On First-Hitting Time of a Linear Boundary by Perturbed Brownian Motion

Mario Abundo ${ }^{*}$

Dipartimento di Matematica, Università Tor Vergata Via della Ricerca Scientifica, 00133 Roma, Italy
Abstract: We consider the first-hitting time, τ_{Y}, of the linear boundary $S(t)=a+b t$ by the process $X_{Y}(t)=x+B_{t}+Y$, with $a \geq x, b \geq 0$, where B_{t} is Brownian motion and Y is a random variable independent of B_{t} and such that $P(x+Y \geq a)=1$. For a given distribution function F, we find the distribution of Y in such a way $P\left(\tau_{Y} \leq t\right)=F(t)$.
Keywords: Brownian motion, diffusion, first-hitting time.

1. INTRODUCTION

For $a, b \geq 0$ and $x \in \mathrm{R}$, let us consider the linear boundary $S(t)=a+b t$, and the process $X_{Y}(t):=x+B_{t}+Y$ obtained by superimposing to Brownian motion B_{t} an additive random perturbation Y which is independent of B_{t} and such that $P(x+Y \geq a)=1 ; X_{Y}(t)$ can be thought as Brownian motion starting from the perturbed position $x+Y \geq a$. Then, we consider the first-hitting time of the boundary $S(t)$ by $X_{Y}(t)$, that is $\tau_{Y}:=\inf \left\{t>0: X_{Y}(t) \leq S(t)\right\}$, and we denote by $\tau_{Y}(y)$ the first-hitting time, conditional to $Y=y$, that is the firstpassage time of Brownian motion starting from $x+y \geq a$, below the boundary $S(t)$; thanking to the conditions $x+y \geq a$ and $b \geq 0$, it results $P\left(\tau_{Y}(y)<+\infty\right)=1$ and $\tau_{Y}(y)$ has the inverse Gaussian distribution, namely its density is (see e.g. [1]):

$$
f(t \mid y)=\frac{x+y-a}{t^{3 / 2}} \varphi\left(\frac{x+y-a-b t}{\sqrt{t}}\right)
$$

where $\varphi(u)=e^{-u^{2} / 2} / \sqrt{2 \pi}$. By conditioning on $Y=y$ we obtain that also τ_{Y} is finite with probability one. For a given distribution function F, our aim is to find the density of Y, if it exists, in such a way $P\left(\tau_{Y} \leq t\right)=F(t)$. This problem has interesting applications in Mathematical Finance, in particular in credit risk modeling, where the first-hitting time of $a+b t$ represents a default event of an obligor.

2. MAIN RESULTS

By using the arguments of [2], with a replaced with $a-x$, we are able to obtain the following results.

2.1. Proposition

For $x \in \mathrm{R}$, and $a \geq x, b \geq 0$, let us consider the boundary $S(t)=a+b t$ and the process $X_{Y}(t)=x+B_{t}+Y$, where $Y \geq a-x$ is a random variable, independent of B_{t}, whose

[^0]density g has to be found; suppose that the first-hitting time, τ_{Y}, of S by $X_{Y}(t)$, has an assigned probability density $f=F^{\prime}$ and denote by $L f(\theta)=\int_{0}^{\infty} e^{-\theta t} f(t) d t, \theta \geq 0$, the Laplace transform of f (see e.g. [3]). Then, if there exists the density g of Y such that $P\left(\tau_{Y} \leq t\right)=F(t)$, its Laplace transform $\operatorname{Lg}(\theta)$ must satisfy the equation:
$L g(\theta)=e^{-(a-x) \theta} L f\left(\frac{\theta(\theta+2 b)}{2}\right)$
If $L f(\theta)$ is analytic in a neighbor of $\theta=0$, then the k-th order moments of τ_{Y} exist finite and they are obtained in terms of $L f(\theta)$ by $E\left(\tau_{Y}^{k}\right)=\left.(-1)^{k} \frac{\partial^{k}}{\partial \theta^{k}} L f(\theta)\right|_{\theta=0}$. The same thing holds for the moments of Y, since by (1) also $L f(\theta)$ turns out to be analytic. Then, by (1) one easily obtains that
$E(Y)=a-x+b E\left(\tau_{Y}\right)$ and
$\operatorname{Var}(Y)=b^{2} \operatorname{Var}\left(\tau_{Y}\right)-E\left(\tau_{Y}\right)$
Since it must be $\operatorname{Var}(Y) \geq 0$, we get the compatibility condition:
$b^{2} \operatorname{Var}\left(\tau_{Y}\right)-E\left(\tau_{Y}\right) \geq 0$
which is necessary so that there exist a random variable $Y \geq a-x$ which solves our problem (i.e. $P\left(\tau_{Y} \leq t\right)=F(t)$), in the case of analytic Laplace transforms $L f$ and $L g$ Notice that, if e.g. $S(t)=a$ (i.e. $b=0$), the moments of τ_{Y} are infinite and (3) loses meaning.

2.2. Proposition

Suppose that the first-hitting time density f is the Gamma density with parameters (γ, λ). Then, there exists an absolutely continuous random variable $Y \geq a-x$ such that $P\left(\tau_{Y} \leq t\right)=F(t)$, provided that $b \geq \sqrt{2 \lambda}$, and the Laplace transform of the density g of Y is given by:
$L g(\theta)=\left[\frac{\left(b-\sqrt{b^{2}-2 \lambda}\right)^{\gamma}}{\left(\theta+b-\sqrt{b^{2}-2 \lambda}\right)^{\gamma}}\right] \cdot\left[\frac{\left(b+\sqrt{b^{2}-2 \lambda}\right)^{\gamma}}{\left(\theta+b+\sqrt{b^{2}-2 \lambda}\right)^{\gamma}}\right] e^{-(a-x) \theta}$
which is the Laplace transform of the random variable $Z=a-x+Z_{1}+Z_{2}$, where Z_{i} are independent random variables with Gamma distribution of parameters γ and $\lambda_{i}(i=1,2)$, with $\lambda_{1}=b-\sqrt{b^{2}-2 \lambda}$ and $\lambda_{2}=b+\sqrt{b^{2}-2 \lambda}$.

2.3. Remark

If f is the Gamma density, the compatibility condition (3) writes $b \geq \sqrt{\lambda}$, which is satisfied under the assumption $b \geq \sqrt{2 \lambda}$ required by Proposition 2.2. In the special case when f is the exponential density with parameter λ, then $Y=a-x+Z_{1}+Z_{2}$, where Z_{i} are independent and exponential with parameter $\lambda_{i}, i=1,2$.

2.4. Proposition

Suppose that the Laplace transform of the first-hitting time density f has the form:

$$
\begin{equation*}
L f(\theta)=\sum_{k=1}^{N} \frac{A_{k}}{\left(\theta+B_{k}\right)^{c_{k}}} \tag{5}
\end{equation*}
$$

for some $A_{k}, B_{k}, c_{k}>0, k=1, \ldots, N$. Then, a value $b^{*}>0$ exists such that, if $b \geq b^{*}$ there exists an absolutely continuous random variable $Y \geq a-x$ for which τ_{Y} has density f.

The following Proposition deals with the case when $b=0$.

2.5. Proposition

Let be $b=0$ and suppose that the Laplace transform of the first hitting time density f has the form:

$$
\begin{equation*}
L f(\theta)=\sum_{k=1}^{N} \frac{A_{k}}{\left(\sqrt{2 \theta}+B_{k}\right)^{c_{k}}} \tag{6}
\end{equation*}
$$

for some $A_{k}, B_{k}, c_{k}>0, k=1, \ldots, N$. Then, there exists an absolutely continuous random variable $Y \geq a-x$ for which τ_{Y} has density f.

2.6. Remark

The function $L f(\theta)$ given by (6) is not analytic in a neighbor of $\theta=0$, so the moments of τ_{Y} are indeed infinite.

We consider now the piecewise-continuous process $\bar{X}_{Y}(t)$, obtained by superimposing to $X_{Y}(t)$ a jump process, namely we set $\bar{X}_{Y}(t)=X_{Y}(t)$ for $t<T$, where T is an exponential distributed time with parameter $\mu>0$; we suppose that for $t=T$ the process $\bar{X}_{Y}(t)$ makes a downward jump and it crosses the linear boundary $S(t)=a+b t$, irrespective of its state before the occurrence of the jump. This kind of behavior is observed e.g. in the presence of a so called catastrophes. Then, for $Y \geq a-\underline{x}$, the first-hitting time of S by $\bar{X}_{Y}(t)$ is $\bar{\tau}_{Y}=\inf \left\{t>0: \bar{X}_{Y}(t) \leq a+b t\right\}$. By proceeding in analogous manner as in [2], with a replaced by $a-x$, and by correcting a typographical error, there present (see [4]), we obtain:

2.7. Proposition

If there exists an absolutely continuous random variable $Y \geq a-x$ such that $P\left(\tau_{Y} \leq t\right)=F(t)$, then its Laplace transform is given by

$$
\begin{align*}
& \overline{L g}(\theta)=e^{-(a-x) \theta}\left(1-\frac{2 \mu}{\theta(\theta+2 b)}\right)^{-1} \tag{7}\\
& {\left[\overline{L f}\left(\frac{\theta(\theta+2 b)}{2}-\mu\right)-\frac{2 \mu}{\theta(\theta+2 b)-2 \mu}\right]}
\end{align*}
$$

where $\overline{L f}$ denotes the Laplace transform of $\bar{\tau}_{Y}$.

2.8. Remark

For $\mu=0$, namely when no jump occurs, (7) reduces to (1).

Example
(i) For $a \geq x, \mu>0$, let be

$$
\overline{L f}(\theta)=\frac{a \mu \sqrt{2(\theta+\mu)}+\theta-\theta e^{-a \sqrt{2(\theta+\mu)}}}{a(\theta+\mu) \sqrt{2(\theta+\mu)}}
$$

and take $S(t)=a$. Suppose that the density of the first-hitting time of S is $\bar{f}=\overline{F^{\prime}}$, i.e. $P\left(\bar{\tau}_{Y} \leq t\right)=\bar{F}(t)$, then Y is uniformly distributed in the interval $[a-x, 2 a-x]$. In fact, from (7) with $b=0$, it follows that $\overline{L g}(\theta)=\frac{e^{-(a-x) \theta}\left(1-e^{-a \theta}\right)}{a \theta}$, which is indeed the Laplace transform of $\bar{g}(y)=1_{[a-x, 2 a-x]}(y) \cdot \frac{1}{a}$.
(ii) For $c, \mu>0$, let be

$$
\overline{L f}(\theta)=\frac{c(\theta+\mu)+\mu \sqrt{2(\theta+\mu)}}{(\theta+\mu)(c+\sqrt{2(\theta+\mu)})}
$$

and take $S(t)=a$. Suppose that the density of the first-hitting time of S is $\bar{f}=\overline{F^{\prime}}$, then the density of Y is $\bar{g}(y)=c e^{-c(y+x-a)}, y \geq a-x$, namely $Y=a-x+Z$, where Z is exponentially distributed with parameter c. In fact, from (7) with $b=0$, it follows that $\overline{L g}(\theta)=e^{-(a-x) \theta} \cdot \frac{c}{c+\theta}$, which is indeed the Laplace transform of $a-x+Z$, with Z exponential of parameter c.

2.9. Remark

In the case without jump, we have considered the firstpassage time of $x+Y+B_{t}$ below the linear boundary $S(t)=a+b t$, with $Y \geq a-x, a \geq x, b \geq 0$. In analogous way, one could consider the first-passage time of $x+\bar{Y}+B_{t}$ over the boundary $\bar{S}(t)=a-b t$, with $\bar{Y} \leq a-x, a \geq x, b \geq 0$. In fact, since $-B_{t}$ has the same distribution as B_{t}, we get that $\inf \left\{t>0: x+\bar{Y}+B_{t} \geq a-b t\right\}$ has the same distribution as $\inf \left\{t>0: B_{t} \leq x+\bar{Y}-a+b t\right\}=\inf \left\{t>0: x-\bar{Y}+B_{t} \leq 2 x-a+b t\right\}$, that is the first-passage time, $\tau(-\bar{Y})$, of $X(-\bar{Y})(t)$ below the linear boundary $2 x-a+b t$. Thus, by using the arguments of Proposition 2.1, we obtain that, if the first-passage time of $x+\bar{Y}+B_{t}$ over \bar{S} has density f, then the Laplace transform, $L \bar{g}(\theta)$ of \bar{Y} must satisfy the equation:
$L \bar{g}(\theta)=e^{-(a-2 x) \theta} L f\left(\frac{\theta(\theta-2 b)}{2}\right)$

2.10. Remark

The results of the present paper can be extended to processes such as $X_{Y}(t):=x+Z(t)+Y$, where $Z(t)$ is a onedimensional, time-homogeneous diffusion, starting from $Z(0)=0$, with respect to a non-linear boundary $S(t)$ with $S(0) \leq x+Y$. Indeed, this is possible when $Z(t)$ can be reduced to Brownian motion by a deterministic transformation and a random time-change (see [2] for a few examples); then, the results concerning $Z(t)$ can be obtained by those for B_{t}, by using the arguments of [2] with a replaced by $a-x$.

CONFLICT OF INTEREST

The author confirms that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

I would like to thank the anonymous referee for the constructive comments leading to improvements of the paper.

MATHEMATICS SUBJECT CLASSIFICATION

60J60, 60H05, 60H10.

REFERENCES

[1] Karlin S, Taylor HM. A second course in stochastic processes. Academic Press: New York; 1975
[2] Abundo M. An inverse first-passage problem for one-dimensional diffusions with random starting point. Statist Probab Lett 2012; 82 (1): 7-14.
[3] Debnath L, Bhatta D. Integral Transforms and Their Applications (Second edition). Chapman \& Hall/ CRC Press, 2007.
[4] Abundo M. Erratum to: An inverse first-passage problem for onedimensional diffusions with random starting point" . Statist Probab Lett 2012; 83 (3): 705.
© Mario Abundo; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

[^0]: *Address correspondence to this author at the Dipartimento di Matematica, Università Tor Vergata Via della Ricerca Scientifica, 00133 Roma, Italy; Tel: +39 06 72594627; Fax: +39 0672594699 ;
 E-mail: abundo@mat.uniroma2.it

