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On the Diffusion in Solids under Finite Deformation 
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Abstract: The governing equations of diffusion in solids, undergoing finite deformation, are presented. Lagrangian and 
Eulerian descriptions are provided. The governing equations are particularly useful in cases of diffusion-driven degrada-
tion mechanisms ahead of cracks in metals, when crack tip blunting is not negligible. Emphasis is placed on hydrogen-
induced embrittlement. 

INTRODUCTION 

 A substance, which diffuses in a deforming solid, is con-
sidered. The conservation of the diffusing mass is examined 
in the case of finite strains of the solid. The analysis is gen-
eral and therefore it can be used in problems of different 
materials, as is the case of water diffusion in wood or carbon 
diffusion in iron. Emphasis is placed in metals, where diffu-
sion is involved in most changes of their structure. The accu-
rate mathematical description of diffusion is very important 
in several degradation mechanisms. Hydrogen induced em-
brittlement and fracture is a diffusion-driven degradation 
mechanism, observed in several metals (e.g. iron, nickel, 
titanium, zirconium) and has important industrial implica-
tions. In the case of steady-state hydrogen induced crack 
growth, the deformation of the metal is adequately described 
by infinitesimal displacement gradient theory [1]. In this 
case, the well-known equation of hydrogen mass conserva-
tion, which does not distinguishes between the non-deformed 
and the deformed body, is used. The same equation is also 
correctly used in the case of diffusion ahead of a stationary 
crack in an elastically deforming solid [2,3]. All the above-
mentioned studies take into account the coupling of the op-
erating physical mechanisms of material deformation, hy-
drogen diffusion and hydride precipitation. In the study by 
Varias and Massih [2], non-mechanical energy flow is also 
considered, based on the thermodynamic treatment of cou-
pled phenomena [4]. In the case of a stationary crack in a 
plastically deforming solid, the blunting of the tip is signifi-
cant and the consideration of finite deformation near the 
crack tip is necessary. Indeed in several hydrogen embrittle-
ment studies, finite deformation of the crack tip is simulated 
[5-7]. Coupling of the operating physical mechanisms is also 
considered, in order to improve the accuracy of the calcula-
tions. However, the effect of finite deformation of metal on 
hydrogen mass conservation is neglected in all previous 
studies. In other words, two different theories are applied in 
these studies, i.e. a finite displacement gradient theory for 
material deformation and an infinitesimal displacement gra-
dient theory for hydrogen mass conservation. Irrespective of 
the mathematical inconsistency, the finite deformation effect 
on hydrogen mass conservation can be important, depending  
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on the velocity of the particles of the metal, where hydrogen 
lies in interstitial and trap sites or in the form of hydrides. 
The present discussion provides the finite deformation 
framework for diffusion and corrects the above-mentioned 
inconsistency. 

 In the following, standard tensor notation is used 
throughout. Bold-faced symbols are used to denote vectors 
and second-order tensors. Products are indicated with dots 
and products containing no dots are dyadic products. Latin 
indices range from one to three and repeated Latin indices 
are always summed. Inverses, transposes and transposed 
inverses are denoted with a superscripted –1, T and –T, re-
spectively. For example: 

A !B = AikBkjbib j  

cd = cid jbib j  

c !d = c
i
d
i
 

B ! c = B
ik
c
k
b
i
 

 The base vectors, b
i
, are Cartesian and independent of 

time, t. 

DIFFUSION EQUATIONS 

 The body of a solid is undergoing finite deformation, due 
to the application of external forces. The deformation is de-
scribed by the deformation gradient F = !x !X( ) , where x 
is the position of a solid particle in the deformed configura-
tion at time t (spatial coordinates) and X is its position in a 
reference (non-deformed) configuration (material coordi-
nates). 

 The solid contains a diffusing substance. Let C  and J  
be the concentration and the flux of the diffusing substance, 
respectively, both defined on the reference configuration. 
The concentration can be in moles per unit volume or in any 
other equivalent measure. Mass conservation of the diffusing 
substance, in a volume V

0
 of the reference configuration, 

requires that the rate of the amount of the diffusing substance 
inside this volume is equal to the amount of the diffusing 
substance flowing through the boundary S

0
: 
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d

dt
C  dV

0
+ J !N dS

0

S0

" = 0

V0

"    (1) 

 N is the outward unit vector, normal to the boundary S
0

. 
Relation (1) is valid for an arbitrary volume and therefore 
one derives the respective differential equation, by using 
divergence theorem: 

dC

dt
+!

X
" J = 0      (2) 

 dC dt( ) = !C !t( )
X

, i.e. time derivation is taken at a 
solid particle in the reference configuration. 
!
X
" J  = #J

k
#X

k
 is the divergence of the flux of the dif-

fusing substance, calculated with respect to material coordi-
nates. Relation (2) is the governing equation of diffusion on 
the reference configuration and therefore provides the La-
grangian description of diffusion. In the following, the gov-
erning equation of diffusion on the deformed configuration is 
derived. 

 Let c and j  be the concentration and the flux of the dif-
fusing substance in the deformed configuration. By taking 
into account the change of a volume and a surface of the 
solid due to deformation, one shows: 

C = F c      (3a) 

J = F F
!1
" j      (3b) 

 F  is the determinant of the deformation gradient. The 
Eulerian description of diffusion is derived by calculating the 
terms dC dt  and !

X
" J , with respect to c  and j , and sub-

stituting the results into (2). One shows: 

dC

dt
= F

dc

dt
+ c F ! "v     (4a) 

!X " J = F ! " j      (4b) 

where v is the velocity of a solid particle. Also 
! = b

k
" "x

k
; therefore the divergence and the gradient are 

taken with respect to spatial coordinates, i.e. ! " j = #jk #xk  
and !c = "c "x

k( )bk . On the deformed configuration, the 
material time derivative satisfies the relation: 
d dt = ! !t + v "# . In the case of the concentration of the 
diffusing substance dc dt = !c !t + v "#c , where 
!c !t = !c !t( )

x
 is the partial time derivative, related to a 

point in space and not to a solid particle in the reference con-
figuration. Substitution of (4a) and (4b) into (2) leads to the 
differential form for the conservation of the diffusing mass 
on the deformed configuration: 

dc

dt
+ c! "v +! " j = 0     (5) 

 The second term of left hand side of equation (5) is re-
lated to the transport of the diffusing substance due to the 
motion of the solid. Relation (5) was presented by the author 

in 2001, in a Malmö University report [8]. Independent 
proofs of (5) are discussed in the Appendix. 

 Relation (2) or (5) can be used for the solution of prob-
lems of hydrogen diffusion in metals ahead of stationary 
cracks or ahead of growing cracks, during crack growth ini-
tiation. In both cases the finite deformation of the metal, due 
to crack-tip blunting, is not negligible and the use of finite 
displacement gradient theory is necessary. Therefore the 
present description of diffusion is essential for dealing with 
problems of hydrogen embrittlement in metals. 

 On the deformed configuration, hydrogen flux, jH , de-
pends on the gradient of hydrogen chemical potential in the 
solid solution, µH , as well as on the gradient of temperature, 
T, according to the well-known relation [9]: 

j
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= !
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H
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H
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+
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H

T
"T

#
$%

&
'(

   (6) 

where DH  and QH  are the diffusion coefficient and the heat 
of transport of hydrogen in the solid solution, respectively. 
c
H  is the concentration of hydrogen in the deformed con-

figuration. Also R is the gas constant. The gradients are 
taken with respect to spatial coordinates. The chemical po-
tential of hydrogen in solid solution depends on stress [10]; 
one shows that, under finite deformation of the solid solu-
tion, the chemical potential satisfies the following relation: 

µH
= µH ,0

! tr "( )
V

H

3
     (7a) 

or equivalently: 

µH
= µH ,0

! F
!1
tr F "S "F

T( )
V

H

3
   (7b) 

 V
H  is the molal volume of hydrogen in the solid solu-

tion; µH ,0  is the stress-free chemical potential, for the same 
hydrogen concentration in the reference configuration as that 
under stress. σ  is Cauchy stress, defined on the deformed 
configuration. S is the second Piola-Kirchhoff stress, defined 
on the reference configuration. tr denotes the trace of a ten-
sor. 

 Based on (6), (3a) and (3b), one derives the flux of hy-
drogen in the reference configuration: 
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where CH  is the concentration of hydrogen in the reference 
configuration. Also the gradients are taken with respect to 
material coordinates. 

 Relations (2), (7b) and (8), on the reference configura-
tion, or their equivalent, on the deformed configuration, (5), 
(6) and (7a), describe hydrogen diffusion in a metal under 
finite deformation, when hydrogen is in solid solution. If 
hydride precipitation occurs, modification of hydrogen flux 
is required, e.g. as the one, which was adopted by Varias and 
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Massih [2]. However, one should also take into account that 
hydride volume fraction in the deformed configuration is 
different from that in the reference configuration. 

CONCLUSIONS 

 The mass conservation of a substance diffusing in a solid, 
which undergoes finite deformation, is derived. Both La-
grangian and Eulerian descriptions are discussed. The pre-
sent development is complementary to the well-known theo-
ries on elasto-plastic finite deformation of ductile solids for 
the simulation of coupled diffusion-deformation problems. It 
is also directly applicable to the simulation of hydrogen-
induced embrittlement in several metals and corrects mathe-
matical inconsistencies of previous studies. 

APPENDIX 

 In the following, two additional independent proofs of 
relation (5) are derived. 

 Consider a control surface, S, in the deformed configura-
tion, which bounds a volume V of the solid. The conserva-
tion of the mass of the diffusing substance requires that any 
variation of the amount of the diffusing substance within the 
solid, instantaneously of volume V, is due to the flow of the 
diffusing substance through the bounding surface, S: 

d

dt
c dV + j !n dS

S

" = 0

V

"     (9) 

 n is the outward unit vector, normal to the control sur-
face. According to Reynolds transport theorem, the rate of 
increase of the amount of the diffusing substance inside the 
control surface, S, is equal to the rate of increase of the 
amount of the diffusing substance, possessed by the solid 
instantaneously inside the volume V, minus the outward flux 
of the substance, carried by solid mass transport through the 
surface, S: 

!c

!t
V

"  dV =
d

dt
cdV

V

" # cv $n dS

S

"    (10) 

 Combination of (9) and (10) leads to: 

!c

!t
V

"  dV + j + cv( ) #n dS

S

" = 0    (11) 

 The differential form is derived, by applying the diver-
gence theorem in (11) and by considering that the above re-
lation is valid for an arbitrary volume V: 

!c

!t
+" # j +" # cv( ) = 0     (12) 

 Taking into account the definition of material time de-
rivative, one derives from (12) an equivalent expression for 
the conservation of the diffusing mass, which is identical to 
(5). The above proof was previously presented by the author 
in a Malmö University Report [8]. 

 Another proof of relation (5) is the following: 
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 !  is the density of the solid. Relation (13) is valid for an 
arbitrary volume and therefore: 

!
d

dt

c

!
"
#$

%
&'
+( ) j = 0     (14) 

 Manipulation of (14) and consideration of continuity 
equation d! dt + !" #v = 0( )  leads to relation (5). 
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