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Abstract: The governing equation of non-mechanical energy flow in metals, undergoing finite deformation, is presented. 

The coupling of non-mechanical energy flow, mass diffusion and metal elastic-plastic deformation is rigorously taken into 

account. The analysis is particularly useful in cases of diffusion-driven degradation mechanisms ahead of stationary 

cracks or cracks initiating growth, under temperature variations. 

INTRODUCTION  

 If an initially homogeneous single-phase iron-carbon 
alloy is held at a constant temperature gradient, carbon dif-
fuses up the temperature gradient, leading to an increase of 
carbon concentration at the hot end (e.g. [1] for 0.01% C). 
On the other hand, if a zirconium-based alloy, with an ini-
tially homogeneous distribution of hydrogen, is subjected to 
a temperature gradient, hydrogen moves towards the cold 
end (e.g. [2]). Both are thermal transport phenomena, indi-
cating the coupling of mass diffusion and heat conduction. 
There are several experimental studies of thermal transport 
of mass in metals, for example of hydrogen, deuterium and 
carbon in bcc -Fe and V, in fcc Ni, Co and Pd and in hcp Zr 
(e.g. [1], [3]).  

 Coupled processes of mass diffusion and heat conduction 
in metals have important industrial implications. In chemical 
and petro-chemical industry hydrogen-induced degradation 
processes in steel structures may occur. In the case of hydro-
gen attack, at high temperatures and hydrogen pressures, 
hydrogen diffuses in steel and reacts with carbides forming 
methane. Due to its large molecule size, methane is trapped 
and forms voids, which grow and eventually lead to material 
failure. Hydrogen embrittlement of steel is another severe 
type of material degradation, which can cause failure under 
very low loads, compared to those sustained by a hydrogen-
free material. The physical process is not clear. Several 
mechanisms have been proposed: hydrogen enhanced deco-
hesion, hydrogen enhanced localized plasticity, adsorption-
induced localized slip and hydrogen pressurization. How-
ever, an important and undisputed part of the physical proc-
ess involves the diffusion of hydrogen towards the site of 
material degradation. Similar phenomena of hydrogen em-
brittlement occur in other metals, such as nickel and alumi-
num. In hydride forming metals, such as niobium, vanadium 
and zirconium, the embrittlement mechanism has been well 
understood. In this case, the degradation of the material is 
caused by the brittle hydrides, which precipitate in places, 
where the concentration of hydrogen is sufficiently high. 
Again an important part of the degradation process involves 
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the diffusion of hydrogen towards the sites of hydride forma-
tion. 

 Precise mathematical models [3-5] for the simulation of 
hydride-induced embrittlement and fracture in metals have 
been developed in recent years. These models take into ac-
count the coupling of the operating physical processes, 
namely: (i) hydrogen diffusion, (ii) hydride precipitation, 
(iii) non-mechanical energy flow (i.e. flow of heat and en-
ergy carried by the diffusing mass) and (iv) hydride/solid-
solution deformation. These models are general and there-
fore they are applicable to other degradation phenomena, 
which involve mass diffusion and heat conduction. They are 
based on infinitesimal displacement gradient theory. In the 
case of steady-state crack growth, the deformation of the 
material is adequately described by infinitesimal displace-
ment gradient theory [6] (see also [7] and referenced publica-
tions). However, in the case of stationary cracks or during 
initial crack growth, infinitesimal displacement gradient the-
ory is sufficient only outside the region of crack tip blunting. 
Thus, these models can be further improved by considering 
metal finite deformation near the blunted crack tip.  

 A limited number of simulations of hydrogen embrittle-
ment in metals, under finite deformation, have been per-
formed, which take into account the coupling of hydrogen 
diffusion, elastic-plastic material deformation (e.g. [8-10]) 
and hydride precipitation (e.g. [11-12]). Non-mechanical 
energy flow is not considered in these simulations. However, 
the models, which are used in the above-mentioned simula-
tions, need to be modified in order to employ the correct 
form of the governing equation of mass diffusion under fi-
nite deformation, derived in [7].  

 In the present study, the governing equations for the cou-
pled processes of mass diffusion and non-mechanical energy 
flow in a metal under finite deformation are discussed. 
Therefore the present letter provides the information, which 
is required for investigating mass diffusion and non-
mechanical energy flow near a blunted crack tip. Thus the 
improvement of the existing mathematical models for the 
simulation of coupled mass-diffusion / heat-conduction deg-
radation processes is facilitated. 

 In the following, tensor notation is used throughout. 

Bold-faced symbols are used to denote vectors and second-
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order tensors. Products are indicated with dots and products 

containing no dots are dyadic products. Latin indices range 

from one to three and repeated Latin indices are always 

summed. Inverses, transposes and transposed inverses are 

denoted with a superscripted –1, T and –T, respectively. For 

example: 

A B = AikBkjbib j  , 

A :B = AijBji  , 

cd = cid jbib j  , 

c d = cidi  , 

B c = Bikckbi  . 

 The base vectors, bi , are Cartesian and independent of 

time, t.  

GOVERNING EQUATIONS OF MASS DIFFUSION 

AND NON-MECHANICAL ENERGY FLOW  

 The body of a metallic solid is subjected to externally 

applied loads and undergoes elastic-plastic finite deforma-

tion, described by the deformation gradient F = x X( ) ; x 

is the position of a solid particle in the deformed configura-

tion at time t (spatial coordinates) and X is its position in a 

reference (non-deformed) configuration (material coordi-

nates). The rate of deformation, D , is given by the following 

well-known relation: 

D = sym
dF
dt

F 1
 ,            (1) 

where sym  denotes the symmetric part of a tensor. The 

deformation gradient is decomposed into elastic and plastic 

parts [13]: 

F = x / X = F* F p
 .           (2) 

 F p
 is the deformation gradient due solely to the plastic 

flow. F*  is the remaining contribution to F , associated with 

the elastic distortion, any rigid rotation and any stress-free 

expansion of the material. The configuration, which is ob-

tained by applying the mapping F p
 to the reference configu-

ration, is the intermediate configuration. The multiplicative 

decomposition of the deformation gradient, described by (2), 

has been used successfully in several applications. For ex-

ample, it has been used in applications of crystal plasticity 

[14], elastic-plastic fracture mechanics [15] and dynamic 

plastic flow [16]. The multiplicative decomposition is the 

natural composition law for successive finite motions and 

contains all the necessary information for the measurement 

of plastic strains and the computation of anelastic power. 

The interested reader is also referred to the discussion, by 

Maugin [17], on the decomposition of finite strains, existing 

models, and the advantages of multiplicative decomposition.  

 

 

 The elastic response of the solid is described on the in-

termediate configuration (e.g. [18]), where the Lagrangian 

strain, E* , and the second Piola-Kirchhoff stress, S* , are 

defined as follows: 

E* = (1 / 2) F*T F* I( )  ,        (3a) 

S* = F* 1 F* T
 .         (3b) 

= F  is Kirchhoff stress, F  is the determinant of the 

deformation gradient and  is Cauchy stress. Cauchy stress 

is defined on the deformed, by F , configuration. Also I  is 

the second order identity tensor. 

 The solid contains a diffusing substance, which has a 

concentration (e.g. number of moles per unit volume) in the 

deformed configuration given by cM ; the superscript M  is 

used to denote the diffusing substance. The dissolution of the 

substance in the solid generally causes a stress-free expan-

sion, contributing to F* . The conservation of the mass of the 

diffusing substance is given by the following relation, origi-

nally derived by the author in the case of a solid, undergoing 

finite deformation [7]: 

dcM

dt
+ cM v + jM = 0  .          (4)  

d / dt  is material time derivative, taken at a specified solid 

particle in the reference configuration. Material time deriva-

tive, on the deformed configuration, satisfies the relation: 

d dt = t + v , where t = t( )x  is the partial 

time derivative, related to a point in space and not to a solid 

particle in the reference configuration, and = bk xk . v 

is the velocity of a solid particle. jM  is the flux of the diffus-

ing substance, which in the case of thermal transport takes 

the following form (e.g. [1]):  

jM =
DMcM

RT
μM

+
QM

T
T  .         (5) 

 T is the absolute temperature and R is the gas constant. 

DM
, QM  and μM  are the diffusion coefficient, the heat of 

transport and the chemical potential of the diffusing sub-

stance, respectively. One may show that QM  is related to the 

heat flux per unit mass flux of the diffusing substance in the 

absence of temperature gradient. QM  depends on the solid 

and the diffusing substance, according to experimental 

measurements [1]. Relations (4) and (5) are valid in the de-

formed configuration. The respective relations in the refer-

ence configuration are given in [7]. 

 Along parts of the boundary of the deforming solid, non-

uniform temperature and/or heat flux is applied, causing heat 

flow within the solid. The governing equation of non-

mechanical energy flow, in the deformed configuration, 

takes the form: 
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cp
dT

dt
= :D

0

S* :
dE*

dt
+  

0

T
E*

T
:
dS*

dt
jM μM + k T( )  .        (6) 

 and 0  are the density of the solid in the deformed and 

reference configurations, respectively. cp  and k are the spe-

cific heat, at constant pressure, and the thermal conductivity 

of the solid, respectively. The term in parenthesis provides 

the heat generated by plastic deformation. The last term on 

the right corresponds to conducted heat, while the third term 

on the right corresponds to heat generated by diffusion. Fi-

nally the remaining term on the right is due to thermoelastic 

coupling. Therefore the variation of the heat content in the 

solid depends on conducted heat, on heat generated due to 

plastic deformation and mass diffusion and on thermoelastic 

coupling. Relation (6) clearly shows the coupling of non-

mechanical energy flow, mass diffusion and elastic and plas-

tic material deformation. If phase transformation occurs, a 

term, which corresponds to the change of entropy due to the 

phase transformation, must be added. Also phase transforma-

tion is generally associated with a stress-free expansion, 

which contributes to F* . This is the case of non-mechanical 

energy flow and hydrogen diffusion in hydride forming met-

als, when hydrides precipitate. Relation (6) can be used in 

hydrogen thermal transport problems of non-hydride forming 

metals, such as iron, nickel and aluminum. Relation (6) is 

also valid, without any modification, in hydride forming 

metals, such as niobium, vanadium, titanium, and zirconium, 

when hydride phase is not present. 

 The equivalent governing equation of non-mechanical 

energy flow in the reference configuration is the following: 

0cp
dT

dt
= S :

dE
dt

S* :
dE*

dt
+  

T
E*

T
:
dS*

dt
JM Xμ

M
+  

+ F X k XT( ) : F 1 F T( ) .          (7) 

 X = bk Xk  is the gradient operator, defined on the 

reference configuration and calculated with respect to mate-

rial coordinates. E  and S  are the total Lagrangian strain 

and the second Piola-Kirchhoff stress, respectively, both 

defined on the reference configuration, according to the well-

known relations: E = (1 / 2) FT F I( ) , S = F 1 F T
. 

JM  is the flux of the diffusing substance, defined on the 

reference configuration; JM  is related to the flux in the de-

formed configuration, as follows: 

JM = F F 1 jM  .           (8) 

 Relations (4-6) provide the governing equations, on the 

deformed configuration, of mass diffusion and non-

mechanical energy flow in a metal under finite elastic-plastic 

deformation. Relations (6) and (7) are original. These rela-

tions are expected to contribute to the improvement of exist-

ing models (e.g. [5]), for the simulation of coupled mass-

diffusion and non-mechanical energy flow, in areas where 

finite deformation is important. The derivation of relation (6) 

is discussed next. 

DERIVATION OF NON-MECHANICAL ENERGY 

FLOW EQUATION  

 A caloric equation of state is assumed to exist, according 

to which, the local internal energy per unit mass of the solid, 

u , is determined by the thermodynamic state. The thermo-

dynamic state is specified by the specific entropy, s , the 

thermodynamic substate variables, ei , which are related to 

solid deformation, and the amount of the diffusing substance 

(moles) per unit solid mass, M  (e.g. [19]): 

u = u s,ei ,
M( )  .            (9) 

 M
= cM / . The substate variables, ei , are conjugate 

to thermodynamic tensions, i . It is reminded that tempera-

ture, T, thermodynamic tensions, i , and the chemical poten-

tial of the diffusing substance, μM , are defined as follows: 

T = u s , i = u ei , μM
= u M . Then: 

du

dt
= T

ds

dt
+ i

dei
dt

+ μM d
M

dt
.       (10) 

 According to the energy equation for the deforming solid 

(e.g. [19]): 

du

dt
= :D jE  .         (11) 

jE  is the flux of non-mechanical energy, which includes 

both the flux of heat as well as the flux of energy, carried by 

the diffusing substance. jE  is derived in the following, based 

on thermodynamics of irreversible processes [20]. 

 Denbigh [20] presents a detailed discussion for the ther-

modynamic treatment of energy-flow/diffusion as well as of 

other coupled phenomena. His treatise for irreversible proc-

esses is based on Onsager’s principle of microscopic reversi-

bility. According to the empirical law of Fourier, heat flux is 

linearly related to the temperature gradient, which is the 

thermodynamic force, driving heat flow. In the case of diffu-

sion in an isothermal system, the flux of a diffusing sub-

stance is proportional to the gradient of its chemical poten-

tial. Then, chemical potential gradient is the thermodynamic 

force driving diffusion under isothermal conditions. When 

the processes operate simultaneously, the coupling is taken 

into account by assuming that the non-mechanical energy 

and diffusing substance fluxes are linearly related to both 

thermodynamic forces: 
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jE = LE E
+ LEM M

 ,       (12a) 

jM = LME E
+ LM M

 ,       (12b) 

LEM = LME  .        (12c) 

E
 and 

M
 are the thermodynamic forces driving non-

mechanical energy flow and mass diffusion, respectively. 

LE , LM , LEM  and LME  are phenomenological coefficients. 

Relation (12c) is valid due to Onsager’s reciprocity relation. 

The thermodynamic forces, when multiplied by the respec-

tive fluxes, produce the rate of internal generation of entropy 

per unit volume, , which is caused by mass diffusion and 

non-mechanical energy flow [20]: 

T = jE E
+ jM M

.         (13) 

 In order to derive jE , the thermodynamic forces and the 

phenomenological coefficients need to be calculated. The 

thermodynamic forces, 
E

 and 
M

, are calculated first. 

 Substitutions of the energy equation, (11), and the equa-

tion of mass conservation of the diffusing substance, (4), into 

(10) lead to the following relation: 

ds

dt
+

jE μM jM

T
=
1

T
:D i

dei
dt

+  

+
1

T

jE

T
T TjM

μM

T
 .        (14) 

 Let one define: 

1 =
1

T
:D i

dei
dt

 ,      (15a) 

2 =
1

T

jE

T
T TjM

μM

T
 ,      (15b) 

s =
jE μM jM

T
 ,       (15c) 

 Then by integrating (14) over the volume of the solid, 

which in the deformed configuration is V bounded by the 

surface S, one derives: 

d

dt
sdV

V

+ s n
S

dS = 1 + 2( )dV
V

 .      (16) 

 The first term in (16) is the rate of entropy of the speci-

fied volume. The second term in (16) is the rate of entropy, 

flowing out of the volume V, due to heat flux on the bound-

ary. The right-hand side term in (16) is the rate of the inter-

nal generation of entropy. Consequently the integrand of the 

right-hand side term is equal to the rate of internal generation 

of entropy per unit volume, , also given by (13). Therefore 

combination of (15a), (15b) and (13) yields the thermody-

namic forces 
E

 and 
M

: 

E
=

1

T
T  ,        (17a) 

M
= T

μM

T
 .        (17b) 

 Relations (17a) and (17b) are identical to relations (2.2a) 

and (2.2b), which were derived by the author in the case of 

hydrogen diffusion and heat conduction in metals, under 

infinitesimal displacement gradient deformation [5] (see also 

relations (2.13a) and (2.13b) in [4]). 

 The derivation of jE  is completed, when the phenome-

nological coefficients LE  and LEM  are calculated. For this 

purpose one considers relation (5) for the flux of a diffusing 

mass in the case of thermal transport. When (5) is compared 

with (12b), the coefficients LM and LEM  are derived: 

LM =
DMcM

RT
 ,         (18a) 

LEM =
DMcM μM +QM( )

RT
 .      (18b) 

 The last unknown coefficient, LE , is calculated by con-

sidering the case of heat conduction, under no mass diffu-

sion: 

jE = k T  .          (19) 

 In this case, in which the flux of the diffusing substance 

is zero, the following relation is also valid, according to (5): 

μM
=

QM

T
T  .         (20) 

 Manipulation of (12a), by using (17a), (17b), (18b), (19) 

and (20), leads to the expression of LE : 

LE = kT +
DMcM μM +QM( )

2

RT
 .       (21) 

 By substituting (21) and (18b) into (12a) one derives the 

general relation of non-mechanical energy flux, when heat 

conduction and mass diffusion operate simultaneously: 

jE = μM +QM( ) jM k T  .        (22) 

 The term QM jM  is the heat flux caused by diffusion, 

while k T  is the heat flux, due to heat conduction in the 

solid. The term μM jM  is the flux of the energy of the diffus-

ing substance. Thus the use of the term of non-mechanical 

energy flux, instead of heat flux, for jE , is explained. It is 

emphasized that relation (22), which is valid in the deformed 

configuration, is identical to the respective relation for hy-

drogen diffusion and heat conduction in a metal, under in-

finitesimal displacement gradient deformation, when the 

quantities are interpreted appropriately (see [4], [5]). Note 



On the Coupling of Mass Diffusion and Non-Mechanical Energy Flow The Open Mechanics Journal, 2008, Volume 2    61 

that, according to (22), in the absence of temperature gradi-

ent, the heat flux per unit mass flux of the diffusing sub-

stance, jE μM jM jM , is equal to the absolute value of 

the heat of transport, QM . 

 One may choose the components of the Lagrangian strain 

E*  as the substate variables ei , in which case the conjugate 

thermodynamic tensions, i , are given by the components of 

S* 0 . Then, by taking also into account (22), (14) leads to 

the following relation:  

T
ds

dt
= :D

0

S* :
dE*

dt
+  

+ k T( ) QM jM jM μM
 .       (23) 

 It is reminded that temperature, T , and thermodynamic 

tensions, i , are functions of the thermodynamic state, i.e. 

T = T s,ei ,
M( )  and j = j s,ei ,

M( ) . The assumption of 

invertibility of the functions of temperature and thermody-

namic tensions leads to s = s T , i ,
M( ) = s T ,S*, M( )  and 

therefore:  

ds

dt
=

s

T

dT

dt
+

s

S*
:
dS*

dt
+

s
M

d M

dt
=  

=
c
S*

T

dT

dt
+

1

0

E*

T
:
dS*

dt

QM

T
jM .       (24)  

c
S*

 is the is the specific heat of the solid at constant thermo-

dynamic tensions. c
S*

 is assumed equal to the specific heat 

of the solid at constant pressure, cp . In deriving (24) it was 

taken into account that the variation of entropy with respect 

to the concentration of the diffusing substance is equal to the 

ratio of the heat of transport of the diffusing substance over 

temperature: 

s
M =

QM

T
 ,          (25) 

as well as that d M dt = 1( ) jM . Finally, by substi-

tuting (24) into (23), one derives the governing equation of 

non-mechanical energy flow (6). 

CONCLUSIONS 

 The governing equation of the flow of non-mechanical 
energy, which includes conducted heat and energy trans-
ported by mass diffusion, is derived in the case of a metallic 

solid under finite deformation. The coupling of non-
mechanical energy flow, mass diffusion and elastic-plastic 
solid deformation is rigorously taken into account. Accord-
ing to the analysis, the variation of the heat content of the 
solid depends on conducted heat, on heat generated due to 
plastic deformation and mass diffusion and on thermoelastic 
coupling. Both forms of the governing equation on the refer-
ence (non-deformed) and the deformed configurations are 
given. Besides its general validity, the present derivation 
provides the information for further progressing existing 
mathematical models [3-5], which are based on infinitesimal 
displacement gradient theory. It is therefore expected to con-
tribute to the precise simulation of hydrogen-induced embrit-
tlement and fracture in metals, under conditions of thermal 
transport, in the area ahead of the tip of a stationary crack or 
a crack, which starts growing, i.e. in the area where the con-
sideration of finite deformation is necessary.  
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