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1. INTRODUCTION 

 In the recent years, the study of singular initial value 
problems modeled by the second order ordinary differential 
equations has attracted the attention of many mathematicians 
and physicists. Such a problem is expressed by Lane–Emden 
or Emden–Fowler type differential equation. The noted 
equations are important in the theory of stellar structure, 
thermal behavior of a spherical cloud of gas, isothermal gas 
spheres and thermionic currents [1-3]. 

 Some analytical techniques were presented to solve 
Lane-Emden equations. Most of them were developed based 
on power series or perturbation. Wazwaz [4-7] has presented 
series and exact solution to Lane-Emden and Emden-Fowler 
type problems based on Adomain decomposition and 
modified Adomain decomposition methods. Hasan and Zhu 
[8, 9] have solved such a singular initial value problem by 
the Taylor series and modified Adomain decomposition 
methods. Gupta and Sharma [10] have also used the Taylor 
series method to solve Lane–Emden and Emden–Eowler 
equations. Demir and Süngü [11] have presented 
approximate and analytic solutions of Emden-Fowler 
equation and Mukherjee et al. [12] the Lane–Emden 
equation by the same method i.e., differential transform 
method. However the determination of solutions by these 
methods is laborious. 

 A few classical numerical methods can be used to solve 
singular initial value problem such as implicit Euler method, 
implicit Runge-Kutta method and implicit midpoint method 
etc. Koch et al. [13, 14] evaluated the approximate solution 
of the singular initial value problems by implicit Euler 
method and finally used an acceleration technique known as  
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the Iterated Defect Correction to improve the 
approximations. Benko et al. also [15] evaluated singular 
initial value problems of Lane–Emden type equations by 
implicit Euler method. The second order implicit Runge-
Kutta method is a higher order solver than the implicit Euler 
method for solving singular initial value problems. Lakestani 
and Saray [16] solved Emden-Fowler type equations 
numerically using Legendre scaling functions. This method 
consists of expanding the required approximate solution as 
the elements of Legendre scaling functions. Using the 
operational matrix of integration, the problem will be 
reduced to a set of algebraic equations. But utilization of this 
method is cumbersome. 

 Recently, Hasan et al. [17] derived an implicit method 
for solving first order singular initial value problems, which 
give more accurate solution than the implicit Euler method 
and the second order implicit Runge-Kutta (RK2) method. In 
this article this method is extended to solve second order 
problems. 

2. DERIVATION OF THE PRESENT METHOD 

 First we derive the present method for solving first order 
singular initial value problems and then the method is 
extended for second order singular initial value problems. 

2.1. For First Order Singular Initial Value Problems 

 Recently, Huq et al. [18] derived a formula for evaluating 
definite integral having an initial singular point at x = x0  in 
the form as 

ϕ(x) dx
x0

x0+3h

∫ = 3h
4
3ϕ(x0 + h)+ϕ(x0 + 3h)[ ]   (1) 

 Based on formula (1), an implicit method has been 
proposed for solving first order singular initial value 
problems 
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′y (x) = f (x , y), y(x0 ) = y0   (2) 

having the initial singular point at x = x0  in the form as [19] 

y1 = y0 +
3h
4
3 f (x0 + h, y0 )+ f (x0 + 3h, y1)[ ]   (3a) 

 For the next steps the formula has been written as 

yi+1 = yi−1 +
3h
4
3 f (xi , yi )+ f (xi+1, yi+1)[ ] ; i ≥1   (3b) 

where, xi+1 = xi +2
i.3h  

 Since this formula was derived for unequal interval as 

 h, 3h, 2.3h, 2
2.3h, 23.3h, . In this regard step size as well as 

error gradually increased. To avoid this difficulty the 
formula (3b) has been modified as [17] 

yi+1 = yi +
h
4
3 f (xi + h / 3, (yi + (yi+1 − yi ) / 3))+ f (xi+1, yi+1)[ ] ;

i = 0,1, 2,...
  (4) 

where, xi+1 = xi +h  

 It is obvious that Eq. (4) is an algebraic equation of 
unknown 1+iy  and can solve by a numerical method. To 
compare the present method to other classical methods such 
as the second order implicit Runge-Kutta (RK2) method and 
the implicit Euler method are given in equations (5) and (6) 
respectively. 

yi+1 = yi + k ; i = 0,1, 2,...   (5) 

where k = h f (xi + h / 2, yi + k / 2)  

and yi+1 = yi + h f (xi + h, yi+1) ; i = 0,1, 2,...   (6) 

 The truncation error of the present method (i.e., Eq. (4)), 
the second order implicit Runge-Kutta (RK2) method and 
implicit Euler method are Ο(h4 ) , Ο(h3) and Ο(h2 )
respectively. 

2.2. For Second Order Singular Initial Value Problems 

 Let us consider a second order singular initial value 
problem of the form [5] 

′′y + 2
x

′y + f (x, y) = g(x), 0 < x ≤1, y(0) = A, ′y (0) = B   (7) 

where A  and B  are constants, f (x, y)  is a continuous real 
valued function and g(x)∈C [0,1] . Now equation (7) can be 
transformed into two first order initial value problems, one is 
non-singular and other is singular as 

′y = z = f1(x, y)   (8a) 

′z = − 2
x
z − f ( x, y)+ g(x) = f2 (x, y, z)   (8b) 

where y(0) = A , z(0) = B , and y = y , ′y = z . 

 According to the present method (i.e. Eq. (4)) the 
approximate solutions of the equations (8a) and (8b) are 

yi+1 = yi +
h
4
3(zi + (zi+1 − zi ) / 3)+ zi+1)[ ]   (9a) 

zi+1= zi +
h
4
3

− 2
(x0 + h / 3)

(zi + (zi+1 − zi ) / 3)−

f (x0 + h / 3, (yi + (yi+1 − yi ) / 3))+ g(x0 + h / 3)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣

⎢
⎢
⎢

 

+ − 2
(x0 + h)

zi+1 − f (x0 + h, yi+1)+ g(x0 + h)
⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥; i = 0,1, 2,...   (9b) 

 It is obvious that equations (9a) and (9b) is a system of 
equations for two unknown 1+iy  and zi+1 and can be solved 
by Newton-Raphson method. 

3. STABILITY OF THE PRESENT METHOD 

 Consider a scalar test equation 

′y = λ y, λ ∈C, Re(λ) < 0   (10) 

 Appling (4) to the test equation with ′y = λ y  and 
z = λ h  yields 

yi+1 = R(z) yi   (11) 

where, R(z) = (1+ z / 2) / (1− z / 2)  is the stability function of 
the present method. 

 For λ < 0 , then R(z) <1  for any h > 0 . Since z  is 
imaginary, the present method is absolutely stable in the 
entire negative half of the complex z  plane. The region of 

absolute stability is the set of all complex z  where R(z) ≤1
. A numerical method is said to be A-stable if its stability 
region contains C _ ,  the non-positive half-plane
{z = λ h∈C :Re(z) < 0}.  So the present method is A-stable. 
The stability region of the present method is given in Fig. 
(1). 

 
Fig. (1). Stability region of the present method. 

4. EXAMPLES 

 In this section we compare the present method with the 
second order implicit Runge-Kutta (RK2) and the implicit 
Euler methods for solving following model equations. 

 Example 1: Consider a second order linear, non-
homogeneous Lane-Emden equation [9] 
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′′y + 2
x

′y + y = 6 +12x + x2 + x3; 0 < x ≤1, y(0) = 0, ′y (0) = 0,   (12) 

with the exact solution y = x2 + x3 . The results of the error 
for the second order implicit Runge-Kutta (RK2) and the 
implicit Euler methods are plotted in Fig. (2a) and the 
present and the second order implicit Runge-Kutta (RK2) 
methods are plotted in Fig. (2b). 

 Example 2: Consider a second order nonlinear, non-
homogeneous Lane-Emden equation [9] 

′′y + 2
x

′y + y3 = 6 + x6; 0 < x ≤1, y(0) = 0, ′y (0) = 0,  (13) 

with the exact solution y = x2 . The results of the error for the 
second order implicit Runge-Kutta (RK2) and the implicit 
Euler methods are plotted in Fig. (3a) and the present and the 
second order implicit Runge-Kutta (RK2) methods are 
plotted in Fig. (3b). 

 Example 3: Consider a second order linear, non-
homogeneous Emden-Fowler equation [16] 

′′y + 8
x

′y + xy = x5 − x4 + 44x2 − 30x ;

0 < x ≤1, y(0) = 0, ′y (0) = 0
 (14) 

with the exact solution y = x4 − x3 . The results of the error 
for the second order implicit Runge-Kutta (RK2) and the 

 (a) 

 

(b) 

 
Fig. (2). The absolute error of the RK2 and the Euler methods in (a) and the present and the RK2 in (b) with h = 0.01 . 

 (a) 

 

(b) 

 
Fig. (3). The absolute error of the RK2 and the Euler methods in (a) and the present and the RK2 in (b) with h = 0.01 . 

 

(a) 

 

(b) 

 
Fig. (4). The absolute error of the RK2 and the Euler methods in (a) and the present and the RK2 in (b) with h = 0.01 . 
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implicit Euler methods are plotted in Fig. (4a) and the 
present and the second order implicit Runge-Kutta (RK2) 
methods are plotted in Fig. (4b). 

Example 4: Consider a second order nonlinear, homo-
geneous Lane-Emden equation [15] 

′′y + 2
x

′y + y1.5 = 0; 0 < x ≤1, y(0) = 1, ′y (0) = 0 ,  (15) 

with the approximate exact solution y = exp(−x2 / 6) . The 
results of the error for the present, the second order implicit 
Runge-Kutta (RK2) and the implicit Euler methods are 
plotted in Fig. (5). 

 
Fig. (5). The absolute error of the present, the RK2 and the Euler 
methods with h = 0.01 . 

5. RESULTS AND DISCUSSION 

 An implicit method has been presented to solve second 
order singular initial value problems. To illustrate the 
method, the approximate solutions of some homogenous and 
non-homogeneous equations have been compared with their 
exact solutions. First a linear non-homogeneous Eq. (12) 
having a singular point at x = 0  has been considered. The 
approximate solution of Eq. (12) has been obtained by the 
formula Eq. (4) and the error has been presented in Fig. (2) 
together with corresponding errors of second order implicit 
Runge-Kutta and implicit Euler methods. Fig. (2) shows that 
the error of the present method is smaller than those obtained 
by second order implicit Runge-Kutta and implicit Euler 
methods. 

 Then a non-linear non-homogeneous Eq. (13) has been 
considered. In this case the error has been presented in Fig. 
(3) together with corresponding errors of second order 
implicit Runge-Kutta and implicit Euler methods. This figure 
indicates that the present method also provides better results 
than those obtained by second order implicit Runge-Kutta 
and implicit Euler methods. 

 Next, a linear non-homogeneous Eq. (14) has been 
considered and the errors eventually found through the above 
three methods have been shown in Fig. (4). It is obvious 
from the Fig. (4) that the errors by the present method 
increase gradually. But the errors of the second order 
implicit Runge-Kutta and implicit Euler methods increase 
rapidly after a short interval. 

 Finally, a non-linear homogeneous Eq. (15) has been 
considered and the errors of the above three methods are 

presented in Fig. (5). It indicates that the error of the present  
 

method is smaller than that obtained by implicit Euler 
method. In this case the present solution is very close to that 
obtained by second order implicit Runge-Kutta method. 

 Based on these above observations, it is concluded that 
the present method (i.e., the formula Eq. (4)) is more suitable 
than some existing classical methods for solving a class of 
equations presented in Eq. (7). 
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