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Abstract: Liver X receptor (LXR) is an attractive drug target for the development of novel therapeutic agents for the 
treatment of dyslipidaemia and cholestasis. In the present work, comparative molecular field analysis (CoMFA) and holo-
gram quantitative structure-activity relationship (HQSAR) studies were conducted on a series of potent LXR ligands. Sig-
nificant correlation coefficients (CoMFA, r2 = 0.98 and q2 = 0.69; HQSAR, r2 = 0.99 and q2 = 0.85) were obtained, indi-
cating the potential of the models for untested compounds. The models were then used to predict the potency of an exter-
nal test set, and the predicted values obtained from the 2D and 3D models were in good agreement with the experimental 
results. The final QSAR models, along with the information obtained from 3D steric and electrostatic contour maps and 
2D contribution maps should be useful for the design of novel LXR ligands having improved potency. 
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INTRODUCTION 

 Nuclear receptors (NRs) are ligand-dependent intracellu-
lar transcription factors that have important roles in several 
biological processes, including cell proliferation, differentia-
tion and cellular homeostasis [1-4]. NRs are implicated in 
important diseases such as cancer, diabetes, and osteoporo-
sis, and thus have been considered attractive targets for drug 
discovery and development [5]. Typically, NRs act as 
ligand-inducible transcription factors, responding to endoge-
nous and exogenous chemicals. However, there are some 
NRs whose endogenous ligands have not yet been identified 
and these are known as orphan receptors. The chemical di-
versity of the NR ligands is considerably high as a natural 
result of the structural diversity of the protein themselves. 
For example, endogenous ligands include a diversity of lipo-
philic compounds such as steroid hormones, thyroid hor-
mone, vitamin D3, fatty acids, eicosanoids, bile acids and 
oxysterols [6,7]. Therefore, recognition of the importance of 
NRs as vital regulators of genes involved in metabolic con-
trol has resulted in intensive search for novel selective 
ligands to combat major human diseases and disorders [8]. 

 Liver X receptors (LXRs) form a subgroup of NRs called 
metabolic receptors, which have attracted increasing interest  
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in medicinal chemistry. The two LXR subtypes  and  
(LXR  and LXR , respectively) share a high degree of 
amino acid sequence similarity (78% in their DNA- and 
ligand-binding domains), but differ substantially in their tis-
sue distribution. LXR  was first identified in the liver, but is 
also expressed in other metabolically active tissues such as 
kidney, intestine, adipose tissue, and macrophages. In con-
trast, LXR  is ubiquitously expressed [9]. The majority of 
the LXR target genes appear to have one of two biological 
functions; firstly, removal of excess cholesterol through ef-
flux, catabolism or decreased absorption; and secondly, syn-
thesis of fatty acids [10,11]. Alterations in cholesterol and 
fatty acid metabolism play an important role in the develop-
ment of cardiovascular diseases. The established functions of 
many of these LXR targets have fueled speculation as to how 
their pharmacological regulation by LXR ligands might im-
pact metabolic disease. 

 Integration of structure- and ligand-based approaches 
have become vital components of modern drug design 
[12,13]. The main objective of our study was to investigate 
the quantitative structure-activity relationships (QSAR) of a 
series of LXR ligands by employing the comparative mo-
lecular field analysis (CoMFA) and hologram QSAR meth-
ods. The results obtained from the predictive 3D and 2D 
QSAR models generated in this work should be useful in the 
design of new LXR ligands. It is interesting to note that the 
number of QSAR studies concerning the chemical structure 
and corresponding biological information for NRs is signifi-
cant, as a result of the SAR available information. However, 
to the best of our knowledge, the majority of QSAR models 
reported in the literature is associated with the estrogen re-
ceptor (ER) [14,15], while a few other models have been 
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performed for distinct NRs [13,16-18]. This fact shows the 
importance of further QSAR studies involving other NRs 
such as LXR, the macromolecular target of our studies. 

METHODOLOGY 

Data Set 

 The data set of 20 LXR ligands used for the HQSAR and 
CoMFA analyses was selected from the literature and con-
sists of oxysterol and tertiary amine derivatives [19, 20]. The 
generation of the ligand structures, as well as the QSAR 
modeling analyses, calculations and visualizations were per-
formed using the SYBYL 8.0 package (Tripos Inc., St. 
Louis, USA). 

CoMFA Analyses 

 In 3D QSAR studies, it is crucial to consider the molecu-
lar alignment of the data set ligands, and a variety of useful 
approaches has been described in the literature for this pur-
pose [12, 13, 18, 21]. In this work, the docking protocol as 
implemented in GOLD 3.1 (Cambridge Crystallographic 
Data Centre, Cambridge, UK) was employed to search the 
possible binding conformations of the ligands into the LXR 
active site. Initially, the single optimized conformation of 
each molecule in the data set was energetically minimized 
employing the atom-centered partial charge AM1-ESP calcu-
lations implemented in MOPAC 6.0. The X-ray crystallo-
graphic data for LXR in complex with the small molecule 
agonist (T0901317) used in docking simulations and QSAR 
simulations were retrieved from the Protein Data Bank (PDB 
ID 1UPV, with resolution of 2.1 Å) [22]. During the process 
of structure preparation, the ligand was removed from the 
complex structure and hydrogen atoms were added using the 
program Pymol (DeLano Scientific, San Carlos, USA). The 
active site for the docking simulations was defined consider-
ing a radius of 10 Å around the C28 atom of the ligand 
bound in the X-ray structure. Default parameters and 
GOLDscore function were employed in all docking runs, and 
only the best ranked conformation was considered for 3D 
QSAR studies. 

 CoMFA analyses also permit to explore the main contri-
butions of electrostatic and steric fields in the intermolecular 
interactions between the data set ligands and the binding site 
of the LXR protein. In this context, CoMFA calculates the 
steric and electrostatic properties according to Lennard-Jones 
and Coulomb potentials, respectively [23]. Thus, the aligned 
training set molecules were placed in a 3D grid box of 2.0 Å 
in the x, y, and z directions, and a grid region was automati-
cally generated by the CoMFA routine to encompass all 
molecules with an extension of 4.0 Å in each direction. The 
CoMFA fields were generated at each grid point with Tripos 
force field using an sp3 carbon atom probe carrying a +1 net 
charge. CoMFA region focusing method was applied to in-
crease the resolution of CoMFA models. The default value 
of 30 kcal mol-1 was set as the maximum steric and electro-
static energy cutoff. Minimum-sigma (column filtering) was 
set to be 2.0 kcal mol-1 in order to improve the signal-to-
noise ratio by omitting those lattice points with energy varia-
tion below the threshold. All models were investigated using  
 

noncross-validated correlation coefficient (r2) and the full 
cross-validated r2 (q2) partial least squares (PLS) leave-one-
out (LOO) method. Leave-many-out (LMO) crossvalidation 
with 10 randomly selected groups were used as a more rig-
orous test to assess model stability and statistical signifi-
cance. Progressive scrambling method was applied to deter-
mine the sensitivity of the QSAR models to chance correla-
tions. The CoMFA contour maps were generated by interpo-
lation of the pairwise products between the PLS coefficients 
and standard deviations of the corresponding descriptors 
values. External model validation was performed with a test 
set of compounds, which were not considered for QSAR 
model generation. After generation of the PLS training set 
models, the dependent variables (pEC50) were predicted for 
the test set compounds, allowing predictive-r2 values to be 
determined for the individual 3D QSAR models. 

HQSAR Analyses 

 Since the integrated information obtained from 2D and 
3D methods is recognized as a valuable strategy in drug de-
sign [12, 13], we have explored the 2D molecular features 
related to the potency of this series of LXR agonists. Predic-
tive 2D QSAR models were generated using the HQSAR 
method, which only requires 2D structures and the corre-
sponding biological activity as input, allowing the investiga-
tion of a wide variety of bioactive compounds, even when 
the 3D biological target information is not available. Be-
sides, HQSAR typically produces fast statistical correlations 
that are comparable in quality to 3D QSAR techniques, such 
as CoMFA, but avoids the time consuming step of 3D model 
generation and mutual alignment in 3D space [15-17, 24]. 
The methodology employed in HQSAR consists of some 
basic steps: (i) data set preparation; (ii) substructural frag-
mentation of the training set molecules; (iii) molecular holo-
gram generation; (iv) statistical analysis and model genera-
tion; and, (v) test set selection and external validation [13, 
15-17]. In HQSAR, each molecule is hashed to a molecular 
fingerprint which encodes the frequency of occurrence of 
various molecular fragment types using a pre-defined set of 
rules. To construct a molecular hologram, the fingerprint is 
cut into strings at a fixed interval as specified by a hologram 
length (HL) parameter. The strings are then aligned and the 
sum of each column constitutes the individual component of 
the molecular hologram of a particular length. The progress 
of incorporating information about each fragment, and each 
of its constituent sub-fragments, implicitly encodes 3D struc-
tural information (e.g., hybridization, chirality) [12, 25]. The 
final HQSAR models can be affected by a number of pa-
rameters concerning hologram generation: hologram length, 
fragment size and fragment distinction [12, 13, 15-17]. In 
our studies, holograms were generated using the standard 
parameters implemented in SYBYL 8.0. The models were 
investigated in a similar way to that described for the 
CoMFA models. 

RESULTS AND DISCUSSION 

 The chemical structures and biological properties for the 
complete set of compounds are listed in Table 1. The values 
of EC50 employed in this study were measured under the  
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Table 1. Chemical Structures and EC50 Values for the Series of LXR Ligands Studied 
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same experimental conditions [19, 20], a fundamental re-
quirement for successful QSAR studies [12, 13, 15]. The 
generation of reliable statistical models is dependent on the 
creation of appropriate training and test sets. From the origi-
nal data set of 20 LXR modulators, 16 ligands were selected 
as members of the training set for model construction (1-16, 
Table 1) and the remaining 4 compounds (17-20, Table 1) 
were defined as members of the test set for external model 
validation. Hierarchical cluster analyses performed with Tsar 
3D (Accelrys, San Diego, USA) was used as previously de-
scribed to guide an appropriate compound selection 
[12,15,17]. Training and test sets were selected in such a 
way that structurally diverse molecules possessing activities 
of a wide range were included in both sets. Thus, the data set 
is appropriate for the purpose of QSAR model development. 
The same training and test sets were employed for all 2D and 
3D QSAR analyses. The EC50 values were converted to the 
corresponding pEC50 (-logEC50) and used as dependent vari-
ables in the QSAR investigations. 

CoMFA Analyses 

 Fig. (1) shows the alignment obtained from the docking 
simulations performed for the complete set of LXR ligands. 
As can be seen, the data set molecules presented a unique 
molecular alignment, indicating the robustness of the method 
employed using the program GOLD. From the 3D molecular 
alignment obtained for the training set molecules, several 
PLS analyses were carried out and the statistical results ob-
tained are presented in Table 2. 

 From Table 2, it can be seen that an initial analysis with-
out applying the option ‘‘region focusing’’ (an advanced 

method of noise reduction) produced a non-significant q
2 

value of 0.39. Thus, we have applied the region focusing that 
was weighted by S.D. x coefficient values ranging from 0.3 
to 1.2, with a grid spacing ranging from 0.5 to 1.5. The best 
statistical results (r2 = 0.98, q

2 = 0.69) among all models 
were obtained with the region focusing weighted by a S.D. x 
coefficient values of 0.8 and a grid spacing of 1.0. The re-
gion focusing not only increased q2 values during the process 
of model generation, but also resulted in the refinement of 
contour maps. In order to check the reliability of the PLS 
models to small systematic perturbations of the response 
variable, we have used the progressive scrambling method 
[26], which is a nonparametric approach that does not disturb 
the underlying covariance structure of the data, being used to 
determine the sensitivity of the QSAR models to chance cor-
relations. The results further confirmed consistency of the 
models as defined by the critical slope, and optimum statis-
tics for cSDEP and Q**2 obtained at the end of different 
runs. 

 The predictive ability of the most significant CoMFA 
model derived for the training set molecules was assessed by 
using a test set of molecules (compounds 17-20, Table 1). 
The results of the external validation procedure employing 
the test set compounds are listed in Table 3, and the graphic 
results for the experimental versus predicted activities of 
both training set and test set are displayed in Fig. (2). 

 The good agreement between experimental and predicted 
values for the test set compounds indicates the reliability of 
the constructed CoMFA model (Table 3 and Fig. 2). The 
predicted pEC50 values for the test set compounds fall close 
to the experimental values, not deviating by more than 0.18 

(Table 1) contd….. 
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log units. No outliers were detected in this series of com-
pounds. From the low residual values, it can be seen that the 
CoMFA model obtained is highly reliable and can thus be 
used to predict the biological activity of novel compounds 
within this structural diversity. 

Table 2. Statistical Results for the CoMFA Analyses 

 

Statistical Parameters 
Model 

r
2
 q

2
 N 

No focusing 0.97 0.39 3 

W = 0.8, d = 1.0* 0.98 0.69 3 

*Region focusing was weighted by standard deviation coefficient values (w) and grid 
spacing (d). Noncross-validated correlation coefficient (r2); cross-validated correlation 
coefficient (q2); optimal number of components (N). 

 

 In CoMFA methodology, visualization of the steric and 
electrostatic interaction fields is an essential tool to guide 
further SAR studies aimed at the design of new molecules 
with improved properties, using an association of medicinal 
chemistry knowledge with expertise in synthetic chemistry. 
Fig. (3) displays the CoMFA PLS S.D. x coefficient contour 
maps for the steric and electrostatic fields employing the 
most potent LXR ligand of the series (compound 14, pEC50 = 
7.35). CoMFA contour maps can be analyzed considering 
two main aspects: (i) steric, where favorable and unfavorable 
regions are represented in green and yellow; (ii) electrostatic, 
where red contours represent regions in which electronega-
tive substituents may increase the biological activity, and 
blue contours indicate regions in which electropositive 
groups would contribute to enhance the activity. 

 According to the CoMFA/PLS analysis, the steric and 
electrostatic field properties contribute in a 47/53 ratio to the 
total variance, respectively. As it can be seen in Fig. (3),  
 

Table 3. Experimental and Predicted Activities (pEC50) with 

Residual Values for a Series of LXR Ligands by Us-

ing the HQSAR and CoMFA Methods 

 

pEC50 

Ligands 
Experimental 

Predicted  

CoMFA 
Residual 

Predicted  

HQSAR 
Residual 

1 6.34 6.30 -0.04 6.36 0.02 

2 6.17 6.16 -0.01 6.14 -0.03 

3 6.49 6.45 -0.04 6.53 0.04 

4 6.89 6.94 0.05 6.80 -0.09 

5 6.66 6.67 0.01 6.71 0.05 

6 6.74 6.78 0.04 6.77 0.03 

7 6.98 6.98 0.00 6.96 -0.02 

8 6.59 6.63 0.04 6.59 0.00 

9 6.59 6.61 0.02 6.57 -0.02 

10 6.07 6.17 0.10 6.09 0.02 

11 6.18 6.20 0.02 6.14 -0.04 

12 6.60 6.51 -0.09 6.63 0.03 

13 7.07 7.10 0.03 7.05 -0.02 

14 7.35 7.35 0.00 7.37 0.02 

15 6.90 6.82 -0.08 6.89 -0.01 

16 6.72 6.68 -0.04 6.74 0.02 

17 6.60 6.72 0.12 6.67 0.07 

18 6.77 6.85 0.08 6.70 -0.07 

19 6.33 6.43 0.10 6.48 0.15 

20 7.07 7.25 0.18 7.15 0.08 

 

 

Fig. (1). Three-dimensional data set alignment for conformations generated by GOLD 3.1. 
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electronegative groups surrounding the phenyl rings of the 
phenoxypropanamine and phenylmethanamine side chains 
are related to improved potency. In addition, the favorable 
steric contours suggest that aromatic bulky groups at the 
diphenylethanamine side chain may increase ligand potency. 
The understanding of the molecular determinants for ligand 
binding and affinity is critical in drug design. In cases where 
the crystal structure of a target protein in complex with a 
ligand is available, the strategy of combining the information 
of the 3D contour maps with the protein structure environ-
ment can be useful to investigate the role of the intermolecu-
lar interactions related to biological activity. Fig. (4) displays 
an example of this integrated approach, where it can be visu-
alized the predicted binding interactions in the formation of 
the complex between the most potent LXR ligand of the se-
ries (14) and the LXR ligand-binding site. The 3D QSAR 
models generated in this study are compatible with the 3D 
protein environment in the LXR binding site, as also de-
picted in Fig. (4). The importance of the electronegative sub-
stituents in the phenylmethanamine moiety corroborates with 
the interaction between this group and a positively charged 
residue (His435) [22]. Furthermore, the role of the hydro-
phobic interactions with Ile309 and Met312 side chains is 
also in good agreement with previous results [22, 27]. This 
suggests that these models can be useful in the structure-
based drug design of novel structurally related LXR ligands. 

HQSAR Analyses 

 The generation of molecular fragments was carried out 
using the following fragment distinctions: atoms (A), bonds 
(B), connections (C), hydrogen atoms (H), chirality (Ch), 
and donor and acceptor (DA). In order to assess the process 
of hologram generation, several combinations of these pa-

rameters were considered during the QSAR modeling runs. 
The HQSAR analyses were performed by screening the 12 
default series of hologram length values ranging from 53 to 
401 bins. The patterns of fragment counts from the data set 
compounds were related to the experimental biological activ-
ity using the PLS analysis. The statistical results from the 
PLS analyses using several fragment distinction combina-
tions and the fragment size default (4-7) are summarized in 
Table 4. 

 According to Table 4, the best statistical results among 
all models were obtained for model 5 (r2 = 0.99 and q

2 = 
0.74). This model was derived using a combination of A, B, 
C and Ch, with 6 being the optimum number of PLS compo-
nents. The influence of different fragment sizes in the statis-
tical parameters was further investigated for this HQSAR 
model. Fragment size parameters control the minimum and 
maximum length of fragments to be included in the holo-
gram fingerprint, and can be varied to incorporate larger or 
smaller fragments [28, 29]. The HQSAR results for a variety 
of different fragment sizes are shown in Table 5. The varia-
tion of fragment size provided substantial improvements in 
the statistical parameters, as can be observed for the model 
with fragment size 3-6, which presents high correlation coef-
ficients (r2 = 0.99 and q2 = 0.85) associated to low standard 
errors. 

 In terms of validation of a QSAR model, a measure of 
internal consistency is available in the form of q2. However, 
the most important test of a QSAR model is its ability to 
predict the property value for new compounds. As the struc-
ture encoded in a 2D fingerprint is directly related to the 
biological activity of series of molecules, HQSAR models 
should be able to predict the activity of new structurally re-
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Fig. (2). Plot of predicted versus experimental values of pEC50 for the LXR ligands (training and test sets) by using the CoMFA method. 
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lated LXR ligands from their fingerprints. Thus, the predic-
tive power of the best HQSAR model derived using the 
training set molecules (fragment distinction A/B/C/Ch; 
fragment size 3-6, Table 5) was assessed by predicting pEC50 
values for the test set compounds (17-20, Table 1). The ex-
ternal validation process can be considered the most valuable 

validation method, as these compounds are completely ex-
cluded during the training of the model. For simplification, 
the results are also listed in Table 3 and the graphic results 
for the experimental versus predicted activities of both train-
ing and test sets are displayed in Fig. (5). 

 

Fig. (3). CoMFA steric (green and yellow) and electrostatic (red and blue) contour maps. The most potent LXR modulator (14) of the series 
is shown in the background. 

 

 

Fig. (4). Binding mode predicted for the most potent modulator (14, colored in pink) of the data set into the crystal structure of LXR. Impor-
tant amino acid residues of the ligand-binding site are represented in green. 
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Table 4. HQSAR Analyses for Various Fragment Distinction 

on the Key Statistical Parameters Using Fragment 

Size Default (4-7) 

 

Model Fragment Distinction r
2
 SEE q

2
LOO SEP HL N 

1 A/B/C 0.97 0.08 0.70 0.25 151 6 

2 A/B/C/H 0.87 0.15 0.55 0.27 257 4 

3 A/B/C/H/Ch 0.96 0.09 0.65 0.27 71 6 

4 A/B/C/H/Ch/DA 0.97 0.07 0.56 0.30 53 6 

5 A/B/C/Ch 0.99 0.04 0.74 0.23 59 6 

6 A/B/C/Ch/DA 0.98 0.06 0.71 0.24 61 6 

q2
LOO, leave-on-out cross-validated correlation coefficient; SEP, cross-validated stan-

dard error; r2, noncross-validated correlation coefficient; SEE, noncross-validated 
standard error; HL, hologram length; N, optimal number of components. Fragment 
Distinction: A, atoms; B, bonds; C, connections; H, hydrogen atoms; Ch, chirality; DA, 
donor and acceptor. 

 

Table 5. HQSAR Analyses for the Influence of Various 

Fragment Sizes on the Key Statistical Parameters 

Using the Best Fragment Distinction (A, B, C and 

Ch) 

 

Fragment Size r
2
 SEE q

2
LOO SEP HL N 

2-5 0.98 0.06 0.70 0.25 61 6 

3-6 0.99 0.05 0.85 0.18 53 6 

4-7 0.99 0.04 0.74 0.23 59 6 

5-8 0.99 0.04 0.64 0.27 59 6 

6-9 0.99 0.03 0.60 0.29 401 6 

q2
LOO, leave-on-out cross-validated correlation coefficient; SEP, cross-validated stan-

dard error; r2, noncross-validated correlation coefficient; SEE, noncross-validated 
standard error; HL, hologram length; N, optimal number of components. Fragment 
Distinction: A, atoms; B, bonds; C, connections; H, hydrogen atoms; Ch, chirality; DA, 
donor and acceptor. 

 The results show that the test set compounds, which rep-
resent the different structural properties incorporated within 
the training set, are well predicted without any outliers. From 
the low residual values, it can be seen that the HQSAR 
model obtained is highly reliable and can be used in further 
medicinal chemistry studies. The predicted values fall very 
close to the experimental pEC50 values, deviating by less 
than 0.15 log units. 

 Besides predicting the potency of LXR ligands, an 
HQSAR analysis provides important hints about what mo-
lecular fragments are directly related to biological activity. In 
the HQSAR method, it is possible to visualize the individual 
contributions to activity of each atom in a given molecule of 
the data set through the generation of contribution maps. The 
HQSAR module implemented in SYBYL 8.0 uses a color 
code in order to discriminate the main atomic contributions 
to activity. The colors at the red end of the spectrum (red, red 
orange and orange) reflect poor contributions, whereas col-
ors at the green end (yellow, green blue and green) reflect 
favorable contributions. Atoms with intermediate contribu-
tions are colored white. The individual atomic contributions 
for the most potent compound of the data set (14) are pre-
sented in Fig. (6). In particular, the molecular fragments rep-
resented by the phenyl ring of the phenoxypropanamine side 
chain and the chloro group attached to the aromatic ring at 
the orto-position, are indicated to be strongly related to bio-
logical potency. Moreover, in any molecule, regions with 
intermediate or poor contributions can be identified as poten-
tial targets for molecular modification and further SAR stud-
ies. In this case, the main region that negatively contributes 
for biological activity is the methyl group linked to the terti-
ary amine, which could be replaced by another moiety with 
different spatial and physicochemical features in order to 
increase affinity and potency. 
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Fig. (5). Plot of predicted versus experimental values of pEC50 for all LXR ligands (training and test sets) by using the HQSAR method. 
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CONCLUSIONS 

 The 3D and 2D QSAR statistical models described in this 
work show both good internal and external consistency, and 
represent important contribution to the QSAR field in the 
area of NRs. The good correlation between experimental and 
predicted pEC50 values for the test set compounds further 
proved the reliability of the constructed QSAR models. It is 
worth noting that we have employed the same training and 
test sets for all QSAR analyses, and the results showed that 
investigations can be carried out concomitantly to search for 
synergies between 3D and 2D QSAR technologies. Moreo-
ver, the 3D QSAR models generated are compatible with the 
3D protein environment in the LXR binding-site. From the 
CoMFA steric and electrostatic contour maps we can con-
clude that electronegative groups surrounding the phenyl 
rings of the phenoxypropanamine and phenylmethanamine 
side chains are related to improved potency. In addition, the 
favorable steric contours suggest that aromatic bulky groups 
at the diphenylethanamine side chain may increase ligand 
potency. Regarding the HQSAR results, it was possible to 
obtain important hints about what molecular fragments are 
directly related to biological activity, i.e. the molecular 
fragments represented by the phenyl ring of the phenoxypro-
panamine side chain and the chloro group attached to the 
aromatic ring at the orto-position, are strongly related to bio-
logical potency. Besides, the main region that negatively 
contributes for biological activity is the methyl group linked 
to a tertiary amine, which could be replaced by another moi-
ety with different spatial and physicochemical features in 
order to increase potency. The CoMFA and HQSAR models 
and the information obtained from the 3D contour and 2D 
contribution maps should be useful for the design of new 
structurally related LXR activators having improved affinity 
and potency. The integration of 3D and 2D QSAR methods 
is a powerful tool in medicinal chemistry and drug design 
studies. 
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