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Exact Solutions for Simply Supported and Multilayered Piezothermo-
elastic Plates with Imperfect Interfaces 
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Abstract: Exact solutions are derived for three-dimensional, orthotropic, linearly piezothermoelastic, simply-supported, 
and multilayered rectangular plates with imperfect interfaces under static thermo-electro-mechanical loadings. In this re-
search the imperfect interface is described as thermally weakly (or highly) conducting, mechanically compliant and di-
electrically weakly (or highly) conducting. While the homogeneous solutions for one layer are obtained in terms of the so-
called pseudo-Stroh formalism, solutions for multilayered plates are expressed in terms of the transfer matrices for both 
the layer and the imperfect interface. Due to the fact that the thermal effect is incorporated, we adopt a special form of the 
transfer matrix, resulting in a very concise solution structure for piezothermoelastic multilayered plates. Numerical results 
are presented to validate the developed formulas and to demonstrate the influence of the interface imperfection on the dis-
tributions of the field variables. 

1. INTRODUCTION 

 Three-dimensional analytical solutions for simply-
supported plates continue to attract investigators’ attention 
[1-9]. Various techniques including the asymptotic expan-
sion scheme [7], the state space formulation [4,7], the Stroh 
formalism [6], the pseudo-Stroh formalism [8,9], and the 
transfer matrix (or propagator matrix) [2,7-9] have been pro-
posed in these studies. The materials studied encompass 
purely elastic [1,2], piezoelectric [3,6,7], piezothermoelastic 
[4,5], and multiferroic [8,9] materials. One common assump-
tion in most of the aforementioned works is that the extended 
displacement and traction vectors (see [8] for a detailed defi-
nition) are continuous across the interface between two adja-
cent layers. This kind of simplification of the interface is not 
enough to reflect various damage occurring on the interface 
(e.g., debonding, sliding and/or cracking across the inter-
face), and as a result the concept of imperfect interface 
should be incorporated. Up to now various imperfect inter-
face models have been proposed in the context of heat con-
duction [10-12], dielectricity [13,14] and elasticity [15-20]. 

 The main focus of this research is the incorporation of 
imperfect interfaces in the three-dimensional analysis of a 
simply-supported and multilayered piezothermoelastic rec-
tangular plate. The imperfect interface studied here is me-
chanically compliant and thermally (or dielectrically) weakly 
(or highly) conducting. For a mechanically compliant inter-
face, we adopt the linear spring model for the imperfect in-
terface [15-19]. In this model, tractions are continuous but 
displacements are discontinuous across the imperfect inter-
face, jumps in the displacement components are further as-
sumed to be proportional, in terms of the ‘spring-factor-type’ 
interface parameters, to their respective interface traction  
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components. For a thermally (or dielectrically) weakly con-
ducting interface [10-13], the normal heat flux (or the normal 
electric displacement) is continuous but the temperature (or 
electric potential) is discontinuous across the interface, the 
jump in temperature (or electric potential) is proportional to 
the normal heat flux (or normal electric displacement). For a 
thermally (or dielectrically) highly conducting interface 
[11,12,18], the temperature (or electric potential) is continu-
ous across the interface whereas the normal heat flux (or 
normal electric displacement) has a discontinuity across the 
interface, which is proportional to a certain differential ex-
pression of the temperature (or electric potential). It is not a 
easy task to address this problem since the interface is imper-
fect in heat conduction, elasticity and dielectricity. Under 
isothermal conditions, Chen et al. [21] derived exact solu-
tions for simply-supported and multilayered orthotropic pie-
zoelectric rectangular plates with mechanically compliant 
and dielectrically weakly conducting interface by means of a 
state space formulation. It should be noticed that in the dis-
cussion of Chen et al. [21], there exists a sign error in the 
description of the dielectrically weakly conducting interface 
(see Eq. (11)4 in [21]). 

2. PROBLEM DESCRIPTION 

2.1. Basic Equations 

 In a fixed Cartesian coordinate system (x1, x2, x3), the 
constitutive equations including the Fourier’s law of heat 
conduction for an orthotropic piezothermoelastic material of 
crystal class mm2 with poling in the x3-direction can be writ-
ten in the matrix form as 
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where qi, σij and Di are the heat flux, stress and electric dis-
placement; T is the temperature change; Sij and Ei are the 
strain and electric field; kii is the thermal conductivity coeffi-
cient; cij, eij and εij are the elastic, piezoelectric and dielectric 
coefficients; βii and p3 are the stress-temperature and pyroe-
lectric coefficients. The strains and electric fields can be ex-
pressed in terms of the displacements ui (i=1−3) and the elec-
tric potential φ as 
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 In addition the steady state energy equation in the ab-
sence of heat source and the static equilibrium equations in 
the absence of body force and electric charge can be ex-
pressed as 
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2.2. The Boundary Value Problem 

 Let us consider an anisotropic, piezothermoelastic, and 
N-layered rectangular plate with horizontal dimensions Lx, Ly 
(in the x1- and x2-directions) and the total thickness H (in the 
x3-direction). Each layer of the plate is orthotropic with pol-
ing in the x3-direction. The Cartesian coordinate system is 
established in such a way that its origin is at one of the four 
corners on the bottom surface and the plate is in the positive 
x3 region. Let layer k be bonded by the lower interface x3=zk 
and the upper interface x3=zk+1 with its thickness hk=zk+1−zk. 
It is obvious that z1=0 and zN+1=H. 

 The boundary and continuity conditions to be satisfied 
are those at the four edges of the multilayered rectangular 
plate, as well as those on the horizontal surfaces and differ-
ent interfaces of the multilayered rectangular plate. These 
boundary and continuity conditions are specifically listed as 
follows. 

(i) Simply-supported, electrically grounded and zero 
temperature edge boundary conditions for each layer 
[4-8, 21] 
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(ii) Thermo-electro-mechanical boundary conditions on 
the bottom surface of the plate 
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where ha is the surface heat transfer coefficient at 
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with n and m being two positive integers. 

(iii) Thermo-electro-mechanical boundary conditions on 
the top surface of the plate 
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where hb is the surface heat transfer coefficient at 
  
x

3
= H , 

and 
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(iv) Imperfect bonding conditions between two adjacent 
piezothermoelastic layers 

 In the following we will discuss in detail the imperfect 
interface in heat conduction, elasticity and dielectricity one 
by one. 

Imperfect Interface in Heat Conduction 

 If the interface x3=zj (j=2,3,...,N) is thermally weakly 
conducting, then it follows from the definitions outlined in 
the introduction that the following relationships hold 
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where 
  
!

T
( j)  is a nonnegative constant, and the superscripts 

“+” and “−” denote the limit values from the upper and 
lower sides of the interface z = z j . The case where 
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T
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= 0  
corresponds to a thermally perfect interface, whereas 
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( j) "#  stands for adiabatic contact. 

 On the other hand, if the interface x3=zj is thermally 
highly conducting, then it follows from the definitions out-
lined in the introduction that the following relationships hold 
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where 
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corresponds to a thermally perfect interface, whereas 
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"#  describes contact with a medium of infinite con-
ductivity. 

Imperfect Interface in Elasticity 

 According to the definitions outlined in the introduction, 
the boundary conditions on a mechanically compliant inter-
face x3=zj can be expressed as 
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where 
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completely debonded interface. 

Imperfect Interface in Dielectricity 

 If the interface x3=zj is dielectrically weakly conducting, 
then the following relationships hold 
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where 
  
!

D
( j)  is a nonnegative constant. The case where 
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= 0  corresponds to a dielectrically perfect interface, 

whereas 
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D
( j) "#  describes a charge-free (insulating)  

interface. 

 On the other hand, if the interface x3=zj is dielectrically 
highly conducting, then the following relationships hold 
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where 
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D
( j)  is a nonnegative constant. The case where 
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3. THE PSEUDO-STROH FORMALISM 

3.1. Heat Conduction 

 The temperature T satisfying the zero temperature edge 
conditions is chosen to be 
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where f and η are unknowns. 

 Then it follows from Eq. (1) that the three heat flux com-
ponents can be expressed as 

  

q
1
= h

1
e
!x

3 cos( px
1
)sin(qx

2
),  q

2
= h

2
e
!x

3

" sin( px
1
)cos(qx

2
),  q

3
= ge

!x
3 sin( px

1
)sin(qx

2
),

  (16) 

where 
  
h
1
= !k

11
pf ,   h

2
= !k

22
qf ,   g = !k

33
" f . 

 Substitution of Eq. (15) into Eq. (1), then the results into 
Eq. (4) for the energy equation, we obtain the following ei-
genrelation 
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 It is apparent that for a nontrivial solution of f, the two 
eigenvalues of !  should be 
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 With the aid of Eq. (16), Eq. (17) can be recast into the 
following standard eigenvalue problem 
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 If we distinguish the two eigenvectors of Eq. (19) by at-
taching a subscript to f and g, then the general solution for 
the temperature and normal heat flux (of the x3-dependent 
factor) can be expressed as 
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where !1  and !2  are two unknown constants to be deter-
mined. The two in-plane heat fluxes 
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 The eigenvectors of Eq. (19) are actually right ones. The 
left eigenvectors of Eq. (19) are found by solving the follow-
ing eigenvalue problem 
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where the superscript T denotes matrix transpose. 
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 The choice of f1, f2, g1 and g2 is not unique as long as they 
satisfy Eq. (24) or equivalently 

  
f1 f2 = !1 (2k33"1) . For exam-

ple we can choose 
  
f1 = 1,  f2 = !1 (2k33"1) ,  g1 = !k33"1,  g2 = !1 2 , 

which obviously satisfy the above normalized orthogonal 
relationship. 

3.2. The Electroelastic Field 

 In view of the simply supported and electrically 
grounded edge boundary conditions in Eq. (6), the general-
ized displacement vector can take the following forms 
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where the first term on the right hand side of Eq. (25) gives 
the homogeneous general solution, while the second term on 
the right hand side of Eq. (25) presents the particular solu-
tion due to the thermal effect from Eq. (15). 

 Substitution of Eq. (25) into Eq. (3), and then the results 
into the constitutive relations (2) yields the generalized trac-
tion vector as follows 
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 Introducing four vectors a, b, c, d of dimension 4 
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then we can find that the vector b is related to a, and d to c 
by 
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and the two real vectors !1, ! 2  are defined as 
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 In addition, the in-plane stresses and the in-plane electric 
displacements can be expressed as 
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 Now inserting Eq. (25) into Eq. (3), then into Eq. (2), and 
finally into the static equilibrium equations (5), we finally 
arrive at the following eigenrelations 
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 It can be easily verified that if s is an eigenvalue of (34), 
then s!  is also an eigenvalue of the eigenequation (34). 
With aid of Eqs. (28) and (29), Eqs. (34) and (35) can be 
recast into the following standard eigenrelations 
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 The general solutions Eqs. (36) and (37) can be termed 
the pseudo-Stroh formalism [8] for a homogeneous pie-
zothermoelastic layer. Assume that the ith (i=1−4) and 
(i+4)th eigenvalues of Eq. (36), denoted by si  and 

  
s
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isfy the relation 
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= 0 . We distinguish the eight eigen-
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Then the general solution for the generalized displacement 
and traction vectors (of the x3-dependent factor) can be con-
cisely expressed as 
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where K1  and K2  are two constant vectors to be deter-
mined, and 
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 In view of Eqs. (21) and (24), Eq. (39) can also be further 
expressed as 
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 The eigenvectors of Eq. (36) are actually right ones. The 
left eigenvectors of Eq. (36) are found by solving the follow-
ing eigenvalue problem 
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T  are the eigenvalue 

and eigenvector of Eq. (36), then 
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the corresponding solutions of Eq. (42). Since the left and 
right eigenvectors are orthogonal to each other, we then 
come to the following important orthogonal relationship [8] 
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 Thus the orthogonal relationship Eq. (43) provides us 
with a simple way of inverting the eigenvector matrix, which 
is required in forming the transfer matrix. 

 Furthermore after tedious derivations, the in-plane 
stresses, electric displacements and heat fluxes (of the x3-
dependent factor) can be expressed in terms of the general-
ized displacement vector, traction vector, temperature and 
normal heat flux as 
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where Μij are only related to the material properties given by 
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 The above expression Eq. (44) demonstrates that once the 
generalized displacement vector, generalized traction vector, 
temperature and normal heat flux are known, all the other in-
plane field components can be easily obtained through an 
algebraic operation. 

4. TRANSFER MATRIX AND SOLUTION OF LAY-
ERED STRUCTURE 

 For a certain layer k  with its lower surface at 
  
x

3
= z

k

+  
(
 
k = 1,2,!,N ), it follows from Eqs. (21) and (24) that !1  

and !2  can be expressed in terms of temperature and normal 

heat flux at its lower surface 
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x z
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 Then the temperature and normal heat flux at any posi-
tion within this layer are related to those at its lower surface 
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=  as follows 
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is the transfer matrix for heat conduction of layer k. Appar-
ently Pk (0)  is a 2×2 identity matrix. 

 Similarly for a certain layer k  with its lower surface at 
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+  (
 
k = 1,2,!,N ), it follows from Eqs. (41) and (43) 

that the unknown vectors K1  and K2  can be expressed in 
terms of the generalized displacement and traction vectors as 
well as the temperature and normal heat flux at its lower 
surface 
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 Then the generalized displacement and traction vectors at 
any position within this layer are related to the generalized 
displacement and traction vectors as well as the temperature 
and normal heat flux at the lower surface 
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+  as follows 
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 Apparently Ek (0)  is an 8×8 identity matrix, and Sk (0)  is 
an 8×2 zero matrix. 

 Now that Eqs. (47) and (50) can be concisely written 
together as follows 
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is called the layer transfer matrix for the piezothermoelastic 
problem of layer k. 

 To handle the imperfect interface, we now introduce the 
interface transfer matrix. Actually by using the boundary 
conditions Eqs. (10)-(14) on the imperfect interface, the so-
lution at 

3 k
x z

+
=  can be related to that at 
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!
=  through 

the following propagating relation 
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where the 10×10 matrix Ζk defined below is the so-called 
interface transfer matrix for interface 

3 k
x z=  

   

Z
k
=

I
4!4

Z
12

0
4!2

Z
21

I
4!4

0
4!2

0
2!4

0
2!4

Z
33

"

#

$
$
$

%

&

'
'
'
,     (55) 

with Ζ12 and Ζ21 two 4×4 matrices, and Ζ33 a 2×2 matrix. 

 More specifically if the interface is thermally weakly 
conducting, then 
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 On the other hand if the interface is thermally highly 
conducting, then 
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 If the interface is mechanically compliant and dielectri-
cally weakly conducting, then 
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 On the other hand if the interface is mechanically com-
pliant and dielectrically highly conducting, then 
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 It is observed that when the interface 
  
x
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= z

k
 is thermally 

or dielectrically highly conducting, the interface transfer 
matrix Zk is dependent on the values of p and q. It can be 
easily checked that Zk is an identity matrix when the inter-
face 
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= z

k
 is perfect. Consequently, the solution at the top 
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surface 
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= H  of the layered plate can be expressed by that 

at the bottom surface 
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0x =  of the layered plate as 

   

u

t

T

q
3

!

"

#
#
#
#

$

%

&
&
&
&

H

='

u

t

T

q
3

!

"

#
#
#
#

$

%

&
&
&
&

0

,     (60) 

where the 10×10 matrix Ω  is determined by 
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with Ξ  being an 8×8 matrix, Ψ  an 8×2 matrix, Φ  a 2×2 ma-
trix. 

 There are twenty unknowns in Eq. (60). Once the ten 
thermo-electro-mechanical boundary conditions Eqs. (7) and 
(9) on the bottom and top surfaces of the layered plate are 
imposed, all the unknowns in Eq. (60) can be uniquely de-
termined. To demonstrate this more clearly, Eq. (60) can be 
equivalently rewritten as follows 
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 By imposing the thermal boundary conditions Eqs. (7)5 
and (9)5, the temperature and normal heat flux at the two 
surfaces of the layered plate can be uniquely determined as 
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where the superscripts (1) and (N) refer to the thermal con-
ductivity coefficients of the bottom and top layers, respec-
tively; Φij (i,j=1,2) are the components of Φ . 

 Consequently by imposing the electromechanical bound-
ary conditions Eqs. (7)1-4 and (9)1-4, the generalized dis-
placement and traction vectors at the two surfaces of the lay-
ered plate can be uniquely determined. We present the re-
sults below for four different combinations of the electric 
loads on the two surfaces of the layered plate. 

• The normal electric displacement is given on the two 
surfaces of the layered plate: 

   

t(0) = !
13
0 !

23
0 !

33
0

D
3
0"

#
$
%
T

,

t(H ) = !
13
H !
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H !
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H"

#
$
%
T

,

u(0) = &
21
'1

t(H )'&
21
'1&

22
t(0)'&

21
'1(

21
T (0)'&

21
'1(

22
q

3
(0),

u(H ) = &
11
&

21
'1

t(H )+ (&
12

'&
11
&

21
'1&

22
)t(0)+

((
11
'&

11
&

21
'1(

21
)T (0)+ ((

12
'&

11
&

21
'1(

22
)q

3
(0),

 (64) 

where Ξ ij (i,j=1,2) are 4×4 block matrices of Ξ ; Ψ ij (i,j=1,2) 
are 4×1 block matrices of Ψ . 

• The electric potential is given on the two surfaces of the 
layered plate: 

 (65) 

where 

    
!u = u

1
u

2
u

3
D

3[ ]
T ,    (66) 

and 

 (67) 

• The normal electric displacement is given on the top sur-
face, while the electric potential is prescribed on the bot-
tom surface: 

 (68) 

where 

  (69) 

with 
  
!u , J1 and J2 being defined in Eqs. (66) and (67). 

• The normal electric displacement is given on the bottom 
surface, while the electric potential is prescribed on the 
top surface: 

 (70) 

where 

  (71) 
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with 
  
!u , J1 and J2 being defined in Eqs. (66) and (67). 

 Consequently the generalized displacement and traction 
vectors as well as the temperature and normal heat flux at 
any position within the layered plate can be determined by 
using Eqs. (52) and (54). In addition the in-plane field com-
ponents can also be easily determined by using Eq. (44) once 
the generalized displacement and traction vectors as well as 
the temperature and normal heat flux are known. 

5. NUMERICAL STUDIES 

 Here we consider a nine-layered plate of square shape 
with L=Lx=Ly=1m and H=0.1m. The bottom eight layers are 
made of graphite-epoxy composite with the fiber orientation 
90°/0°/90°/0°/0°/90°/0°/90° with respect to the x1-axis, and 
the top layer is made of a PZT-5A piezoelectric material. All 
the layers have the same thickness. The material properties 
of the graphite-epoxy [4,6] and PZT-5A [4,6] piezoelectric 
layers are given in Table 1. As in [6], we treat the graphite-
epoxy layer as a piezoelectric material with the piezoelectric 
moduli set equal to zero. Furthermore we focus on the ther-
mal loads by setting 

   
T = sin( px

1
)sin(qx

2
) (!C),  x3=0, 

  
T = 0,  x3=H, 

  
!

13
0
= !

23
0

= !
33
0

= "0
= !

13
H
= !

23
H
= !

33
H
= "H

= 0,  

with n=m=1. 

 This boundary value problem was numerically studied by 
Xu et al. [4] using the state-space formulation with the inter-
face being assumed to be perfect. When the interface is per-
fect, our results are in complete agreement with those calcu-
lated by Xu [4]. For example we demonstrate in Fig. (1) the 
through-the-thickness variation of the shear stress σ13 when 
the interface is assumed to be perfect. Thus the developed 
formulas based on the pseudo-Stroh formalism and transfer 
matrix are validated. 

 Here we are more interested in the influence of the im-
perfection of the interfaces on the variations of the field vari-
ables. More specifically we consider the following mechani-
cally compliant and thermo-electrically weakly conducting 
interfaces described by 

  

!
T
( j)

= "
1

H

k
33
(1)

,   #
1
( j)

=#
2
( j)

=#
3
( j)

= "
2

H

c
33
(1)

,   !
D
( j)

= "
3

H

$
33
(1)

,  (j=2−9) 

where δ1, δ2 and δ3 are three dimensionless nonnegative pa-
rameters. Fig. (2) shows the distributions of the normal stress 
σ33 along the thickness direction for different values of the 
dimensionless imperfect interface parameter 

 
! = !

1
= !

2
= !

3
. 

The horizontal variables are fixed at the center x1=x2=L/2. It 
is observed from Fig. (2) that the magnitude of normal stress 
is very small for δ=0.35. On the other hand the magnitude is 
very high when δ=10. As a result the imperfect interface 
parameters can be properly designed to reduce the thermal 
stress level. We also notice that the imperfection of the inter-
face can change the nature of the normal stress from com-
pression to tension. 

Table 1. Material Properties of the Graphite-Epoxy and 
PZT-5A 

 

 0°  Graphite-Epoxy PZT-5A 

c11 (GPa) 183.443 99.201 

c22 (GPa) 11.662 99.201 

c33 (GPa) 11.662 86.856 

c12 (GPa) 4.363 54.016 

c13 (GPa) 4.363 50.778 

c23 (GPa) 3.918 50.778 

c44 (GPa) 2.870 21.100 

c55 (GPa) 7.170 21.100 

c66 (GPa) 7.170 22.593 

e31 (Cm−2) 0 -7.209 

e32 (Cm−2) 0 -7.209 

e33 (Cm−2) 0 15.118 

e24 (Cm−2) 0 12.322 

e15 (Cm−2) 0 12.322 

ε11 (10−10Fm−1) 153.0 153.0 

ε22 (10−10Fm−1) 153.0 153.0 

ε33 (10−10Fm−1) 153.0 150.0 

β11 (105 NK−1m−1) 2.000 3.314 

β22 (105 NK−1m−1) 3.506 3.314 

β33 (105 NK−1m−1) 3.506 3.261 

p3 (10-6 CK−1m−2) 0 -8.609 

k11 (WK−1m−1) 1.5 1.8 

k22 (WK−1m−1) 0.5 1.8 

k33 (WK−1m−1) 0.5 1.8 

 

CONCLUSIONS 

 We have derived exact solutions for three-dimensional, 
orthotropic, piezothermoelastic, simply-supported and multi-
layered rectangular plates with imperfect interfaces under  
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Fig. (1). Through-the-thickness variation of shear stress σ13 when the interface is assumed to be perfect. Hybrid multilayered plate subjected 
to temperature change. L=Lx=Ly=1m and H=0.1m. 

 
Fig. (2). Distribution of normal stress σ33 along the thickness direction of the plate for different values of the dimensionless imperfect inter-
face parameter 

 
! = !

1
= !

2
= !

3
. Hybrid multilayered plate subjected to temperature change. L=Lx=Ly=1m and H=0.1m. The horizontal vari-

ables are fixed at the center x1=x2=L/2. 
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static thermo-electro-mechanical loads. We developed a new 
and simple formalism that resembles the Stroh formalism so 
that the solutions in a homogeneous piezothermoelastic layer 
can be obtained in a concise and elegant form. We also in-
troduced the interface and layer transfer matrices in order to 
treat the multilayered case with imperfect interface condi-
tions and with the thermal influence. It is found that through 
introduction of the 10×10 interface transfer matrix for the 
general imperfect interface conditions, all imperfect inter-
faces (e.g., weakly or highly conducting interface) can be 
discussed within a common framework. Our solutions can 
also provide benchmarks for various plate theories and nu-
merical methods. 
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