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Abstract: This paper presents a derivation for analytically evaluating the half-order Fermi-Dirac integrals. A complete 
analytical derivation of the Fermi-Dirac integral of order 1

2  
is developed and then generalized to yield each half-order 

Femi-Dirac function. The most important step in evaluating the Fermi-Dirac integral is to rewrite the integral in terms of 
two convergent real convolution integrals. Once this done, the Fermi-Dirac integral can put into a form in which a proper 
contour of integration can be chosen in the complex plane. The application of the theorem of residues reduces the Fermi-
Dirac integral into one which becomes analytically tractable. The final solution is written in terms of the complementary 
and imaginary Error functions. 
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I. INTRODUCTION 

 Fermi-Dirac integrals seem to be omnipresent in the 
scientific and mathematical literature. They are most often 
associated with the study of transport phenomena of conduc-
tors and semi-conductors [1-4]. However they also find 
applications in the seemingly unrelated field of multivariate 
quality control [5]. The scientific literature, spanning about a 
century, is replete with papers devoted the study of Fermi-
Dirac integrals. Many attempts have been made to find more 
accurate analytical solutions, [6-11] and there have been 
numerous papers dedicated to their accurate numerical 
calculation [12-15]. The number of articles written on this 
subject could probably fill a large tome. In many respects, 
the techniques which have been developed and employed to 
evaluate these integrals have been quite successful mainly 
because researchers have devoted so much time and effort to 
the study of Fermi-Dirac integrals. So what does this paper 
bring to table? Stated simply-this paper presents a method 
for analytically evaluating the Fermi-Dirac integral of 
order 1

2
 given by 
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. Once the analytical solution is found, one is in 

position to immediately find 
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(Appendix). 

Nothing will be said about what the physical quantities x  or 
!  may represent. Each will have a specific meaning  
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depending upon how the Fermi-Dirac integral is developed 
and in what field of study it is used. However, the main goal 
of this paper is to present a cogent method of attack for 
analytically evaluating Eq. (1).  
 It must be stressed that although the Fermi-Dirac integral 
may have important properties from a purely mathematical 
point of view, the authors' interests are mostly concerned 
with the application of the Fermi-Dirac integral to real 
physical problems. This being said, the authors will consider 
x and !  as real quantities which have a physical meaning 
defined by its particular application.  

II. ANALYTICAL EVALUATION OF
  

F
1

2

!( )  

 Let's first restrict our analysis to 0! > , since this is the 
most interesting case, and derive an analytical expression for 
( )1

2

F ! valid 0!" > . Consider rewriting Eq. (1) as follows: 
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 At first glance, Eq. (2) is nothing more than a way to split 
the integral of Eq. (1) into two convergent integrals no easier 
to deal with than Eq. (1). What have we really gained from 
this step? Well, it turns out that the right-hand side of Eq. (2) 
represents two convergent real convolution integrals. This is 
the critical step in developing an analytical solution to the 
Fermi-Dirac integral. We can now rewrite Eq. (2) and put it 
into a form which makes it more obvious to see that indeed 
the right-hand side of Eq. (2) represents two convergent 
convolution integrals. Equation (2) can be written as 
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 Firstly, the binomial expansion of the denominator of the 
first integral in Eq. (2) is mathematically justified since 

( )
1 

x

e x
! !" "

< # <  within the limits of integration. Also, the 
binomial expansion of the denominator of the second 
integral in Eq. (2) is mathematically justified since 

( )
1 

x

e x
! !" "
< # <  within the limits of integration. Notice 

that each of the two integrals on the right-hand side of Eq. 
(3) has exactly the mathematical structure of a real 
convolution integral. Armed with this observation allows one 
to rewrite the two integrals in Eq. (3) as follows: 
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 The right-hand side of Eqs. (4) and (5) give the s-domain 
representation of the corresponding integrals on the left-hand 
side of Eqs. (4) and (5). This is nothing more than an appli-
cation of the Faltung theorem for the Laplace Transform 
found on pages 30 and 31 of Sneddon [16]. Substituting Eqs. 
(4) and (5) into Eq. (3) and simplifying the algebra yields the 
following expression for 
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given by 
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 Equation (6) represents a mathematically exact expres-
sion for

  

F
1

2

!( ) . The next step in the simplification process is 

to evaluate the integral in Eq. (6). To this end, the contour 
illustrated in Fig. (1) is chosen. Notice that the contour is 
closed in the left-hand plane in order to ensure convergence. 
 One can now employ the residue theorem of complex 
variable theory to the Fermi-Dirac contour of Fig. (1) and 
write the following: 
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Fig. (1). Fermi-Dirac contour. 

 Only the line integrals along the contours 1, 3, and 5 con-
tribute a nonzero quantity to the closed line integral on the 
left-hand side of Eq. (7). The integral on the left-hand side of 
Eq. (7) encloses only simple poles since the origin has been 
excluded from the contour of integration. Evaluating the 
integral on the left-hand side of Eq. (7) by applying the 
residue theorem yields the following: 
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 Substituting Eq. (8) into Eq. (7) allows one to write the 
following expression. 
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 One can now rewrite Eq. (9) as follows: 
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 Now, since 
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concludes that  
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 Equation (12) expresses the fact that the imaginary term 
in Eq. (10) must be zero. Therefore, from Eq. (12), one now 
knows that  
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and rewriting Eq. (13) yields:  

  

cos ! y( )
y

1

2 y2
+ p2( )0

"

# dy =
$e% p!

2 p
3

2

+
sin ! y( )

y
1

2 y2
+ p2( )0

"

# dy .  (14) 

 Substituting Eq. (14) into Eq. (11) yields: 
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 So we now have an analytical expression for the integral 
given in Eq. (6). Employing Eq. (15) allows Eq. (6) to be 
written as 

  

F
1
2

(!) =
2

3
!

3
2 +

"
2

#1( )
p+1 e# p!

p
3

2p=1

$

%

+
2

"
#1( )

p+1

p=1

$

%
sin ! y( )

y
1
2 y2

+ p2( )0

$

& dy     '! > 0

.  (16) 

 However, the integral in Eq. (16) is readily evaluated as 
follows: 
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where ( )Erfc • and ( )Erfi • are defined as the complementary 
Error function and imaginary Error function respectively. In 
fact, if one uses Mathematica [17] to evaluate the integral in 
Eq. (17) then the solution one obtains is in terms of 

  
Erfc( p! ) and 

  
Erfi( p! ) . Substituting Eq. (17) into Eq. 

(16) yields the analytical solution to the Fermi-Dirac integral 
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 We will choose to use Eq. (18) and define the following: 
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 Equation (20) is easily derived by direct integration of 
Eq. (1) after letting !" #! . 
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 Equation (21) shows that the Fermi-Dirac integral of 
order 1

2
, which has been stated in the literature to be analyti-

cally intractable [18-21], is indeed analytically tractable. 
However, the summation given in Eq. (21) does not yield a 
closed-form expression in terms of elementary functions. 

 The Error functions in Eq. (21) are easily computed 
numerically by using Mathematica. However, one may find 
alternative functional representations instead of Error func-
tions. For example, Ulrich et al., [18] uses Polylogarithms to 
accurately compute the numerical values of Fermi-Dirac 
integrals. Also, Mathematica employs a Polylogarithm func-
tion algorithm to compute Fermi-Dirac type integrals. 
However, the method developed in this paper is a direct 
attack on the Fermi-Dirac integral itself. In other words, the 
authors have developed a complete analytical solution from 
first principles. The summation term in Eq. (21) cannot be 
summed in closed form in terms of elementary functions, 
however, this in no way negates the authors' claim that the 
solution is a completely analytical solution. No mathematical 
approximations were made in deriving Eq. (17) and this, of 
course, lead directly to the Fermi-Dirac integral given by Eq. 
(21). 
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III. ILLUSTRATIVE EXAMPLE 

 Let's consider the following numerical example. For 
 
0 ! " ! 5 , one can make a few representative plots com-
paring a numerical evaluation of the Fermi-Dirac integral 
given by Eq. (1) and its analytical evaluation given in Eq. 
(21). Figs. (2-5) below illustrate the results. Also, 

max
p is 

the maximum number of terms retained in the summation of 
Eq. (21). All numerical computations were done using 
Mathematica.  

 
Fig. (2). 
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Fig. (3). 
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Fig. (4). 
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Fig. (5). 
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 One can see from Figs. (2) through (5) that for 
max

20p = in Eq. (21) it becomes difficult to distinguish 
between the plot of Eq. (1) and Eq. (21). If one plots the ratio 
of these two equations, then one gets a better feel for how 
Eq. (21) is behaving. Fig. (6) illustrates the ratio of Eq. (21), 
with

max
50p = , to Eq. (1), evaluated numerically. Comput-

ing the sum for large values of 
max
p using Mathematica is 

easily done. As more terms are retained in Eq. (21), the ratio 
of Eq. (21) to Eq. (1) as shown in Fig. (6), approaches unity 
especially at points near 0! = . This is illustrated in Fig. (7) 
where 100 terms in Eq. (21) were retained. As stated earlier, 
the goal of this article was not to delve into the numerical 
properties of Eq. (21). However, from the standpoint of 
computer numerics, it appears that Eq. (21) could be used for 
numerical purposes. As !  moves away from the origin, 
fewer and fewer terms in Eq. (21) need to be retained. This 
is, of course, exactly what is to be expected. For example, 
Fig. (8) is a plot of the ratio of Eq. (21) to Eq. (1) for 
0.5 5!" "  using 

max
30p = . One can see that as !  moves 

away from the origin, 
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 needs fewer and fewer terms 

to compute the Fermi-Dirac integral of order 
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. Fig. (9) rep-

resents a plot of the full solution given by Eq. (18) for 
2 2!" # # . 
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Fig. (7). 
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Fig. (9). 
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IV. DISCUSSION 

 The Fermi-Dirac integral has received much attention 
throughout the twentieth century and for good reason. It is 
well known for its application in areas such as solid-state 
physics, statistical mechanics, quantum statistical mechanics, 
condensed matter physics, and solid-state electronics. How-
ever, it also sees a renewed interest in other areas such as the 
flow of traffic in communication networks [22]. Its wide-

range of applicability coupled with the belief that no analy-
tical solution existed coaxed the authors to make a concerted 
effort to analytically solve this seemingly intractable 
integral. 
 In the authors' opinion, the most important aspect of this 
article does not solely lie in the mathematical steps used to 
analytically evaluate the Fermi-Dirac integral, but in the 
observation that real convolution could be used. Once this is 
recognized, the mathematical machinery is straightforward. 
The calculus of residues, used in this article, is well known. 
No new mathematical formulations needed to be introduced. 
No complicated mathematical transformations were emp-
loyed. There are hundreds of papers throughout the literature 
devoted to the analytical approximation and the numerical 
computation of Fermi-Dirac integrals. Some of the tech-
niques require a fairly sophisticated knowledge of various 
special functions, asymptotic expansions, and computational 
mathematics. The method developed in this paper required 
only a basic knowledge of the theory of residues and real 
convolution to produce a complete analytical solution. 
 Although the main focus of this article was to develop, 
from first principles, a complete analytical solution for the 
half-order Fermi-Dirac functions, a critical aspect not 
discussed in this article is the numerical efficacy of Eq. (21). 
Whether Eq. (21) has any numerical advantages over other 
existing methods certainly needs to be addressed. There  
are numerous articles which tackle the Fermi-Dirac integral 
from a numerical point of view. For example, A. D. 
Kozhukhovskii et al., [23] employs shifted Chebyshev 
polynomials of the first kind for aiding in the evaluation of 
Fermi-Dirac integrals. W. J. Cody et al., [24] employs 
rational Chebyshev approximations to tackle the same 
problem as A. D. Kozhukhovskii et al., J. Macleod [25] 
employs Chebyshev polynomials and introduces a very 
useful algorithm for accurately computing Fermi-Dirac 
integrals. M.Goano [26] develops an algorithm based upon a 
hypergeometric series expansion for computing the complete 
and incomplete Fermi-Dirac integral. In fact, the authors 
have employed, within the framework of Mathematica [17], 
the algorithms developed by both J. Macleod and M. Goano 
in order to verify the plot illustrated in Fig. (9) of this article. 
N. Mohankumar [11] has derived a very interesting equation 
which makes use of the complementary Error function. The 
results of his article may help to further develop the numeri-
cal properties of Eq. (21). Also, N. Mohankumar et al. [27, 
28] provides an algorithm for computing the half-order 
complete and incomplete Fermi-Dirac integrals. Interest-
ingly, their method employs a modified trapezoidal rule. 
This approach corrects for any loss in the accuracy which is 
due to the poles in the integrand of the Fermi-Dirac integral. 
In fact, this technique may be directly applied to the integral 
given on the right-hand side of Eq. (16). This avoids having 
to evaluate the complementary Error function and the 
imaginary Error function given in Eq. (21). 
 It is clear that a much more in-depth analysis of the 
numerical efficacy of Eq. (21) needs to be performed. It is 
hoped that this article will spawn future articles which will 
shine light on whether the mathematical expression given by 
Eq. (21) is indeed useful from a computational standpoint. 
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Appendix 

HALF-ORDER FERMI-DIRAC FUNCTIONS 
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 Using Eq. (A.2) and the known recurrence relationship [29, 30] given by 
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one can compute all the half-order Fermi-Dirac functions. A few of these are listed below.  
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 The higher half-order Fermi-Dirac Functions are easily derived by employing Eq. (21), Eq. (A.2) and Eq. (A.3). Also, Eq. 
(A.3) implies that analytical continuation is possible and one may employ this idea to compute ( )1

2
m
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#  for values of m for 

which the integral in Eq. (A.1) is divergent. In fact, A. Trellakis et al., [20] and Lether [14] develop methods for computing 
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#  based upon analytical continuation. The analytical expressions for the half-order Fermi-Dirac functions introduced in 

this Appendix may prove to be fruitful within that domain for which analytical continuation is valid. 
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