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Abstract: We investigate the scattering of in-plane compressional (P) and shear (SV) waves by diamond shaped inclu-

sions using a boundary element method. Special case that the shape of the diamond becomes square is also considered. 

Numerical results for some diamond shapes of the inclusion are obtained, and the effects of frequency on the scattering 

cross sections are discussed in detail. The response simplifies for the limited cases of a hole and a rigid inclusion, but with 

quite different behavior for each. Calculations for a diamond shaped SiC-fiber-reinforced Al composite are also carried 

out, and the results are shown graphically. 

INTRODUCTION  

 Elasticity solutions involving the static and dynamic be-
havior of inclusions embedded in dissimilar materials have 
received a good deal of attention, partly because of the grow-
ing applications for composites. The problem of a single 
polygonal inclusion in an elastic matrix has been examined 
by several authors. Chen [1] studied the singular stress fields 
created by an antiplane deformation at a diamond inclusion 
corner. Reedy and Guess [2] considered a rigid square inclu-
sion embedded within an elastic disk, and discussed the 
stress state generated by the inclusion. Recently, Pan and 
Jiang [3] investigated the stress singularity at vertices of 
regular polygonal inclusions with various numbers of sides, 
and revealed the effects of material orientation and corner 
angle at the vertex on the elastic singularity.  

 The evaluation of elastic waves propagating in compos-
ites is fundamental to the investigation of microstructure. 
This plays a significant role in design, development, process-
ing and in-service inspection of the composites. The scatter-
ing of elastic waves by inclusions has been studied by sev-
eral authors [4, 5].  

 In this paper, we study the effect of inclusion shape on 
the scattering of time-harmonic in-plane compressional (P) 
and shear (SV) waves by a diamond shaped inclusions. Un-
der the plane strain assumption, the solutions are obtained 
using the boundary element method. Numerical results are 
given as a function of frequency, and the effect of cross sec-
tional shape of the diamond shaped inclusion on the scatter-
ing cross sections are discussed in detail. Numerical calcula-
tions are also examined for a diamond shaped SiC-fiber-
reinforced Al composite.  
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PROBLEM STATEMENT AND SCATTERED FAR 

FIELD 

 Consider a diamond shaped inclusion inscribed into a 

circle of radius a  embedded in an infinite matrix. The Car-

tesian coordinate system (
1 2 3

x x x, , ) with origin at center of 

the circle will be used. Let μ, , ,  be the Lam é  con-

stants, mass density, Poisson’s ratio of the matrix, and 

0 0 0 0
μ, , ,  those of the inclusions. The geometry is de-

picted in Fig. (1), where  is the angle defining the orienta-

tion of inclusions,  is the corner angle,  is the surface of 

inclusions, and D  and C  are the domains outside and inside 

inclusions, respectively.  

 

 

 

 

 

 

 

 

 

 

Fig. (1). Diamond shaped inclusion and coordinate systems. 

 

 The components in the 
1

x - and 
2

x - directions of the 

displacement vector u are 
1

u  and 
2

u , while the component 

3
u  is absent because the problem is plane strain. For the 

same reason, derivatives with respect to 
3

x  are zero. The 

time factor exp( )i t , which is common to all field vari-
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ables in a steady-state regime, is omitted throughout this 

paper;  is the circular frequency and t  is the time. The 

stress equations of motion are given by 

2
0

ji j i
u

,
+ =            (1) 

where a comma followed by an index denotes partial differ-

entiation with respect to the space coordinate 
i

x , indices can 

assume the values 1 and 2 only, and 
ij

 define the compo-

nents of stress tensor. We have introduced the summation 

convention for repeated tensor indices. The stress compo-

nents are related to the displacement gradients by Hooke’s 

law 

( )ij ij k k i j j iu u uμ
, , ,

= + +           (2) 

33 k k
u

,
=             (3) 

where 
ij

 is the Kronecker delta. 

 Let us consider a plane compressional (P) wave propaga-

tion in the positive 
1

x -direction or a plane shear (SV) wave 

polarized in the 
2

x - direction and propagating in the positive 

1
x -direction. The appropriate displacement vector of the 

equation of motion can be expressed as 

0 01 1 1 2u (x) exp( )e exp( )e
p sv

i u ik x w ik x= +           (4) 

where the superscript i  stands for the incident component, x 

= x1e1 + x2e2 denotes the position vector, e1 and e2 are the 

unit base vectors in the 
1

x - and 
2

x -directions, 
0

u  and 
0

w  

are the amplitudes of the incident P and SV waves, 

p pk c= /  and 
sv sv

k c= /  are the wave numbers of the P 

and SV waves in the matrix, and 1 2{( 2 ) }
p

c μ /
= + /  and 

1 2( )
sv

c μ /
= /  are the P and SV wave speeds in the matrix. 

The complete solutions, 
i ij

u , , are given by 

i s i s

i i i ij ij ij
u u u= + , = +            (5) 

where the superscript s  denotes the scattered component 

within the matrix. In addition, the scattered field must fulfill 

the radiation condition. 

 The boundary conditions for the scattered field are shown 

as 

0
t t

i i i i
u u t t= , + =             (6) 

where the superscript t  stands for the transmitted component 

within an inclusion, 
i ji j

t n=  and t t t

i ji j
t n=  are the com-

ponents of the traction vectors t  and t
t
exerted by the inclu-

sion on the matrix and by the matrix on the inclusion, and 
j

n  

and t

j
n  are the components of the unit outward normal vec-

tors n  from D  and n
t
 from C , respectively. The boundary 

integral equation for the matrix is 

(x) (x) (x y) (y) (y)ij j ij jc u U t d= ,  

(x y) (y) (y) (x)i

ij j iT u d u, +            (7) 

where 
1 1 2 2

x e ex x= +  and 
1 1 2 2y e ey y= +  are the field and 

source points, respectively, and the coefficients of 
ij

c  de-

pend on the local geometry of  at x . (x y)
ij

U ,  and 

(x y)
ij

T ,  are the fundamental solutions for displacement and 

traction, and are given in Appendix A. The boundary integral 

equation for the inclusion is  

(x) (x) (x y) (y) (y)t t t t

ij j ij jc u U t d= ,  

(x y) (y) (y)t t

ij jT u d,             (8) 

where the coefficients of 
t

ij
c  depend on the local geometry 

of  at x , t

ij
U  and t

ij
T  are also defined by Eqs. (A.1) and 

(A.2), but with the P and SV wave speeds 
1 2

0 0 0{( 2 ) }t

p
c μ /

= + /  and 1 2

0 0( )t

sv
c μ /

= /  of the inclu-

sion, and the unit outward normal vector n
t
.  

 Equations (7) and (8) can be written for each node. After 

the discretization of the boundary into quadratic elements, 

we write Eq. (7) for the matrix as 

Hu Gt u
i

= + ,              (9) 

where the matrices H  and G  contain the integrals of the 

traction and displacement kernels, respectively, and u
i  is the 

incident wave which impinges on the inclusion. For the in-

clusion, the boundary integral equation (8) becomes 

H u G t
t t t t

= .            (10) 

 Taking the inverse of the matrix ( )t
G G  in Eq. (9) (in Eq. 

(10)) and operating with the inverse matrix on both sides of 

Eq. (9) (of Eq. (10)), we obtain 

Ku t f
i

= + ,           (11) 

K u t
t t t

= ,            (12) 

where 

1
K G H= ,           (13) 

1K (G ) Ht t t
= ,           (14) 

1
f G u

i i
= .            (15) 

Addition of Eqs. (11) and (12) yields with the help of the 

equation for the boundary condition (6) that  

(K K )u ft i
+ = .           (16) 

From this equation, we can compute the displacements on 

the surface of the inclusion.  

 For x| |   , the scattered fields can be represented 

by  
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      (17) 

where  is the scattering angle measured from 
1

x -axis, and 

the terms 
i

A  and 
i

B  are given in Appendix B. The scattering 

cross sections for the incident P and SV waves are then  

1

4
Re[ (0 )]p

p

A
k

= ,          (18) 

2

4
Re[ (0 )]

sv

sv

B
k

= , .           (19) 

NUMERICAL RESULTS AND DISCUSSION  

 To investigate the effect of inclusion shape and orienta-

tion on the scattering cross section, the far-field scattering 

amplitudes have been numerically computed for a diamond 

shaped hole and a diamond shaped rigid inclusion. Diamond 

shaped SiC-Al composites are also considered. The material 

properties of SiC and Al are listed in Table 1. Special treat-

ment is given to the case where a sharp corner of the dia-

mond shaped inclusion occurs on an interface boundary be-

tween regions. The idea is that the structure with sharp cor-

ners should be approximated by a structure with rounded 

corners [4].  

Table 1. Material Properties of SiC and Al 

  (kg/m3)  μ  (GPa)  2μ+  (GPa)    

SiC  3181  188.1  474.2  0.17  

 
0

 (kg/m3)  
0

μ  (GPa)  
0 0

2μ+  (GPa)  
0

  

Al  2706  26.7  110.5  0.34  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Scattering cross section versus frequency for square and diamond 

shaped holes (P wave,  = 90˚, 80˚). 

 Fig. (2) shows the variation of the scattering cross section 

p
a/  of the P wave with the frequency 

sv
a c/  for square 

( 90= ) and diamond ( 80= ) shaped holes at an orien-

tation of angle 0= . Small difference of the scattering 

cross section is observed between the corner angles 90  and 

80 . Further decreasing of  results in an increase in the 

scattering cross section (Fig. 3). Similar phenomena are ob-

served for 45=  and 90  (not shown). Fig. (4) gives a 

plot of 
p

a/  against the orientation angle  of diamond 

shaped hole for a fixed value of 
sv

a c/  = 2.0 while  varies 

from 20  to 80 . The orientation angle infiuences the scat-

tering cross section. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Scattering cross section versus frequency for diamond shaped holes 

(P wave,  = 60˚, 40˚, 20˚, 10˚). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Scattering cross section versus orientation angle for diamond 

shaped holes (P wave, a /csv = 2.0). 

 

 Fig. (5) shows the variation of 
p

a/  of the P wave with 

sv
a c/  for square and diamond shaped rigid inclusions at the 

orientation angle 0= . The scattering cross section in-

creases with the frequency. The graph also demonstrates the 

rising 
p

a/  value with increasing corner angle. Fig. (6) 

shows 
p

a/  versus  of square and diamond shaped rigid 

inclusions for 
sv

a c/  = 2.0. The scattering cross section is 
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influenced by , and peaks at different  at large corner 

angle .  

 

 

 

 

 

 

 

 

 

 

Fig. (5). Scattering cross section versus frequency for square and diamond 

shaped rigid inclusions (P wave). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Scattering cross section versus orientation angle for square and 

diamond shaped rigid inclusions (P wave, a /csv = 2.0). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (7). Scattering cross section versus frequency for square and diamond 

shaped holes (SV wave). 

 

 Fig. (7) exhibits the variation of the scattering cross sec-

tion 
sv

a/  of the SV wave with the frequency 
sv

a c/  for 

square and diamond shaped hole with various values of cor-

ner angle  at the orientation angle 0= . The scattering 

cross section of the SV wave decreases with decreasing . 

Fig. (8) also displays the values of 
sv

a/  of the SV wave 

with 
sv

a c/  for square and diamond shaped rigid inclusions 

at 0= . The 
sv

a/  for rigid inclusions also decreases with 

decreasing . The scattering cross section of the SV wave 

for both holes and rigid inclusions depends on  (not 

shown).  

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Scattering cross section versus frequency for square and diamond 

shaped rigid inclusions (SV wave). 

 

 The variation of 
p

a/  of the P wave with 
sv

a c/  for 

square and diamond shaped SiC-Al composites is illustrated 

in Fig. (9) in which the orientation angle is fixed ( 0= ). 

The value of 
p

a/  of the P wave for SiC-Al composites can 

be lowered by decreasing . Fig. (10) demonstrates the plot 

of 
p

a/  of the P wave against  for square and diamond 

shaped SiC-Al composites. When  is large ( 90=  and 

80 ), the 
p

a/  value has two peaks at 45=  and 135 . 

On the other hand, it has only one peak at 90=  when  

is small. 

 

 

 

 

 

 

 

 

 

 

Fig. (9) Scattering cross section versus frequency for square and diamond 

shaped SiC-Al composites (P wave). 
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Fig. (10) Scattering cross section versus orientation angle for square and 

diamond shaped SiC-Al composites (P wave). 

 

CONCLUSIONS  

 The scattering of P and SV waves by diamond shaped 

inclusions was analyzed using a boundary element method. 

The numerical solutions were obtained for various finite fre-

quencies, and detailed discussions were given for holes, rigid 

inclusions and SiC-Al composites. It is found that the scat-

tering cross sections are influenced by the corner angle of 

inclusions. In the case of diamond shaped holes, the scatter-

ing cross section strongly depends on the orientation angle. 

Further work for the modeling of dynamic characteristics of 

the composites will be carried out. 

APPENDIX A  

(x y)
ij

U ,  and (x y)
ij

T ,  in Eq.(7) can be expressed as  

1
(x y) ( )

2
ij ij i j

U r r
μ

, ,
, = ,         (A1) 

1 1
(x y)

2
ij ij i j

d r
T n r

dr r n
,

, = +  

2
2

j i i j

r
n r r r

r n
, , ,

 

2

2
2 2

p

i j i j

sv

cd r d d
r r r n

dr n c dr dr r
, , ,

     (A2) 

where  

0 ( )
2

sv

i r
H

c
=  

1 1( ) ( )
2 2

sv sv

sv p p

c cr r
H H

i r c c c
+         (A3) 

2

2 22
( ) ( )

2 2

sv

sv p p

ci r i r
H H

c c c
= +        (A4) 

In the above, x yr n=| |, /  denotes the directional dif-

ferentiation along the unit outward normal vector n  to , 

and ()
l

H  is the l th order Hankel function of the first kind.  

APPENDIX B  

i
A  and 

i
B  in Eq.(17) are  

{ }
0

1
ˆ ˆ(x) (y) (x) (y) (y)p p

i ij j p ijk k jA C t k D n u
u

= +  

ˆexp( x y) (y)pik d ,          (B1) 

{ }
0

1
ˆ ˆ(x) (y) (x) (y) (y)sv sv

i ij j sv ijk k jB C t k D n u
w

= +  

ˆexp( x y) (y)
sv

ik d          (B2) 

where  

2
ˆ(x) ˆ ˆ

4

p
i jij

p

i
C x x

c
= ,          (B3) 

2
ˆ(x) ( )ˆ ˆ

4

sv
i jij ij

sv

i
C x x

c
= ,        (B4) 

2 2

2 2

1
ˆ(x) 1 2 2ˆ ˆ ˆ

4

p sv sv
i j kijk jk

p p

c c
D x x x

c c
= + ,      (B5) 

1
ˆ(x) { 2 }ˆ ˆ ˆ ˆ ˆ

4

sv
k j i j kijk ij ijD x x x x x= + ,        (B6) 

and 
1 2

x̂ cos e sin e= +  is the unit vector in the -direction.  
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