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Abstract: The problem of high-frequency acoustic emission generated by a spherical hot liquid drop in a cool ambient 

liquid (water) is considered analytically. It is assumed that the acoustic emission is generated by the motion of the vapor  

cold liquid interface, which is described by the Rayleigh equation for a spherical bubble. It is also assumed that the linear 

relationship between the saturated pressure and the temperature is governed by the Clapeyron-Clausius law, that heat 

transfer from the hot liquid drop to the vapor film and the liquid takes place by a radiation, and that heat transfer from the 

water-vapor interface to the ambient liquid takes place by conduction. Solution of the equation obtained gives an ap-

proximate radius time relationship that allows us to evaluate the kinetic enthalpy and acoustic pressure in a far field. It is 

shown that, in the first approximation, the spectral density of the acoustic energy emitted by such a phenomenon varies as 

the minus 2.7 power of the frequency and decreases by approximately 8.1 decibels per octave with a rise in frequency. 

1. INTRODUCTION 

 The study of acoustic emission during the growth and 
collapse of vapor bubbles is associated with acoustic tech-
niques used to detect the start of boiling. Both experimental 
and theoretical results may be useful for the detection of 
acoustic noises in high-voltage power supplies and micro-
wave power tubes for ground and airborne radar transmitters 
that are thermally controlled by immersion into a dielectric 
coolant. Acoustic methods may also be useful for monitoring 
closed thermohydraulic loops and other pressurized systems, 
such as reactors in which sonic and ultrasonic noises are 
generated. The Argonne National Laboratory conducted re-
search and development of acoustic surveillance of reactor 
and power plants to develop an understanding of the sources 
of unusual sound, and a performance analysis was conducted 
to show that a combined acoustic neutronic system was fea-
sible and that such a system would provide a rapid means of 
reactor shutdown [1, 2]. Acoustic emission induced by boil-
ing and cavitating bubbles in ideal and viscous liquids had 
been studied by a number of authors [3-8]. Theoretical and 
experimental investigations show that the maximum spectral 
intensity for isothermal conditions is observed at a natural 
frequency corresponding to the stage of the Rayleigh bubble 
growth or collapse. The spectral density of the acoustic en-
ergy varies as S ~ 4 at low frequencies; as S ~ -2/5 for in-
compressible inviscid liquids [9], and as S ~ -7/3 for com-
pressible viscous liquids [10], at high frequencies. A com-
prehensive survey of boiling noises in reactors and thermal 
hydraulic loops has been accomplished by Scarton et al. 
[11], As long ago as the middle of the last century, Plesset 
and Zwick [12] considered the problem of vapor bubble ex-
pansion in a superheated liquid and obtained the dependen-
cies of the radius of the vapor bubble on time for different 
values of water superheating. It should be noted that if the 
pressure is known, it is possible to determine the acoustic 
characteristics of the sources of the perturbations. 
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 When a hot liquid droplet falls into a cool liquid, a vapor 
film is generated between the hot and cold liquids. The heat 
flux entering in the system is spent for evaporation and vapor 
and liquid heating. Among this process the main part of the 
energy is spent for evaporation because the latent heat 
evaporation is very high for water (energy needed for heating 
up 1 mole of water on 500K is equal to 3765 J while energy 
needed to evaporate that 1 mole of water is equal to 40683 J 
which is more than an order of magnitude higher). It may be 
assumed that sound radiation will be induced by an initial 
pressure pulse that is brought about by motion of water-
vapor interface. 

 The present study was undertaken to evaluate the high-
frequency part of the acoustic noise spectrum generated by a 
hot molten metal drop in cool water, a phenomenon that 
could hypothetically occur during melt-down of an active 
zone in a nuclear reactor. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic model.  

2. PROBLEM STATEMENT 

 It is assumed that the hot liquid drop is a sphere of radius 
R0 surrounded by a vapor film of thickness l (Fig. 1). In real-
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ity, the molten metal drop becomes ellipsoidal [13], but at 
the initial stages of the process under consideration, these 
deformations are neglected. Similarly, an influence of buoy-
ancy forces is also neglected. The motion of the spherical 
vapor – cold liquid interface is described by the Rayleigh 
equation:  
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where r is the interface radius, ps is the vapor pressure, p  is 

the pressure at infinity, L is the mass density of the cold 

liquid, and t is time. It is assumed that surface tension does 

not play a significant role in the process, i.e., that the drop is 

sufficiently large. The capillary pressure can be neglected 

provided that p << g , where is the scale of motion 

and  is the surface tension, i.e., if the scale of motion is 

large in comparison with the capillary constant 
g

 

 

  

 

 

1/ 2
, the 

surface forces do not affect the motion. This will hold true if 

the droplet diameter exceeds 1-2 mm (   60 dyne/cm at ~ 

100˚C). The right-hand side of equation (1) can be approxi-

mately represented by the Clapeyron-Clausius law (which 

holds true when vapor superheating is not very large) 

dp

dT
=

L

T  v 0 v0( )
,            (2) 

where T is the temperature, L is the latent heat of evapora-
tion, v’0 and v0 are the specific volumes of vapor and water 
(whose dependencies on temperature and pressure are ne-
glected), in the form: 

ps p

L

A T T0( ) .            (3) 

 In expression (3), T0 is the boiling temperature at the 
pressure p , and 

A =
L

T0 L  v 0 v0( )
 . 

 Thus, the problem under consideration is reduced to the 
solution of equation (1) with initial conditions 

 
r = R0 , r = r = 0  at t = 0, where a dot above a letter denotes 
differentiation with respect to time, and R0 is the radius of 
the hot drop.  

3. MOTION OF VAPOR FILM – WATER INTERFACE 

 It is assumed that the main contribution to the heat flux 
from the hot drop to the vapor film and ambient water is a 
result of radiation. The quantity of the heat entering the sys-
tem is  

Q = 4 R0
2kr SBT1

4

            (4) 

where kr is the radiation coefficient, SB is the Stephan-
Boltzmann constant, and T1 is the initial temperature of the 
hot drop. A part of this heat flux goes to water evaporation 
and heating vapor and water, but, by reasons noted in Intro-
duction, the convective and conductive losses are neglected 
in comparison with vaporization, although, in principle, they 
can be taken into account. The mass of vapor (per second) is  

 

where = 1 / v0  is vapor density, l is the vapor film thick-
ness , and the quantity of heat going for evaporation is 
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 The heat transfer from the vapor film to the ambient cool 
liquid is given by: 

 
Q2 = 4 R0 + l( )
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where k is the thermal conductivity coefficient. From equa-
tions (4), (5) and (6), it follows that 
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 Substituting equation (3) into equation (1), then  

differentiating (1) with respect to time 
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equation (7), we get 
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By denoting  

A

k
R0
2kr SBT1

4
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3L / v0( ) = F and
A

k
R0
2L / v0 = G  

the following equation is obtained: 
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 If equation (9) is multiplied by r3, it will be an equation 
in full differentials. Integration gives: 
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where  
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 If equation (10) is multiplied by  2rr
4
, then the first or-

der equation is obtained: 
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 From equation (12), it follows that 
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 This integral can not be expressed in elementary func-

tions but it can be simplified taking into account that second 

and third terms in the radicand are much smaller than first 

and can be neglected. Then, t
1

F
r1/2dr , and integration 

of this equation leads to  
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r3/2 =

3 F

2
t
,          

(14)
 

where integration constant is included into t. The radius–

time relationship is given by 

r = 3 / 2( )
2 /3

F3 t 2 /3 = t 2 /3
,         

(15)
 

where 

= 3 / 2( )
2 /3

F3
          

(16)
 

is introduced for the sake of brevity. For purposes of com-
parison, it should be noted that a radius of the vapor bubble 
in a superheated liquid according to Plesset and Zwick [12], 
increases proportionally to t1/2. 

4. ACOUSTIC PRESSURE 

 As follows from the continuity equation 

[
t
+ div u( )= 0 ], the liquid compressibility need not be 

taken into account, if / t << divu , i.e., 

 
/ << u /  or 

 
/ << u / , where 

 
and  are 

the time and the distance scales, respectively. The condition 

permitting the liquid to be considered as incompressible is 

 
/ c << 1 or / c <<  , where c  is the adiabatic 

sound velocity in undisturbed liquid. The physical meaning 

of this condition is that the time 
 
/ c  during which a sound 

wave propagates through the distance   must be small in 

comparison with the time during which the liquid velocity 

changes significantly. Therefore, when the condition 

 
/ c <<  holds, perturbations in the vicinity of the expand-

ing cavity can be considered as propagating instantaneously, 

and the liquid may be treated as an incompressible medium. 

At large distances, where the condition 
 
/ c <<  is un-

doubtedly invalid, the liquid compressibility has to be taken 

into account. Hence, liquid compressibility may be disre-

garded in the vicinity of an expanding sphere but must be 

taken into account for calculation of the sound radiation. For 

calculation velocities and pressure, the Kirkwood and Bethe 

hypothesis described by Cole [14], and Gilmore [15], can be 

used. It bases on an assumption that a function r h +
u2

2
, 

where h p( ) =
dp

p

p

 is the enthalpy and u is the radial velocity, 

propagates in liquid with the velocity that equals to the sum 

of the local sound velocity and the liquid particle velocity (in 

the case of spherical symmetry). Mathematically, it is written 

as 

 
t
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 In spherical coordinates, the Navier-Stokes equation can 

be written in the form (the term representing the product of 

kinematic viscosity on grad
1 d

dt
 is neglected as a sec-

ond order infinitesimal): 
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 On the basis of equalities c2 =
p

 and dh =
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 , the 

continuity equation can be written as  
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 For convenience, equation (17) is written through a full 

derivative 
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 Carrying out term-by-term differentiation gives  
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 Derivatives with respect to coordinate can be excluded 

with a help of equations (18) and (19) that leads to complete 

equation for cavity dynamics in a spherical case obtained by 

Gilmore [15], and presented also in the monograph by 

Naugol’nykh and Roi [16]: 

du

dt
1

u

c
 

 

 

 
+
3

2

u2

r
1

u

3c
 

 

 

 
= 1 +

u

c
 

 

 

 

h

r
+
1

c
1

u

c
 

 

 

 

dh

dt
,      (22) 

where u is the radial velocity of the cavity or bubble wall, c 

is the local sound velocity This equation can be simplified if 

we take into account that the value of the hydrodynamic ve-

locity u remains small in comparison with the local sound 

speed (Mach numbers M << 1). Then, the values u/c can be 

neglected in comparison with 1, and c can be replaced by c  . 

Equation (22) may then be rewritten as: 
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where 
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according to the Tait equation of state L
 

 

 
 

 

 

n

=
p + B

p + B
 (Vo-

gel et al. [17]), where n = 7 and B  300 MPa as a good ap-

proximation for water. It is clear that perturbations will 

propagate with the velocity c  and wave form will not be 

changed, therefore, shock wave does not develop.  

 Equation (23) provides the possibility of determining the 

enthalpy if the law of cavity expansion is known. Substitut-

ing equation (16) and its derivatives (

 

r =
2

3
2/3t 1/3 , 

˙ ̇ r =
2

9
2 /3t 4 /3 ) into equation (23) gives a linear first-order 

equation for the enthalpy: 
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 h + t 2/ 3h t 2 /3
= 0 ,        (25) 

where = c 2/ 3
and =

4
9

4 /3  ; and the initial con-

dition is h = 0 at t = 0. The solution of equation (25) is 

h = exp 3 t1/3( ) y 2 /3 exp 3 y1/ 3( )
0

t

dy =
4 2

9c
1 e 3 t1 / 3( )

,

            (26) 

where y is the integration variable. As follows from equation 

(24), the “reduced” pressure is given by  

p =
p + B

p + B
=

n 1( )h

c2
+1

 

  

 

  

n

n 1
,        (27) 

and, neglecting p  in comparison with B (the pressure in nu-

clear reactors does not exceed 10 MPa), the acoustic pres-

sure, in the first approximation, may be represented as:  

 p
nB

c2
h ,          (28) 

and, therefore, 

p
4
9
nB 2

c3
1 e 3 t 1/ 3( ) ,         (29) 

that holds true for the initial stages of bubble expansion. 

5. SPECTRAL DENSITY OF RADIATED NOISE 

 The Fourier transform of an aperiodic function is  

p t( ) = L i( )ei tdt ,         (30) 

where L i( ) =
1

2
p t( )e i t dt  is the complex function of the 

frequency,  . Taking into account that p(t) = 0 at -  < t < 0 , 

we may write the function L(i ) as: 

L i( ) =
2

9

nB 2

c3
1 e 3 t1/ 3( )

0

e i tdt         (31) 

 If the exponent in the integrand is expanded into a series 

and only the two first terms are retained, then the following 

integral is obtained: 

L i( )
8

27

nB 10 /3

c3
t1/3e i tdt

0

.        (32) 

 Since this integral diverges, the integral 

= t1/ 3e t i tdt
0

 has to be calculated, and then, in the 

result, it must be supposed that 0 . According to for-

mula 3.351.5 from Gradshteyn and Ryzhik, [18], this integral 

is  
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2
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exp i
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3
arctan ,       (33) 

where  (4/3)  0.893 is a gamma function, and when 

0 ,  

 
=

4

3

4 /3 exp i
2

3
        (34) 

 The modulus of L gives the amplitude harmonic compo-

nents of the pressure impulse distribution. The spectral den-

sity of the acoustic energy is given by the modulus square of 

L, S( ) = L i( )
2
; therefore, with an accuracy up to a nu-

merical multiplier, the spectral density is obtained in the 

form: 

S( ) ~ --8/3            (35) 

6. CONCLUDING REMARKS 

 In this study, the theoretical analysis of the high-

frequency part of the acoustic emission spectrum relied on a 

number of rough approximations (neglecting the liquid com-

pressibility, buoyancy and capillary forces, deviations from 

spherical form, and heat losses) that certainly limit its appli-

cability. However, the analytical result does allow the as-

ymptotic behavior of this spectrum to be evaluated, and this 

could be useful for comparison with experimental data. Ac-

cording to Howe [19], the acoustic pressure at large dis-

tances from a spherically expanding flame can be approxi-

mately estimated as p x, t( ) A1 d / dt[ ]t x / c
, where A1 is 

some function of the temperature and the radius, and  is the 

flame area at time t. In this case, the temporal dependence of 

this area on an expanding sphere radius is given by 

d / dt = 8 r ˙ r , and, if r ~ t2/ 3 , the acoustic pressure is pro-

portional to t1/3 , which is in agreement with the integrand in 

equation (32). The result obtained shows that the spectral 

density of the acoustic energy varies with the rise in fre-

quency as a minus 8/3 power of the frequency and decreases 

approximately by 10log
 
2-2.7 

= -8.1 decibels per
 
octave.

 
This 

value is substantively higher than in the case of spherical 

waves propagating in an inviscid liquid [20], We may there-

fore assume that the attenuation of ultrasonic components 

will be very fast. 
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