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Abstract: In the present paper, the redial harmonic vibrations of hollow cylinders of orthotropic material as affected by 

the angular velocity are discussed on the basis of the linear theory of elasticity. The one-dimensional equation of elas-

todynamics has been solved in terms of radial displacement. Three different boundary conditions, the free, fixed and 

mixed ones are considered. The determination of the eigenfrequencies of radial harmonic vibrations under-different 

boundary conditions is presented. Numerical results are given and illustrated graphically for each case. Comparisons are 

made with previous results given in the literature in the absence of rotation and non-homogeneity. 
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1. INTRODUCTION 

 In the past, accidental failure of rotating cylinders due to 
flexural vibrations has frequently occurred in rotodynamic 
machinery such as steam turbines and gas turbines. The 
analysis of the dynamic problems of elastic bodies is an im-
portant and interesting research field for engineers and scien-
tists. Influences of Rotation, Magnetic Field, Initial Stress 
and Gravity on Rayleigh Waves in a Homogeneous Or-
thotropic Elastic Half-Space is investigated by Abd-Alla et 

al. [1-2]. S.R. Mahmoud [3] studied the wave propagation in 
cylindrical poroelastic dry bones. M. Abd-Alla and Mah-
moud [4] solved magneto-thermoelastic problem in rotating 
non-homogeneous orthotropic hollow cylindrical under the 
hyperbolic heat conduction model.  

 Free vibrations in elastic homogeneous isotropic cylin-
ders have been studied by Abd-Alla and Abo-Dahab [5], 
Buchanan and Chua [6], Galmudi and Dvorkin [7] and Glad-
well and Vijay [8]. However, little attention has been given 
to the problem of wave propagation in orthotropic circular 
cylinders. Some problems of the three-dimensional elastic 
theory for the axisymmetric free vibrations of hollow 
circular cylinders have been studied and analyzed by 
Hutchinson and El-Azhari [9]. Cowin and Fraldi [10] have 
investigated a dynamic problem of singularities associated 
with the curvilinear anisotropic elastic symmetries. Ebenezer 
et al. [11] have investigated forced vibrations of solid elastic 
cylinders. Chou and Achenbach [12] have provided a three-
dimensional solution to vibrations of orthotropic cylinders. 
Hutchinson [13] has investigated the free vibrations prob-
lems of solid cylinders. In addition, Markus and Mead [14] 
have presented an analytical method for investigating the 
dispersion behavior of axisymmetric and asymmetric wave's 
motion in orthotropic cylinders. Buchanan and Liu [15] have 
analyzed of the free vibrations of thick walled isotropic tor 
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oidal shells. Sharma and Kumar [16] have performed an as-
ymptotic analysis of wave motion in transversely isotropic 
plates. Buchanan and Yii [17] have studied the effect of 
symmetrical boundary conditions on the vibrations of thick 
hollow cylinders. Tarn [18] has studied a state space formal-
ism of the free vibrations problems of anisotropic cylinders. 
Wang and Williams [19] have studied vibrational modes of 
thick cylinders of finite length, Zhou, et al. [20] have inves-
tigated 3D vibrations analysis of solid and hollow circular 
cylinders via Chebyshev-Ritz method and Mofakhamia,  
et al. [21] have studied finite cylinder vibrations with differ-
ent end boundary conditions.  

2. FORMULATION OF THE PROBLEM 

  In this section, we derive the analytical formulation of 

the problem in cylindrical coordinates ( r, , z ) with the z-

axis coinciding with the axis of the cylinder. We consider the 

strains to be symmetric about the z-axis. The only unknown 

of the problem is the radial displacement
   
u = (u,0,0) , with u 

being a function of r and t since, the circumferential dis-

placement 
  
u = 0 and the longitudinal displacement uz= 0. 

The stress-strain relations for a cylindrically orthotropic elas-

tic body are given by Lekhnitskii [22]. The stress-

displacement relations for a cylindrically orthotropic mate-

rial in one dimension are,  
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 The dynamical equation in the r  direction, (taking the 

rotation term about the z-axis as a body force) is given by: 
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where,  is the uniform angular velocity and  is the den-

sity of the cylinder material, The elastic constants cij in (2.1) 

and the density  of the non-homogeneous material in (2.2) 

are of the form: 

  

c
ij
=

ij
r

2m
at i =1,2 ; j =1,2,3,

= 0 r
2m

       (2.3) 

where, 
 

ij
 and 

 0
 are the values of cij and  in the homo-

geneous case, respectively, and m is a rational number. 

 Substituting equations (2.1) and (2.3) into equation (2.2) 

we obtain: 
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                 (2.4) 

which is the governing equation of the problem in terms of 

the radial displacement u  

3. SOLUTION OF THE PROBLEM 

 In this section, we obtain the analytical solution of the 

above problem for a cylinder of inner radius a and outer ra-

dius b and different boundary conditions (free-fixed-mixed) 

by assuming harmonic vibrations. Thus, the function u in 

(2.4) is assumed to be of the form: 

  
u(r, t) = U (r)e

i t

         (3.1) 

where,  is the frequency of vibrations. Substituting equa-

tion (3.1) into equation (2.4) we obtain the equation: 
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 Furthermore, assuming that, 

  
U (r) = r

m (r).           (3.3) 

equation (3.2) becomes: 
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where, 
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 Equation (3.4) is Bessel's equation, with a general solu-

tion of the form: 

  
(r ) = A J

n

( r ) + B Y
n

( r )         (3.5) 

where, A and B are arbitrary constants and 
  
J

n
( r)  and 

  
Y

n
( r)  denote Bessel's functions of the first and second kind 

of order n, respectively. 

 Substituting from equations (3.5) and (3.3) into equation 

(3.1), the complete solution of equation (2.4) becomes: 

  
u(r, t) = r

m

e
i t

[ AJ
n
( r) + BY

n
( r)].        (3.6) 

 Substituting from equations (2.3) and (3.6) into equation 

(2.1), the components of the stresses 
 rr

 and  are ob-

tained as 

  

rr
= r

m

e
i t

A
11

J
n 1

( r) + 12 11
(m + n)

r
J

n
( r)

+ B
11

Y
n 1

( r) + 12 11
(m + n)

r
Y

n
( r)

,    (3.7)  

  

= r
m

e
i t

A
12

J
n 1

( r) + 22 12
(m + n)

r
J

n
( r)

+ B
12

Y
n 1

( r) + 22 12
(m + n)

r
Y

n
( r)

.
 (3.8)  

4. BOUNDARY CONDITIONS AND FREQUENCY 

EQUATION 

 In this case, we are going to obtain the frequency equa-

tion of the problem for various boundary conditions of the 

hollow cylinder.  

 We consider the following transformations: 
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 Which will make all the quantities dimensionless in 

equations (4.1) and (3.8), where, W1 denotes the dimension-

less frequency. 

4.1. Free Surface Traction 

 In this case, we are going to obtain the frequency equa-

tion for the boundary condition, which specify that the inner 

and outer surfaces of the hollow cylinder are free of stresses. 

  

rr
= 0 at r = a,

rr
= 0 at r = b.

        (4.2) 

 Substituting equation (4.1) into equation (3.7) and using 

equation (4.2), we obtain-two homogeneous linear equations 

in A and B of the from: 
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 The condition for nonzero solutions of (4.3) produces the 

frequency equation in the form of a second order determi-

nant as:  
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 From equation (4.4), we deduce the frequency equation 

in the form  

  
D

11
D

22
D

12
D

21
= 0          (4.6) 

which represents an implicit equation in W1. By solving this 

equation, we can obtain the eigenfrequencies W. 

4.2. Surfaces Fixed 

 In this case, we are going to obtain a frequency equation 

for the boundary condition, which specify that the inner and 

outer surfaces of the hollow cylinder are fixed, implying zero 

displacements, i.e.  

  

u(r,t) = 0 at r = a,

u(r,t) = 0 at r = b
        (4.7) 

 From (3.6) and (4.7), we obtain two homogeneous linear 

equations in A and B 
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 The condition for nonzero solutions of (4.8) produces the 

frequency equation in the form of a second order determi-

nant as  
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 From equation (4.9), we deduce the frequency equation 

in the form  
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which represents an implicit equation in W1. By solving this 

equation, we can obtain the eigenfrequencies W. 

4.3. Inner Surface Fixed and Outer Surface Free  

 In this case, we are going to obtain a frequency equation 

for the boundary condition, which specify that the inner sur-

face of the hollow cylinder is fixed and outer surface is free, 

i.e., 

  

u(r,t) = 0 at r = a,

rr
= 0 at r = b.

      (4.11) 

 From equations (3.6), (3.7) and (4.11), we obtain two 

homogeneous linear equations in A and B: 
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 The condition for nonzero solutions of (4.12) produces 

the frequency equation in the form of a second order deter-

minant as:  
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 From equation (4.12)', we deduce the frequency equation 

in the form: 
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 By solving this equation, we can obtain the eigenfre-

quencies W. 

4.4. Inner Surface Free and Outer Surface Fixed  

 In this case, we are going to obtain a frequency equation 

for the boundary condition, which specify that the inner sur-

face of the hollow cylinder is free and outer surface is fixed, 

i.e., 
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rr
= 0 at r = a,

u(r,t) = 0 at r = b.
      (4.14) 

 From equations (3.6), (3.7) and (4.14), we obtain two 

homogeneous linear equations in A and B: 
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 The condition for nonzero solutions of (4.15) produces 

the frequency equation in the form of a second order deter-

minant as:  
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 From equation (4.15)', we deduce the frequency equation 

in the form: 
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which represents an implicit equation in W1. By solving this 

equation numerically, we can obtain the eigenfrequencies W.  

5. NUMERICAL RESULTS AND DISCUSSION 

 Here, we shall obtain the eigenfrequencies of the problem 

considered by solving equations (4.6), (4.10), (4.13), and 

(4.16) numerically. Since these equations are an implicit 

functional relation of W1 and h we proceed to find the varia-

tion of natural frequency with ratio h . A fortran program to 

evaluate the roots W of the above equations versus different 

values of h for the first mode was made. We have adopted 

the following iterative procedure for numerical computa-

tions. For a fixed value of h , we evaluate the determinetal, 

equations (17), (20), (23) and (26), for various values of the 

unknown quantity W commencing with the initial value near 

zero and each time adding a fixed but small increment to that 

unknown quantity until the value of the determinant changes 

its signs. Then the half-interval method is applied to locate 

the root correct to a chosen number of decimal places. With 

this root as the initial value, the procedure is repeated to find 

the next root, etc. 

 For a given geometry and elastic constants of the cylin-

der, the frequency equation is essentially an implicit tran-

scendental function for the frequency parameter W. Thus, for 

a fixed values of h , the frequency equation for different 

cases ( free - fixed - mixed ) is a function of W only. Values 

of W were chosen as 0, 0.5, 1,0 and 1.5. The results of fre-

quency versus the ratioh are plotted in Figs. (1-11) on the 

basis of data for orthotropic material. As an illustrative ex-

ample, the elastic constants for an orthotropic material (Co-

balt) are used here (Hearman[23]):  

  

13
= 7.289 GPa,

11

13

= 2.34, 12

13

= 0.93,

22

13

= 8.18,
0
= 8.93 g / cm
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 , 

 Figs. (1-11) show the natural frequency W increases with 

increasing ratio h. It is shown in Fig. (1) that dispersion 

curves at point 0.2 and it is at small values of rotation, while 

Fig. (7) shows the dispersion curves at point 0.3, 0.4 and at 

large values of rotation. The variations of the frequency W 

are due to the effect of rotation and non-homogeneity. In 

addition, the influence of non-homogeneity and rotation on 

frequency W is very pronounced. These results are specific 

for the frequency considered, but other frequency W may 

have different trends, because of the dependent of the results 

on the mechanism of the material. Figs. (1-3) show the natu-

ral frequency of free-surfaces rotating cylinder with variable 

 

 

 

 

 

 

 

 

 

Fig. (1). Frequency W versus the ratio h of non-homogeneous mate-

rial (free traction surfaces ) , n = 0. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Frequency W versus the ratio h of non-homogeneous mate-

rial (free traction surfaces ) , n = 1. 
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ratio h , the natural frequency of the cylinder with increas-

ing ratio are the largest. Figs. (4-6) present the natural fre-

quency of fixed-surfaces rotating cylinder with linearly vary-

ing frequency versus the ratio h . In general, the natural fre-

quency becomes larger monotonically with an increase of the 

ratio h . Figs. (7-11) show the variation of the natural fre-

quency of mixed-surfaces rotating cylinder. It is clear from 

Figs. (7-11) that the natural frequency becomes largest with 

the relative ratio h and with the effect of rotation are de-

creases.  

 

 

 

 

 

 

 

 

 

 

Fig. (6). Frequency W versus the ratio h of homogeneous material 

(fixed surfaces ), n = 1. 

 

 

 

 

 

 

 

 

 

 
 

Fig. (7). Frequency W versus the ratio h of non-homogeneous mate-

rial (inner fixed surfaces and outer free surfaces ), n = 0. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Frequency W versus the ratio h of non-homogeneous mate-

rial (inner fixed surfaces and outer free surfaces ), n = 1. 

 

 Next consideration is given to the relative change in the 
frequencies over a range of aspect (i.e., a/b) ratio of cylinder. 
This allows one to observe the frequency response for differ-
ent rotation values of cylindrical shape. The results are pre-
sented as the variation in the dimensionless frequency W as a 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Frequency W versus the ratio h of homogeneous material 

(free traction surfaces), n = 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Frequency W versus the ratio h of non-homogeneous mate-

rial (fixed surfaces ), n = 0. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Frequency W versus the ratio h of non-homogeneous mate-

rial (fixed surfaces), n = 1. 
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function of the aspect ratio of the cylinder, and are shown in 
Fig. (1) All values were obtained by using half-interval 
method. There is a good agreement between these results and 
those of Charalambopoulos et al. [24]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Frequency W versus the ratio h of homogeneous material 

(inner fixed surfaces and outer free surfaces), n = 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Frequency W versus the ratio h of non-homogeneous 

material For mixed B.C , n = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Frequency W versus the ratio h of non-homogeneous 

material (inner free surfaces and outer fixed surfaces ), n = 1. 

CONCLUSION 

 Harmonic vibrations of infinite elastic cylinder have been 
studied using a half-interval method. The governing equa-
tions in cylindrical coordinates are recorded for future refer-
ence.The frequency equations have been obtained under the 
effects of rotation and non-homogeneity. Numerical results 
are given and illustrated graphically. To examine the effects 
of rotation and non-homogeneity, variations of the frequency 
W with the ratio h  of non-homogeneous materials have 
been shown graphically and they are compared with those 
for the material in the absence of rotation and non-
homogeneity. It is found that the frequency decreases with 
rotation increases for all cases and with the high values of 
the ratio h is increases. 
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