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Abstract: It is shown that all positive integers can be divided into numbers that can lead to a pair of twin primes by a 
simple algebraic operation and numbers that cannot. The paper devises a formula for finding the numbers in each 
category, and shows that the numbers in the second category can be arranged in infinite groups and super-groups with an 
inner symmetry, a precise interval length and a well-defined number of terms. After presenting some of their properties, 
the paper analyzes a relatively small interval remained after subtracting certain numbers that belong to the second 
category from the set of positive integers in the interval. Because all terms in the interval depend on a single prime P to 
fall into one category or another, the fraction of terms from the second category is about 2 / P of the total number of 
terms. The rest must belong to the first category.  
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INTRODUCTION 

 According to the Twin Prime Conjecture [1] there are an 
infinite number of pairs of twin primes. This conjecture has 
not been proven yet, the main difficulty being the fact that 
probabilistic events for consecutive primes are not truly 
independent [2]. Here we present an indirect approach to this 
problem characterized by the fact that, instead of looking at 
the chance of having twin primes, it looks at the conditions 
that must be satisfied for not having them. For that, we take a 
closer look at those numbers that cannot lead to a pair of 
twin primes by a simple algebraic operation and at the way 
they are generated, and try to determine if, starting from a 
certain number, all positive integers can be formed only from 
this type of numbers. Although this approach involves some 
simple approximations, it does not require probabilistic 
estimates. 

OBJECTIVE OF THE WORK 

1.  Simplify the problem by dividing the set of positive 
integers into two and only two categories: numbers 
that can lead to a pair of twin primes by the same 
algebraic operation, and numbers that cannot. 

2.  Devise a formula for calculating the numbers that 
belong to the second category in a given interval. 

3.  Show that these numbers display an inner symmetry 
and obey certain rules that might shed light on the 
numbers in the first category. 

4.  Based on the characteristics of the numbers in the 
second category, find an approximate formula for 
calculating the numbers that belong to the first 
category in a given interval. 
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TWIN RANKS AND NON-RANKS  

 One can associate to each pair of twin primes P and 
  P + 2  a twin index   K = P +1  representing the number 
between them. Since all primes P with the exception of 2 and 
3 are of the form 

  
P = ±1(mod 6) , all twin indices except 4 

are of the form   K = 6n , where n is a positive integer. This 
allows one to define a “twin rank” as 

  
k

*
= K / 6 . The 

number 
  
K

2
!1= P P + 2( )  is divisible only by P and P + 2. 

Therefore, if a number 
  

6n( )
2

!1= 6n +1( ) 6n !1( ) is not 

divisible by any prime   P ! 6n +1 , then 
*

n k=  is a twin 
rank. As can be easily seen, all twin ranks lead to a pair of 
twin primes 

  
6k

*
+1  and 

  
6k

*
!1  by the same algebraic 

operation. Conversely, any number k that satisfies  

  
k = nP ± P / 6!" #$  (1) 
is a “non-rank”. Non-ranks cannot lead to a pair of twin 
primes by the same algebraic operation. (Here [x] means the 
nearest integer to x).  
 It is easy to see that 

  
P / 6!" #$

 is actually the integer 
obtained by dividing either P + 1 or P - 1 by 6. With eq. (1) 
one can find all non-ranks smaller than 

  
M

j+1
= P

j+1

2
!1( ) / 6

 

by using all primes 

  
5 ! P ! P

j

 and all required numbers n. 
By subtracting these non-ranks from the set of positive 
integers 

  
n ! P

j+1

2
"1( ) / 6

 one obtains all twin ranks 

  
k

*
< P

j+1

2
!1( ) / 6

 and, hence, all twin primes with indices 

  
K < P

j+1

2
!1( )

. We used the sign 
 
"< "

 instead of 
 
"! "

 in the 

last two expressions because a number of the form 
  P

2
!1
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cannot be a twin index and, consequently, a number of the 
form 

  

P
2
!1( ) / 6  cannot be a twin rank.  

 One might wonder if the set of positive integers contains 
other numbers beside twin ranks and non-ranks. Here is a 
simple way of showing that there are no other numbers in the 
set of positive integers beside twin ranks and non-ranks:
  
a)  Take all natural numbers n up to a certain number N 

and put them on a line; call it “ the line n”;  
b)  Multiply the numbers on this line by 6 and put them 

on a parallel line; call it “the line 6n”; obviously there 
is a one to one correspondence between the numbers 
on the line n and the numbers on the line 6n;  

c)  For each 6n divide   6n +1  and   6n !1  by P up to 

  P ! 6n +1 ; 

d)  Define non-ranks as all n for which 
  

6n +1( ) / P  or 

  
6n !1( ) / P  are integers and cross them out on the 

line n; do the same with their correspondents on the 
line 6n;  

e)  What remain uncrossed on line 6n are all numbers for 
which neither 

  
6n +1( ) / P  nor 

  
6n !1( ) / P  are 

integers; as shown, these are twin indices K;  
f)  By definition, their correspondents 

  
k

*
= K / 6  on line 

n are twin ranks; obviously, there are no other 
numbers left on this line beside non-ranks and twin-
ranks;  

g)  Since 1, 2 and 3 on the line n are twin ranks, what 
remain on the line n after subtracting the non-ranks 
from the set of positive integers are only twin ranks. 

 It is important to realize that while many of the non-ranks 

 
k

j  
determined with eq. (1) using a prime 

 
P

j
 can be found 

with the help of primes smaller than 
 
P

j
 none of them can be 

found using primes larger than 
 
P

j
. This property is very 

important because it ensures that once a number was shown 
to be a twin rank by all primes up to a certain prime, it is not 
going to be “covered” (i.e. shown to be a non-rank) by 
larger primes. In the following paragraphs we present a 
series of propositions underlining the properties of non-ranks 
that might shed light on the characteristics of twin ranks. 

GROUPS, SUPER-GROUPS AND REMNANTS 

 From eq. (1) it is easy to see that: 

 Proposition no. 1: All non-ranks are symmetrically 
distributed at equal distances 

  
P / 6!" #$  from the numbers that 

are multiple of a prime P.  

 There are, therefore, on the line of natural numbers, two 
non-ranks associated to each prime P in each interval of 
length  !n = P  starting with 

  
P / 6!" #$ . Because a number can 

be multiple of several primes, we grouped the non-ranks by 
their “parent prime” defined as the smallest prime required 
by (1) to find them.  
 Example 1: Here are the first 10 non-ranks of parent 
prime 

  
P

17
= 59 : 777, 1013, 1052, 1288, 1347, 1603, 1642, 

1760, 1937, 1957.  

 All of the above numbers are of the form 

  
k

17
= 59n ± 59 / 6!" #$ , where 

 
59 / 6!" #$ = 10  is the nearest 

integer to 
 

59 / 6!" #$ . Although writing a recurrence formula 
for non-ranks was not one of the objective of this paper, we 
would like to point out that all non-ranks of parent prime 5 
end in 1, 4, 6 or 9 because all multiples of 5 end in 0 or 5. 
This leads to the conclusion that none of the twin ranks end 
in 1, 4, 6 or 9. This characteristic and the fact that the 
reminder from the division of a twin rank 

*
k  by a prime 

  
P < k

*
 cannot take the values 

  
P / 6!" #$  or 

  
P ! P / 6"# $%  (see 

eq. (1) are important properties of twin ranks, and allow one 
to write the following recurrence formulae for the non-ranks 

3
k  and 

4
k  of parent primes 

  
P

3
= 5  and 

  
P

4
= 7 , 

respectively. One has:  

   
k

3
= k

3a
! k

3b
 with 

  
k

3a
= 5n !1  and 

  
k

3b
= k

3a
+ 2 .  

One also has: 
   
k

4
= k

4ai
! k

4b
 with 

  
k

4a1
= 7 10n ! 8( )!1 ,  

  
k

4a2
= 7 10n ! 7( )!1 , 

  
k

4a3
= 7 10n ! 6( )!1 ,  

  
k

4a4
= 7 10n ! 3( )!1 , 

  
k

4a5
= 7 10n ! 2( )!1 ,  

  
k

4a6
= 7 10n !1( )!1 , and 

  
k

4b
= k

4ai
! 5 , where   n = 1,2,3..  

Note that together these two categories of non-ranks 
represent more than 57% of all existing non-ranks.  
 Since the non-ranks with different parent primes are 
mixed together on the line of positive integers, one expects 
to see a pattern in their distribution in an interval on the 
order of the least common multiple of all corresponding 
primes up to their largest parent prime. This property 
together with other characteristics of the non-ranks is listed 
below.  
 Proposition no. 2: The non-ranks 

 
k

j
 of parent prime 

 
P

j
 

form an infinite number of consecutive groups “of order” j 
of equal interval lengths 

 
L

j
 each of them containing 

 
G

j
 

non-ranks, with the same gap between “equivalent terms”, 
i.e. between the non-ranks that occupy the same positions in 
a group as in the first group.  

 Once a term in the first group is known, one can find the 
equivalent terms in all the other groups of the same parent 
prime by simply adding to that term the length 

 
L

j
multiplied 

by an integer. One has 
  
k

xnj
= k

x1 j
+ nL

j
, where   n = 0,1,2,..  

and the index xnj means the xth term in the nth group of order 
j. This equation allows one to write another recurrence 
formula for the non-ranks 

  
k

4
. One has: 
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k
4
= 8+ 35n( )! 13+ 35n( )! 15+ 35n( )! 20 + 35n( )
! 22 + 35n( )! 27 + 35n( )  

where 8, 13, 15, 20, 22, 27 are the non-ranks of parent prime 

  
P

4
= 7  in the first group of order 

  
j = 4  and   n = 0,1,2..  

 Proposition no. 3: Each group of order j has a central 
gap between the pair of consecutive terms whose sum equals 

 
L

j
. Except for the groups of the first 2 orders, the central 

gap occurs after 
  
G

j
/ 2  terms. 

 Proposition no. 4: The gaps between consecutive terms 
in a group are symmetrically distributed on each side of the 
central gap. As a consequence, the fractions of non-ranks in 
two intervals of equal length, situated at equal distances from 
the central gap, are equal.  
 Proposition no. 5: The sum of the terms situated at an 
equal distance from the central gap in a group is constant and 
equal to 

 
L

j
.  

 Proposition no. 6: Except for the groups of the first 2 
orders, the sum of all terms in a group of order j is 

  

k
i

k
i
!G

j

" = L
j
G

j
/ 2  

 Proposition no. 7: The interval length of a group of 
order j is the least common multiple of all intervals 

 
!n = P

i
, 

where 
  
5 ! P

i
! P

j
. One has 

  

L
j
= P

i

i=3

j

! . 

 In order to find the number 
jG  of non-ranks in a group 

of order j one has to eliminate all non-ranks related to primes 
smaller than j. One starts by subtracting a fraction 2/5 from 
the interval 

 
L

j
. From the remaining interval one subtracts a 

fraction of 2/7 and so on up to 
  
2 / P

j!1
 when one obtains 

  

P
i
! 2( )

i=3

j!1

" . The non-ranks jk  that have not been covered 

by any prime smaller than 
 
P

j
 represent a fraction 

  
2 / P

j
 of 

this number, hence: 

 Proposition no. 8: The number of non-ranks in a group 

of order j is 
  

G
j
= 2 P

i
! 2( )

i=3

j!1

" . Note that because 

  

L
j
= P

i

i=3

j

!  
the fractions obtained in the above computations 

are not approximate numbers but exact integers.  
 Proposition no. 9: The fraction of non-ranks of parent 
prime 

 
P

j
 in the interval occupied by a group of order j is  

  

q
j
=

G
j

L
j

=
2

P
j

P
i
! 2

P
ii=3

j

"  (2) 

 

 Because one has to use all primes up to a certain prime 

 
P

j
 in order to find the non-ranks smaller 

  
M

j+1
= P

j+1

2
!1( ) / 6 , one needs to know all non-ranks of 

parent primes 
  
5 ! P

i
! P

j
. The totality of these non-ranks 

form a super-group of order j.  

 Proposition no. 10: The non-ranks of parent primes 

  
5 ! P

i
! P

j  
form an infinite number of consecutive super-

groups of order j of equal interval lengths 
 
L

j
 each of them 

containing 
 
S

j
 terms, with the same gap between equivalent 

terms, i.e. between the non-ranks that occupy the same 
positions in a super-group as in the first super-group.  
 Example 2: Here are the first 62 non-ranks of parent 
primes 

  
5 ! P

i
! P

j  
in the super-group 

7
S : 4, 6, 8, 9, 11, 13, 

14, 15, 16, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 34, 35, 36, 
37, 39, 41, 42, 43, 44, 46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 
59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 74, 75, 76, 78, 79, 
80, 81, 82, 83, 84, 85, 86, 88.  

 The length of a super-group equals the length of the 
group of the largest parent prime in the super-group. (Note 
that, due to the fact that 5 is the smallest prime that can be 
used in eq. (1), all first super-groups begin at  1+ 3= 4  and 
end at   L + 3 ). As before, once a term in the first super-group 
is known, one can find the equivalent terms in all the other 
super-groups of the same parent prime by simply adding to 
that term 

 
L

j
 multiplied by an integer. One has 

  
k

xnj
= k

x1 j
+ nL

j
, where   n = 0,1,2,..  

 Proposition no. 11: Each super-group of order j has a 
central gap 

s
g  between the terms 

  
S

c1
= L

j
! 3( ) / 2  and 

  
S

c2
= L

j
+ 3( ) / 2 . Since 

  
6S

c1
!1= 5 3L

j
/ 5! 2( )  and 

  
6S

c2
+1= 5 3L

j
/ 5+ 2( )  are composite numbers, 

  
S

c1
 and 

  
S

c2
 are consecutive non-ranks and the central gap in all 

super-groups has the same value 
  
g

s
= 3 . 

 Proposition no. 12: The gaps between consecutive terms 
in a super-group are symmetrically distributed on each side 
of the central gap. As a consequence, the fractions of non-
ranks in two intervals of equal length, situated at equal 
distances from the central gap, are equal.  
 Proposition no. 13: The sum of the terms situated at an 
equal distance from the central gap in a super-group of order 
j is constant and equal to 

 
L

j
. 

 Proposition no. 14: Except for the super-groups of the 
first 3 orders the sum of all terms in a super-group of order j 
is 

  

k
i

k
i
!S

j

" = L
j

S
j

/ 2 + 3( ) . This sum is also given by the 

following iteration formula valid for all super-groups:  
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k
i

k
i
!S

j

" = k
i

k
i
!S

j#1

" + L
j#1

S
j#1

P
j

P
j
#1( )

2
+ k

i

k
i
!G

j

"  

 Proposition no. 15: Each super-group of order j contains 
an integer number of nested groups of parent primes 

  
5 ! P

i
! P

j
. This number is given by the ratio of the length 

of the super-group of order j to the length of the group of 
order i. Accordingly, 
 Proposition no. 16: The number of terms of parent prime 

 
P

i  
in a super-group of order 

 
j > i  is  

  

G
ij
=

L
j

L
i

G
i
=

2L
j

P
i

P
a
! 2

P
aa=3

i!1

" = q
i
L

j
 

 It follows that, the fraction of non-ranks of parent prime 

 
P

i  
in the interval occupied by a super-group of order j is the 

same as their fraction in the interval occupied by the group 
of order i : 

  

q
i
=

G
ij

L
j

=
G

i

L
i

=
2

P
i

P
a
! 2

P
aa=3

i!1

"  

 Proposition no. 17: The number of non-ranks in a super-
group is the sum of the number of non-ranks in the 
constituent groups: 

  

S
j
= L

j
q

i

i=3

j

! = L
j

1"
P

i
" 2

P
ii=3

j

#
$

%
&
&

'

(
)
)

 

 Proposition no. 18: The fraction of all non-ranks in the 
interval occupied by a super-group of order j is  

  

Q
j
=

S
j

L
j

= q
i

i=3

j

! = 1"
P

i
" 2

P
ii=3

j

#  

 Since 
 
L

j
> S

j
 there will always be “remnants” in 

 
L

j
not 

included in 
 
S

j
. They consist of twin-ranks and non-ranks of 

parent primes larger than 
 
P

j
. As can easily be seen: 

 Proposition no. 19: The number 
 
R

j
 of terms in a 

remnant from a super-group of order j is half the number of 
terms in the next group: 

   

R
j
= L

j
! S

j
= L

j
1! Q

j( ) = P
i
! 2( )

i=3

j

" =
1

2
G

j+1

 
 Proposition no. 20: The fraction of terms belonging to a 
remnant from a super-group of order j in the corresponding 
interval is 

  

x
j
=

R
j

L
j

= 1! Q
j
=

P
i
! 2

P
ii=3

j

"  (3) 

 Proposition no. 21: The sum of all terms in a remnant is 
given by the difference between the sum of all numbers in 
the interval occupied by the super-group and the sum of the 
terms in that super-group:  

  

k
i

k
i
!R

i

" =
L

j
+3( ) L

j
+ 4( )

2
# k

i

k
i
!S

i

" # 6  

 (For a better understanding of this equation, recall that all 
first super-groups begin at  1+ 3= 4  and end at 

  
S

j
+ 3). With 

 

k
i

k
i
!S

j

"  a multiple of 
j
L and 

 
3! 4( ) / 2 " 6 = 0 , it is easy to 

see that: 

 Proposition no. 22: The sums of all terms in a group, a 
super-group or a remnant are multiple of their interval 
lengths:  

  

k
i

k
i
!G ,S ,R

" = nL  

 As shown, the twin ranks that can be found with eq. (1) 
using all primes up to 

j
P  cannot be larger than 

  
M

j+1
= P

j+1

2
!1( ) / 6 . Therefore: 

 Proposition no. 23: All terms smaller than 
  
M

j+1
 in a 

remnant from a super-group of order j are twin ranks. (We 
call these numbers “front twin ranks”, and the interval 

  
1...M

j+1
 “the first interval”).  

 Example 3: The following are the front twin ranks that 
remain after subtracting the non-ranks of parent primes 
  5 ! P !17  given in Example 2 from the first natural 
numbers up to 

 

19
2
!1( ) / 6 = 60  : 1, 2, 3, 5, 7, 10, 12, 17, 18, 

23, 25, 30, 32, 33, 38, 40, 45, 47, 52, 58. When multiplied by 
6 and added  ±1  these twin ranks give all twin primes 
smaller than 360.  

 Proposition no. 24: Starting with 
  
P

5
= 11  all remnant 

have a central gap 
  
g

R
= 1 between the numbers 

  
L

j
!1( ) / 2  

and 
  

L
j
+1( ) / 2 . 

 Proposition no. 25: The gaps between consecutive terms 
in a remnant are symmetrically distributed on each side of 
the central gap.  

 Proposition no. 26: The sum of the terms situated at an 
equal distance from the central gap in a remnant from a 
super-group of order j is constant and equal to 

 
L

j
. 

Before going to the next section, we would like to draw the 
reader’s attention to the fact that all quantities associated so 
far with groups, super-groups and remnants were deter-
ministic and not probabilistic. Unlike the estimation of the 
number of twin primes in a given interval, here one can say 
exactly how many non-ranks are in a group or a super-group, 
and how many terms are in a remnant, regardless of their 
sizes.  
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TOO MANY NUMBERS, TOO FEW PRIMES 

 Let us see now if it is possible to have only non-ranks in 
a remnant Rj beyond the first interval. For a negative answer 
it is enough to look only at a relatively small interval (“the 
second interval”) after the front twin ranks. This interval is 
located between 

  
M

j+1
 were the front twin ranks end, and 

  
M

j+2
 where the use of primes larger than 

  
P

j+1
 for finding 

non-ranks become necessary. It has a length 

  
!M

j+1
= P

j+2

2
" P

j+1

2( ) / 6  and contains 
 
!

j
 terms, all of 

them twin ranks or non-ranks of the same parent prime 
  
P

j+1
. 

A minimum requirement for having only non-ranks in a 
remnant 

 
R

j
 (except for the front twin ranks) is that all terms 

in the second interval 
 
!

j
 be covered by the prime 

  
P

j+1
. As 

shown, the numbers of the form 
  

P
2
!1( ) / 6

 
are non-ranks, 

hence the first possible number 
  
M

j+1
 in the second interval 

is a non-rank, but it does not have to be of parent prime 

  
P

j+1
. Sometimes it is, sometimes it is not. When it is not of 

parent prime 
  
P

j+1
 the number 

  
M

j+1
 is not part of 

 
!

j
. In 

this case the smallest non-rank of parent prime 
  
P

j+1
 in the 

interval is 
  
k
!1

> M
j+1

. Obviously, there can’t be any non-

ranks in 
 
!

j
 with a value between 

  
M

j+1
 and 

  
k
!1

 because all 

non-ranks of parent primes smaller or equal to 
 
P

j
 are in 

 
S

j
 

and the non-ranks of larger parent primes are beyond 
  
k
!1

. 
Therefore: 

 Proposition no. 27: When the first non-rank in the 
second interval is different from 

  
M

j+1
 all remnants with 

values between 
  
M

j+1
 and 

  
k
!1

 are twin ranks.  

 Since the gaps between consecutive terms in a remnant 
are symmetrically distributed on each side of the central gap, 
the fraction of remnants in two intervals of equal length 
situated at equal distances from the central gap are equal. 
This means that the fraction of remnants at the beginning 
(where the second interval is located) does not differ too 
much from the fraction at the end, and both of them cannot 
be too different from the average value 

  
x

j
= 1! Q

j
 given by 

eq. (3). Accordingly, we approximate the number of 
remnants in the second interval as a fraction 

 
x

j
 of the length 

  
!M

j+1  
of the interval. One has  

  

!
j
" x

j
#M

j+1
= #M

j+1

P
i
$ 2

P
ii=3

j

%   (4) 

 Although fairly accurate, this is not a precise value. 
However, what matters here is not the exact number of terms 
in the interval, but the fraction of them that can be covered 
by a single prime. In this case the prime is 

  
P

j+1
 because the 

non-ranks of smaller parent primes are not in 
 
R

j
, and 

primes larger than 
  
P

j+1
 cannot cover numbers smaller than 

  
M

j+2
. From eq. (2) we know that the fraction of non-ranks 

of parent prime 
  
P

j+1
 in a group of order j is 

 
q

i
. Therefore, 

based on the same reasoning as before applied this time to a 
group, we approximate the number 

j
r  of non-ranks of parent 

prime 
  
P

j+1
 in the second interval as a fraction 

  
q

j+1
 of the 

length of the interval. One has: 

  

r
j
! q

j+1
"M

j+1
=

2"M
j+1

P
j+1

P
i
# 2

P
ii=3

j

$ =
2

P
j+1

%
j
 

 This again is not a precise value, but the error is so small 
compared to the factor 

  
P

j+1
/ 2  needed to cover all terms in 

 
!

j
 that it does not affect in any way the final result. Hence: 

 Proposition no. 28: A prime 
  
P

j+1  
can cover only a 

fraction of about 
  
2 / P

j+1  
of the number 

 
!

j
 of terms in the 

second interval of a remnant from a super-group of order j. 
The rest are twin ranks. Since there are infinitely many 
super-groups each of them with a remnant and a first 
interval, one cannot escape the (heuristic) conclusion that the 
existence of twin ranks cannot be avoided and, therefore, 
there are infinitely many twin primes.  

 Example 4: The following numbers: 60, 70, 72, 73, 77, 
87 are the terms in the second interval 

 
!

7  
belonging to the 

remnant 
  
R

7
. They were obtained by subtracting the 

corresponding non-ranks of parent primes   5 ! P !17  in the 
super-group 

  
S

7
 (given in Example 2) from the interval of 

positive integers 
  
M

8
..M

9
= 60..88 . As can easily be seen, 

the only non-ranks in this interval are 
  
3P

8
+ 3= 60  and 

  
4P

8
! 3= 73 , both of parent prime 

  
P

8
= 19 . The remaining 

numbers: 70, 72, 77, 87 are twin ranks. To them correspond 
the following twin primes: 419, 421, 431, 433, 461, 463, 
521, and 523. 

 Now, a very important question arises: Is it possible that, 
starting from a certain number N to have all integers larger 

than N covered by primes 
  
P ! 6N +1 ? Based on 

Propositions 10, 12 and 19, the answer is “no”. If that were 
the case, then:  
a) The gaps at the beginning of a super-group (where the 

front twin ranks are) would be different from the gaps 
at the beginning of the other super-groups of the same 
order (were in the absence of twin ranks and non-
ranks of larger parent prime all gaps would be equal 
to 1);  

b) There would be no symmetry between the gaps at the 
beginning of a super-group and the gaps at the end as 
shown in Proposition 12; and  
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c) The number of remnants from a super-groups would be 
much smaller than that given by the Proposition 19.  

 Also, it can be argued that since 
  
1! Q

j
 approaches zero 

as 
 
Q

j
 approaches 1, in the long run there will be no terms in 

the second interval, and hence no twin ranks. That this is not 
the case can be seen from the following 
 Lemma: The number of terms in the second interval is 
larger than the gap between the primes that determine the 
length of the interval. 

 Proof: For any prime 
 
P

i
 one has 

  
P

i
! 2 " P

i!1
, hence by 

eq. (4) one has  

  

!
j
"

3

P
j

#M
j
"

P
j+2

+ P
j+1( ) P

j+2
$ P

j+1( )
2P

j

 (5) 

With 
  
P

j+2
+ P

j+1
> 2P

j
 one has 

  
!

j
> P

j+2
" P

j+1
. This 

completes the proof. Based on this result we are asserting the 
following  

 Conjecture: Given two consecutive primes 
  
P

j+1
 and 

  
P

j+2
, there exists on average at least one pair of twin primes 

in the interval 
  
P

j+1

2
...P

j+2

2  

 Tentative proof: According to The Prime Number 
Theorem [3], the “average length” of the gap between a 
prime P and the next prime is of the order of   ln P . Hence, 
by eq. (5) the number of terms in the second interval 
becomes larger and larger as one goes up on the line of 
natural numbers, and so does the number of terms in the 
second interval that cannot be covered by a single prime.  

APPROXIMATE FORMULA FOR THE NUMBER OF 
TWIN RANKS 

 Since 
 
x

j
 is a characteristic of the whole super-group, eq. 

(4) is not specific to the second interval. In principle one can 
apply it to any interval 

 
!M

i
 inside a remnant 

 
R

j
 if one 

wants to approximate the number of terms (twin ranks and 
non-ranks) in that interval. A special case however is the 
first interval. In this case, because the interval contains only 
twin ranks, eq. (4) represents an estimate of the number 

 
F

Tj
 

of the front twin ranks and, hence, of the number of twin 
primes up to 

  
6M

j+1
.  

 From 

  

C
2
=

P
i

P
i
! 2( )

P
i
!1( )

2

i=2

"

# , where 
  
C

2
= 0.66...  is the twin 

prime constant [4], and 
  

P
i
!1

P
ii=1

j

" #
e
!$

ln P
j

, where 

 
! = 0.57721...  is Euler’s constant [5], one obtains 

  

x
j
=

P
i
! 2

P
ii=3

j

" # 3C
2

2e
!$

ln P
j

%

&
'

(

)
*

2

. Equation (4) applied to the 

first interval then reads  

  

F
Tj
! 3C

2

2e
"#

ln P
j

$

%
&

'

(
)

2

M
j
!

2C
2

e
2#

P
j

2

ln
2

P
j  

(6)
 

 Now, if one wants to approximate the number 
 
L

Tj
 of 

twin ranks in the entire interval 
  

L
j
= P

i

i=3

j

!  occupied by a 

super-group of order j, one can consider 
 
L

j
 as the first 

interval 
 
M

z
 of a much larger super-group of order z. In this 

case 
  
L

j
! M

z
! P

z

2
/ 6 . With 

  

6L
j
= P

i

i=1

j

! , 

  

ln P
i

i=1

j

! = ln P
i

i=1

j

" # P
j
 and 

  
P

j

2
! 6M

j
 eq. (6) gives 

  

L
Tj
! 3C

2

2e
"#

ln P
z

$

%
&

'

(
) M

z
!

12C
2

e
2#

L
j

ln
2

6L
j( )
!

12C
2

e
2#

L
j

P
j

2
!

L
j

M
j

 (7) 

 One arrives practically at the same result if one uses the 
so called Hardy-Littlewood “conjecture B” [6]. This suggests 
that our approach is on the right track. Therefore: 

 Proposition no. 29: The number of twin ranks in a 
remnant from a super-group is on the order of the ratio of the 
length of the super-group to the length of its first interval. 
The fact that the number of twin ranks in an interval is 
proportional to the length of the interval is not surprising. 
What is really intriguing is the role played by the front twin 
ranks in determining the total number of twin ranks in a 
remnant, because eq. (7) implies 

  
L

Tj
! R

j
/ F

Tj
.  

CONCLUDING REMARKS 

 This paper does not pretend to have solved the Twin 
Prime Conjecture. Its main objective was to show that 
despite the apparent randomness associated with twin primes 
(and hence with their correspondents twin ranks) there is an 
order among their complements in the set of positive 
integers, the non-ranks. These numbers form infinite series 
of consecutive groups and super-groups with an inner 
symmetry, a precise interval length and a well-defined 
number of terms. The fact that the non-ranks have a 
deterministic character makes their properties much easier to 
prove than in the case of twin primes. For example, (based 
on what was shown above) a rigorous proof of the 
Propositions 10 and 19 would make the infinity of twin 
prime almost certain. 
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 As shown, a minimum requirement for having only non-
ranks in a remnant (except for the front twin ranks) is that all 
terms in the second interval be covered by a single prime. 
But a single prime can cover only a fraction of the terms in 
the second interval; hence the uncovered terms must be twin 
ranks. To these twin ranks one still has to add the twin ranks 
in the following intervals 

  
M

j+2
..M

j+3
, 

  
M

j+3
..M

j+4
, 

  
M

j+4
..M

j+5
 etc. inside the same remnant, that were not 

covered by the corresponding primes for the same reason: 
too many numbers, too few primes. Paradoxically, it is the 
paucity of primes that allows for the existence of twin 
primes. 
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