand, $dc \wedge D_{\partial c}dc \neq 0$ on M then $W^{(1)}$ is the zero bundle and there do not exist any local Killing fields. As a consequence, K_x cannot be 2-dimensional; this may also be seen directly by considering the Lie bracket operation. Henceforth we shall assume that $dc \wedge D_{\partial c}dc = 0$.

To find $W^{(2)}$, let X = K + L be a local section of $W^{(1)}$. By definition, $X(x) \in W_x^{(2)}$ if and only if $\nabla_i X(x) \in W_x^{(1)}$ for all *i*. Owing to (37), this is equivalent to

$$c_{;ab}K'^{a}_{(i)} + L'_{ab(i)}c^{a} = 0$$
(42)

Where,

$$K_{a(i)} := K_{a;(i)} - L_{a(i)}$$
$$L_{ab(i)} := L_{ab;(i)} - R_{ab(i)} {}^c K_c$$

(Note that from the description of $W^{(1)}$ contained in (36) it follows that $K'_{a(i)} + L'_{ab(i)} \in W^{(0)}$). Taking the covariant derivative of (37) gives,

$$c_{;ab}K^{a}_{;(i)} + L_{ab;(i)}c^{a} = -c_{;ab(i)}K^{a} - L_{ab}c^{;a}_{(i)}$$
(43)

Substituting (43) into (42) defines $W^{(2)}$ as the subset of all $K + L \in W^{(1)}$ such that,

$$c_{;abc}K^{a} + L_{ab}c^{;a}{}_{c} + L_{ac}c^{;a}{}_{b} + R_{abcd}c^{;a}K^{d} = 0$$
(44)

If this has only the trivial solution then $\widetilde{W} = W^{(2)}$ is the zero bundle. Otherwise, $\widetilde{W} = W^{(2)} = W^{(1)}$ has rank one.

Theorem 11. Let M be a regular Riemannian surface. Then dim $K_x = 1$ for all $x \in M$ if and only if,

(i) $dc \neq 0$,

(ii) $dc \wedge D_{\partial c}dc = 0$, and

(iii) equation (44) holds for all $K + L \in W^{(1)}$.

Proof:

Conditions (i)-(iii) are equivalent to $rank \ \widetilde{W} = 1$. The result now follows from Theorem 7.

q.e.d.

We summarize the discussion in this section with the following corollary.

Corollary 12. For regular Riemannian surfaces, K_x may be one of five possible Lie algebras. It is isomorphic to either

Revised: December 28, 2010

Accepted: February 28, 2011

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

 $sl_2\Re$, su_2 or the Lie algebra of $\Re^2 \times_{sd} SO(2)$ when the Gaussian curvature is constant and positive, negative or zero, respectively. K_x is the 1-dimensional Lie algebra when the conditions of Theorem 11 are met. Otherwise, there do not exist any local Killing fields and K_x is trivial.

REFERENCES

- Atkins R. Existence of Parallel Sections of a Vector Bundle. JGP 2011; 61: 309-11.
- [2] Kostant B. Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold. Trans Amer Math Soc 1955; 80.
- [3] Console S, Olmos C. Curvature invariants, Killing vector fields, connections and cohomogeneity. Proc Am Math Soc 2009; 137(3): 1069-72.
- [4] Helgason S. Differential geometry, lie groups, and symmetric spaces. Graduate studies in mathematics American Mathematical Society 2001.
- [5] Fulton W, Harris J. Representation theory. Graduate texts in mathematics. Springer 1991.

Received: November 04, 2009

[©] Richard Atkins; Licensee Bentham Open.